
Large-Scale Network Simulation: How Big? How Fast?

Richard M. Fujimoto, Kalyan Perumalla, Alfred Park, Hao Wu, Mostafa H. Ammar,
College Of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280

{fujimoto,kalyan,park,wh,ammar}@cc.gatech.edu

George F. Riley
Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30032-0280

riley@ece.gatech.edu

Keywords: parallel discrete event simulation communication networks

ABSTRACT

Parallel and distributed simulation tools are emerging
that offer the ability to perform detailed, packet-level
simulations of large-scale computer networks on an
unprecedented scale. The state-of-the-art in large-scale
network simulation is characterized quantitatively. For
this purpose, a metric based on the number of Packet
Transmissions that can be processed by a simulator per
Second of wallclock time (PTS) is used as a means to
quantitatively assess packet-level network simulator
performance. An approach to realizing scalable network
simulations that leverages existing sequential simulation
models and software is described. Results from a recent
performance study are presented concerning large-scale
network simulation on a variety of platforms ranging from
workstations to cluster computers to supercomputers.
These experiments include runs utilizing as many as 1536
processors yielding performance as high as 106 Million
PTS. The performance of packet-level simulations of web
and ftp traffic, and Denial of Service attacks on networks
containing millions of network nodes are briefly
described, including a run demonstrating the ability to
simulate a million web traffic flows in near real-time. New
opportunities and research challenges to fully exploit this
capability are discussed.

1. Introduction

Simulation is widely recognized as an essential tool to
analyze networks. Although analytic methods are useful in
many situations, the complexity of modern networks
combined with the inability to apply simplifying
assumptions in many analysis problems (e.g., it is well-
known that Markovian traffic assumptions are often
inappropriate and can lead to misleading results) limit the
applicability of purely analytic approaches. Even when
analytic methods can be used, simulation is often used to
validate the analysis.

Simulation is often used to gain insight into the behavior

of particular protocols and mechanisms under a variety of
network conditions. Here, simulations of small to medium
sized networks may be sufficient to gain critical insights
into the behavior of the network. However, in other cases,
simulation is used to understand the true effect of a new
protocol, mechanism, network service, attack, or
application when it is widely deployed on a large network
such as the Internet. Interactions between the new
proposed mechanism and the large amount and variety of
competing traffic on the Internet are important
considerations in gaining such an understanding. For
example, if one wished to understand the effect of
enabling multicast on a large Internet Service Provider
(ISP), much larger simulations with a variety of competing
traffic is needed to gain credible evidence regarding the
effect of this proposed change. This paper examines the
tools necessary for this latter class of research questions
that require simulations of large networks. Specifically,
we are interested in quantitatively characterizing the
ability of modern parallel simulation systems to perform
detailed simulations of computer networks.

Here, we focus primarily on packet-level simulations that
model the transmission and queuing of individual packets
as they travel through the network. Packet-level
simulation is used extensively for protocol design and
evaluation. It is widely used by many network simulation
tools such as ns2 [1], GloMoSim and its commercial
version Qualnet [2], and Opnet [3], among many others.

Most studies performed today using packet level
simulations are limited to experiments modeling hundreds
to thousands of network nodes (e.g., routers and end host
computers). A critical reason is the amount of
computation time and memory required to perform
simulations of much larger networks is prohibitive. The
goal of this paper is to explore the limitations of packet
level simulation using parallel computation techniques.

2. Scalability Limits of Network Simulators

In practice, two factors that often limit the scale of packet

Proceedings of the 11TH IEEE/ACM International Symposium on Modeling, Analysis and Simulation
of Computer Telecommunications Systems (MASCOTS’03) 1526-7539/03 $ 17.00 © 2003 IEEE

level simulations that can be performed are the amount of
memory required and the amount of computation time
needed to complete each simulation run. Because the
simulator requires a certain amount of memory to
represent the state of each node, memory requirements
increase at least linearly with the number of nodes.
Memory requirements may increase faster than linearly in
some simulators, e.g., to represent routing tables [4].
Thus, the amount of memory on the computer performing
the simulation limits the number of nodes that can be
represented.

At the same time, the amount of time required to complete
a packet level simulation usually increases in proportion
with the amount of traffic that must be simulated. This is
because packet-level simulators are usually based on a
discrete event paradigm where the computation consists of
a sequence of event computations, so the execution time is
proportional to the number of events that must be
processed, assuming the average amount of time to
process each event remains constant. Events in a packet-
level simulation represent actions associated with
processing a packet such as transmitting the packet over a
link. Thus the execution time in a packet level simulation
is proportional to the number of packets that must be
processed. Assuming the modeler is only willing to wait a
certain amount of time for the simulation to complete, this
places a limit on the amount of traffic that can be
simulated.

These observations place specific limits on the scale (size
and amount of traffic) that can practically be modeled by a
given simulator using a specific hardware platform. A
notional diagram illustrating these scalability limitations is

shown in Figure 1. In this figure we normalize the
execution time constraint by requiring that the simulation
execute in real time, i.e., to simulate S seconds of network
operation requires no more than S seconds of wallclock
time. Each shaded area in Figure 1 represents a class of
network simulators. Sequential simulation methods
provide a baseline. As discussed later, our experiments
indicate that contemporary network simulators such as ns2
with suitable optimizations to reduce memory
consumption are able to simulate on the order of tens to
hundreds of thousands of packet transmissions per second
of wallclock time for networks containing thousands to
tens of thousands of nodes on a modern workstation or
personal computer.

Concurrent execution of the simulation computation can
improve the scalability of the simulator both in terms of
network size and execution speed, depending on the
method that is used. Time parallel simulation methods
such as that described in [5-12] parallelize a fixed sized
problem by partitioning the simulation time axis into
intervals, and assigning a processor to simulate the system
over its assigned time interval. These methods increase
the execution speed of the simulator enabling more
network traffic to be simulated in real time, but do not
increase the size of the network being simulated, (see
Figure 1). For example, performance on the order of 1010

simulated packet transmissions per second are reported in
[12]. Parallel discrete event methods utilize a space-
parallel approach where a large network is partitioned and
the nodes of each partition are mapped to a different
processor, offering the potential for both network size and
execution speed to scale in proportion to the number of
processors. As discussed later, several parallel simulators
using this approach have been developed. This approach
is the primary focus of this paper. Finally, in addition to
these “pure” time and space parallel approaches, some
approaches combine both time and space parallelism, e.g.,
see [13].

3. Simulator Performance
Just as computer hardware designers utilize metrics such
as the number of instructions of floating point operations a
machine can process per second of wallclock time, it is
useful to have a quantitative metric to characterize the
performance of packet-level network simulators. Since
the bulk of the simulation computation in a packet level
simulator involves simulating the transmission and
processing of packets as they travel from the source,
through intermediate nodes (routers), to its destination, it
is convenient to use the number of Packet Transmissions
that can be simulated per Second of wallclock time (or
PTS) as the metric to specify simulator speed. This metric
is useful because given the PTS rate of a simulator, one
can estimate the amount of time that will be required to

Network Size

Traffic

1 102 104 106 108

102

104

106

108

1010

Sequential
Simulation

Time Parallel
Simulation

Parallel Discrete
Event Simulation

Figure 1. Notional diagram depicting network size
(nodes and traffic) that can be simulated in real time.

Proceedings of the 11TH IEEE/ACM International Symposium on Modeling, Analysis and Simulation
of Computer Telecommunications Systems (MASCOTS’03) 1526-7539/03 $ 17.00 © 2003 IEEE

complete a simulation run if one knows the amount of
traffic that must be simulated, and the average number of
hops required to transmit a packet from source to
destination.

Specifically, the execution time T for a simulation run can
be estimated by the equation

T = NT / PTSS

where NT is the number of packet transmissions that must
be simulated and PTSS is the number of simulated packet
transmissions that can be simulated per second of
wallclock time by simulator S. NT depends on several
factors. A first order estimate is

NT = NF * PF * HF

where NF is the number of packet flows that must be
simulated, PF is the average number of packet
transmissions per flow, and HF is the average number of
hops a packet must traverse in traveling from source to
destination. It is important to note, however, that this is an
approximation because it does not consider packet losses,
nor other non-user traffic packets that must be sent by the
protocol being used, e.g., acknowledgement packets using
TCP. Nevertheless, when these considerations are
accounted for, these equations provide a reasonable means
to estimate execution time.

When the objective is to achieve real-time performance,
the execution time constraint is PTSS must be at least as
large as NF*RF*HF where RF is the average rate of packets
transmitted (packets per second) per flow, again with the
same caveats concerning losses and protocol-generated
packets. For example, consider a simulation of 500,000
active UDP flows in real time where each flow produces
traffic at a rate of 1 Mbps. Assuming 1 KByte packets,
this translates to 125 packets/second. If the average path
length is 8 hops, the simulator must execute at a rate of
500 Million PTS to achieve real time performance.

4. Parallel Network Simulation

Several parallel discrete event simulation systems have
been developed to improve the scalability of network
simulations. The traditional approach to realizing such a
system is to create the parallel simulator “from scratch,”
where all the simulation software is custom designed for a
particular parallel simulation engine. The simulation
engine provides, at a minimum, services for
communication and synchronization. Examples of parallel
network simulators using this approach include
GloMoSim [2], TeD [14, 15], SSFNet [16], DaSSF [17],
TeleSim [18], and the ATM simulator described in [19],
among others. One advantage of this approach is the
software can be tailored to execute efficiently in a specific

environment. Because new models must be developed and
validated, this approach requires a significant amount of
time and effort to create a useable system.

Another approach to parallel/distributed simulation
involves interconnecting existing simulators. These
federated simulations may include multiple copies of the
same simulator (modeling different portions of the
network), or entirely different simulators. The individual
simulators that are to be linked may be sequential or
parallel. This approach has been widely used by the
military to create simulation systems for training or
analysis, and several standards have been developed in this
regard [20-24]. An approach linking multiple copies of the
commercial CSIM simulator to create parallel simulations
of queues is described in [25]. The federated approach
offers the benefits of model and software reuse, and
provides the potential of rapid parallelization of existing
sequential simulators. It also offers the ability to exploit
models and software from different simulators in one
system [26].

Here, we focus on this latter approach. Specifically, we
are concerned with two parallel simulators: Parallel /
Distributed Network Simulator (PDNS) based on the
widely used ns2 network simulation tool, and GTNetS, a
recently developed tool designed for scalable federated
network simulation. Both systems use the same
underlying runtime infrastructure (RTI) software that
provides services for communication and synchronization
(see Figure 2). Each of these is described next.

4.1. RTI-Kit

RTI-Kit is a component of the Federated Simulations
Development Kit (FDK). It provides a set of libraries for
realizing RTI software. Specifically, the MCAST library
provides group communication services for implementing
publication/subscription communication among simulators
(federates). The current version uses reliable, point-to-
point communicat ion to implement group
communications. The TM-Kit library includes software to
synchronize the computation, as will be discussed in
greater detail momentarily. The other modules shown in
Figure 2 implement mechanisms such as buffer
management, priority queues, and low level
communications support.

Synchronization mechanisms for parallel discrete event
simulation can be broadly classified as conservative or
optimistic. The principal responsibility of the
synchronization mechanism is to ensure that each
simulator (called a federate) processes events in time
stamp order. Conservative mechanisms use blocking to
ensure an event (message) is not processed until it can be

Proceedings of the 11TH IEEE/ACM International Symposium on Modeling, Analysis and Simulation
of Computer Telecommunications Systems (MASCOTS’03) 1526-7539/03 $ 17.00 © 2003 IEEE

guaranteed no event with a smaller time stamp will later
be received. Optimistic mechanisms allow events to be
processed out of time stamp order, but use some
mechanism (e.g., rollback) to recover from such errors.
These synchronization paradigms are discussed in greater
detail in [27]. Conservative synchronization is better
suited when federating existing sequential simulators
because one need not add a rollback mechanism to the
original simulator.

The synchronization mechanism used here is based on
using a distributed snapshot algorithm to compute the
lower bound on time stamp of future message that might
be received. In addition to computing a global minimum,
this algorithm must account for messages that have been
sent, but have not yet been received, i.e., transient
messages. Specifically, a variation of Mattern’s algorithm
[28] is used for this purpose. At the heart of TM-Kit is the
computation of reductions (global minimums) that account
for transient messages using message counters. This
computation and performance optimizations that have
been developed are described in [29].

4.2. PDNS

PDNS is based on the ns2 simulation tool, and is described
in greater detail in [30]. Each PDNS federate differs from
ns2 in two important respects. First, modifications to ns2
were required to support distributed execution.

Specifically, a central problem that must be addressed
when federating sequential network simulation software in
this way is the global state problem. Each PDNS federate
no longer has global knowledge of the state of the system.
Specifically, one ns2 federate cannot directly reference
state information for network nodes that are instantiated in
a different federate. In general, some provision must be
made to deal with both static state information that does
not change during the execution (e.g., topology
information), and dynamic information that does change
(e.g., queue lengths). Fortunately, due to the modular
design of the ns2 software, one need only address this
problem for static information concerning network
topology, greatly simplifying the global state problem.

To address this problem, a naming convention is required
for an ns2 federate to refer to global state information.
Two types of remote information must be accessed. The
first corresponds to link end points. Consider the case of a
link that spans federate boundaries, i.e., the two link
endpoints are mapped to different federates. Such links
are referred to in PDNS as rlinks (remote links). Some
provision is necessary to refer to end points that reside in a
different federate. This is handled in PDNS by using an IP
address and network mask to refer to any link endpoint.
When configuring a simulation in PDNS, one creates a
TCL script for each federate that instantiates the portion of
the network mapped to the federate, and instantiates rlinks
to represent the “edge-connections” the span federates.
The second situation where the global state issue arises
concerns reference to endpoints for logical connections,
specifically, the final destination for a TCP flow may
reside in a different federate. Here, PDNS again borrows
well-known networking concepts, and uses a port number
and IP address to identify a logical end point.

The second way that PDNS differs from ns2 is it uses a
technique called NIx-Vector routing. An initial study of
ns2 indicated that routing table size placed severe
limitations on the size of networks that could be simulated
because the amount of memory required to store routing
table information increased O(N2) where N is the number
of network nodes. To address this problem, message
routes are computed dynamically, as needed. The path
from source to destination is encoded as a sequence of (in
effect) output ports numbers call the NIx-Vector, leading
to a compact representation. Previously computed routes
are cached to avoid repeated re-computation of the same
path. This greatly reduces the amount of memory
required, and greatly increases the size of network that can
be simulated on a single node. The NIxVector technique
is also applicable to the sequential version of ns2 and is
used in PDNS.

ns2 /

GTNetS

RTI
interface

RTI

ns2 /

GTNetS

RTI
interface

RTI Interface

RTI-Kit

FM-Lib (low level communications)

buffer mgt.,
priority

queues, etc.

MCAST
(group

Comm.)

TM-Kit
(synch.)

ns2 /

GTNetS

RTI
interface

…

Figure 2. PDNS/GTNetS architecture.

Proceedings of the 11TH IEEE/ACM International Symposium on Modeling, Analysis and Simulation
of Computer Telecommunications Systems (MASCOTS’03) 1526-7539/03 $ 17.00 © 2003 IEEE

4.3. GTNetS

GTNetS is tool recently develop at Georgia Tech for
scalable network simulation [31]. Network models are
written in C++. Like PDNS, the parallel version of
GTNetS was realized using a federated simulation
approach. Unlike PDNS, the sequential version of
GTNetS was designed with parallel processing in mind.
As such, it benefits from the experiences derived from
creating PDNS, and it overall is more scalable and easier
to use than PDNS.

GTNetS uses many of the same techniques used in PDNS
to enable parallel execution. In particular, it uses rlinks, IP
addresses, and address masks to identify link end points,
and an IP address and port number to identify a remote
end host. GTNetS also uses NIx-Vector routing, as
described earlier, to economize on memory required to
store routing table information.

5. Performance Study

The objective of this performance study was to stress test
the PDNS and GTNetS simulations to quantitatively
characterize the scale and performance of network
simulations that can be done today. In the following we
describe the methodology used to create and validate the
network simulators. Specifically, we describe the
networks that were used for this study. We then describe
both sequential and parallel performance results on a Sun
workstation, a Linux-based cluster and a large-scale
supercomputer.

5.1. Methodology

The network topology, traffic, and parameters were based
on a benchmark specification developed by the research
group at Dartmouth College [16]. The benchmarks were

developed as a set of baseline models for the network
modeling and simulation community. The benchmark
configurations were developed with the intention of
facilitating the demonstration of network simulator
scalability.

The basic “building block” used to construct large network
configurations is referred to as a Campus Network (CN).
The topology of a typical CN is shown in Figure 3. Each
CN consists of 4 servers, 30 routers, and 504 clients for a
total of 538 nodes. The CN is comprised of 4 separate
networks. Net 0 consists of 3 routers, where one node is
the gateway router for the CN. Net 1 is composed of 2
routers and 4 servers. Net 2 consists of 7 routers, 7 LAN
routers, and 294 clients. Net 3 contains 4 routers, 5 LAN
routers, and 210 clients.

Net 0 is connected to Net 2 and Net 3 via standalone
routers. Net 1 is connected directly to Net 0 through a
single link. All non-client links have a bandwidth of
2Gb/s and have a propagation delay of 5ms with the
exception of the Net 0 to Net 1 links, which have a
propagation delay of 1ms. Clients are connected in a
point-to-point fashion with their respective LAN router
and have links with 100Mb/s bandwidth and 1ms delay.

Multiple CNs may be instantiated and connected together
to form a ring topology. This aspect of the network allows
the baseline model to be easily scaled to arbitrarily large
sizes. Multiple CNs are interconnected through a high
latency 200ms 2Gb/s link via their Net 0 gateway router.
A network consisting of 10 CNs is shown in Figure 4.

In our performance study, we focus on pure TCP traffic

Figure 3. Topology of a single campus network.

Figure 4. Topology of 10 campus networks configured
in a ring.

Proceedings of the 11TH IEEE/ACM International Symposium on Modeling, Analysis and Simulation
of Computer Telecommunications Systems (MASCOTS’03) 1526-7539/03 $ 17.00 © 2003 IEEE

requested by clients from server nodes. All TCP traffic is
“external” to the requesting CN clients, i.e., all the clients
generate TCP traffic to/from servers in an adjacent CN in
the ring (CN i communicates with CN i+1, etc.). Also, we
use the short transfer case of the baseline model, where
clients request 500,000 bytes from a random Net 1 server.
The TCP sessions start at a time selected from a uniform
distribution over the interval from 100 and 110 seconds of
simulation time from the start of the run.

5.2. Validation

The simulators were validated by creating three separate
implementations using different network simulation
packages, and comparing the resulting statistics that were
produced. Specifically, the campus network configuration
was realized using PDNS, GTNetS, and Opnet; Opnet is a
widely used commercial network simulation package.

A single campus network configuration was used for
validation purposes. The simulators were run, and
processed over 4.5 million packet transmissions. Because
the different simulators use different random number
generators and the model implementations differed
slightly (e.g., the different packages use different means to
specify network traffic), statistical results from the
different packages were not identical. However, we
verified that average end-to-end delay statistics produced
by the simulators differed by less than 3%.

5.3. Hardware Platforms

Experiments were performed across a variety of platforms.
Initial sequential experiments to establish baseline
performance were conducted on a 450 MHz Sun
UltraSPRAC-II machine running the Solaris Operating
System.

Parallel measurements were performed on both a cluster
computing platform at Georgia Tech and a supercomputer
at the Pittsburgh Supercomputing Center (PSC). The
cluster computing platform is a large Linux cluster
consisting of 17 machines, or a total of 136 CPUs. Each
machine is a Symmetric Multi-Processor (SMP) machine
with eight 550MHz Pentium III XEON processors. The
eight CPUs of each machine share 4 GB of RAM. Each
processor contains 32KB (16KB Data, 16KB Instruction)
of non-blocking L1 cache and 2MB of full-speed, non-
blocking, unified L2 cache. An internal core interconnect
utilizes a 5-way crossbar switch connecting two 4-way
processor buses, two interleaved memory buses, and one
I/O bus. The operating system is Red Hat Linux 7.3
running a customized 2.4.18-10smp kernel. The 17 SMP
machines are connected to each other via a Dual Gigabit
Ethernet switch with EtherChannel aggregation. Our RTI
software uses shared memory for communications within

an SMP, and TCP/IP for communication across SMPs.

Supercomputer experiments were conducted on the
“Lemieux” machine at PSC. This machine includes 750
HP-Alpha ES45 servers. Each server contains 4 GBytes
of memory and four 1.0 GHz CPUs. A high speed
Quadrics switch is used to interconnect the servers.

5.4. Performance Measurements

Sequential performance of ns2 (version 2.1b9) and
GTNetS in simulating a single CN on a Sun/Solaris
machine and an Intel/Linux machine are shown in Table 1.
As can be seen, both simulators execute on the order of
40K to 44K PTS on the Sun. A single Intel/Linux
processor in the cluster machine executes ns2 simulations
about 2.2 times faster than the same simulation running on
the Sun/Solaris platform.

Table 1. Baseline Performance Measurements.

ns2 (Sun) GTNets
(Sun)

ns2 (Intel)

Events 9,107,023 9,143,553 9,117,070

Packet
Transmissions

4,546,074 4,571,264 4,552,084

Run Time
(sec)

104 112.3 48

PTS 43,712 40,706 94,814

The parallel simulation experiments described here scale
the size of the simulated network in proportion to the
number of processors used. This is a widely accepted
approach for scalability studies in the high performance
computing community. It also circumvents the problem of
having a sequential machine with enough memory to
execute the entire model (necessary to compute speedup),
which would not be possible for the large simulations that
were considered here.

Figure 5 shows the performance of PDNS on the Linux
cluster as the problem size and hardware configuration are
increased in proportion. It can be seen that performance
increases linearly as the scale is increased. The largest
configuration simulates 645,600 network nodes on 120
processors, yielding performance of approximately 2
million PTS. Since these experiments were performed,
optimizations to PDNS were later added, and found to
yield aggregate performance of 5.5 Million PTS using 136
processors in simulating a campus network configuration
containing 658,512 nodes and 616,896 traffic flows. A

Proceedings of the 11TH IEEE/ACM International Symposium on Modeling, Analysis and Simulation
of Computer Telecommunications Systems (MASCOTS’03) 1526-7539/03 $ 17.00 © 2003 IEEE

“SynFlood” Denial of Service attack scenario with 25,000
attacking hosts and background traffic was also executed
on the simulator, yielding performance of 1.5 Million PTS
on 136 processors. This version of PDNS was based on
ns2 version 2.26, which we observed to be somewhat
slower than version 2.1b9 that was used for the previous
experiments.

Performance measurements of PDNS executing on the
PSC are shown in Figure 6. The largest configuration
contains approximately 4 million network nodes, and
yields a simulator performance of 106 Million PTS on
1536 processors.

Experiments with GTNetS on PSC also demonstrated
scalable executions could be obtained for that simulator.
An execution containing 5.5 million nodes and 5.2 million
flows on 512 processors yielded a performance of 12.3
Million PTS. Another experiment demonstrated that 1.0
million web browsers generating http traffic using the
model described in [32] on a network containing 1.1
million nodes executed in near real time, requiring 541
seconds of wallclock time to simulate 300 seconds of
network operation. This experiment demonstrates that
real-time packet level simulation of million node networks
is within reach today.

6. The Future

The goal of this paper is to try to characterize
quantitatively the capability of parallel simulation tools to
simulate large-scale networks, and to point out that the
ability now exists to simulate large networks. This is by
no means to imply scalable network simulation is a
“solved problem”! Much additional research and
development is required to effectively exploit these
capabilities.

On the modeling side, creating realistic models of the

Internet remains an extremely challenging problem. Some
of the key issues that must be addressed are described in
[33]. For example, the topology, configuration, and traffic
of the Internet today is not well understood and is
constantly changing, let alone the Internet of tomorrow
that is targeted by most simulation studies. Methodologies
to effectively validate and experiment with large-scale
network simulations must be developed. Much work is
required to make the parallel simulation tools easily
accessible and usable by network researchers who are not
experts in parallel processing. Robust parallel
performance is needed; modest changes to the
configuration of the network being simulated may result in
severe performance degradations. These and many other
issues must be addressed before large-scale network
simulation tools can reach their fullest potential.

Acknowledgments

This research was supported under DARPA contract
N66001-00-1-8934 and NSF grants ANI-0136939 and
ANI-9977544. The assistance of the staff at the Pittsburgh
Supercomputing Center is also gratefully acknowledged.

References

1. Breslau, L., et al., Advances in Network Simulation.
IEEE Computer, 2000. 33(5): p. 59-67.

2. Zeng, X., R. Bagrodia, and M. Gerla, GloMoSim: A
Library for Parallel Simulation of Large-Scale
Wireless Networks, in Proceedings of the 1998
Workshop on Parallel and Distributed Simulation.
1998. p. 154-161.

3. Chang, X., Network Simulations with OPNET, in
Proceedings of the 1999 Winter Simulation
Conference. 1999.

4. Riley, G.F., R.M. Fujimoto, and M.A. Ammar,
Stateless Routing in Network Simulations, in
Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems. 2000.

5. Lin, Y.-B. and E.D. Lazowska, A Time-Division
algorithm for Parallel Simulation. ACM Transactions
on Modeling and Computer Simulation, 1991. 1(1): p.

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

Processors

P
ac

ke
t

T
ra

n
sm

is
si

o
n

s
p

er
 s

ec
o

n
d

Figure 5. PDNS performance on cluster of Intel
SMPs; each processor simulates 10 campus networks
(up to 645,600 network nodes with 120 processors).

0

20

40

60

80

100

120

140

0 256 512 768 1024 1280 1536
Processors

M
il

li
o

n
 P

k
t

T
r
a

n
s/

se
c Ideal/Linear

PDNS Performance

Figure 6. PDNS Performance on Pittsburgh Supercomputer.

Proceedings of the 11TH IEEE/ACM International Symposium on Modeling, Analysis and Simulation
of Computer Telecommunications Systems (MASCOTS’03) 1526-7539/03 $ 17.00 © 2003 IEEE

73-83.
6. Andradottir, S. and T. Ott, Time-Segmentation

Parallel Simulation of Networks of Queues with Loss
or Communication Blocking. ACM Transactions on
Modeling and Computer Simulation, 1995. 5(4): p.
269-305.

7. Greenberg, A.G., B.D. Lubachevsky, and I. Mitrani,
Algorithms for Unboundedly Parallel Simulations.
ACM Transactions on Computer Systems, 1991. 9(3):
p. 201-221.

8. Fujimoto, R.M., I. Nikolaidis, and A.C. Cooper,
Parallel Simulation of Statistical Multiplexers.
Discrete Event Dynamic Systems: Theory and
Applications, 1995: p. 115-140.

9. Wu, H., R.M. Fujimoto, and M. Ammar, Time-
Parallel Trace-Driven Simulation of CSMA/CD, in
Proceedings of the Workshop on Parallel and
Distributed Simulation. 2003.

10. Jones, K.G. and S.R. Das, Time-Parallel Algorithms
for Simulation of Multiple Access Protocols, in Ninth
International Symposium on modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems. 2001.

11. Greenberg, A., et al., Efficient Massively Parallel
Simulation of Dynamic Channel Assignment Schemes
for Wireless Cellular Communications, in
Proceedings of the 8th Workshop on Parallel and
Distributed Simulation. 1994. p. 187-194.

12. Fujimoto, R.M., I. Nikolaidis, and A.C. Cooper,
Parallel Simulation of Statistical Multiplexers.
Journal of Discrete Event Dynamic Systems, 1995. 5:
p. 115-140.

13. Szymanski, B.K., Y. Liu, and R. Gupta, Parallel
Network Simulation under Distributed Genesis, in
Proceedings of the 17th Workshop on Parallel and
Distributed Simulation. 2003. p. 61-68.

14. Perumalla, K., R. Fujimoto, and A. Ogielski, TeD - A
Language for Modeling Telecommunications
Networks. Performance Evaluation Review, 1998.
25(4).

15. Poplawski, A.L. and D.M. Nicol, Nops: A
Conservative Parallel Simulation Engine for TeD, in
12th Workshop on Parallel and Distributed
Simulation. 1998. p. 180-187.

16. Cowie, J.H., D.M. Nicol, and A.T. Ogielski, Modeling
the Global Internet. Computing in Science and
Engineering, 1999.

17. Liu, J. and D.M. Nicol, DaSSF 3.0 User's Manual.
2001.

18. Unger, B., The Telecom Framework: a Simulation
Environment for Telecommunications, in Proceedings
of the 1993 Winter Simulation Conference. 1993.

19. Pham, C.D., H. Brunst, and S. Fdida, Conservative
Simulation of Load-Balanced Routing in a Large
ATM Network Model, in Proceedings of the 12th

Workshop on Parallel and Distributed Simulation.
1998. p. 142-149.

20. Miller, D.C. and J.A. Thorpe, SIMNET: The Advent of
Simulator Networking. Proceedings of the IEEE,
1995. 83(8): p. 1114-1123.

21. IEEE Std 1278.1-1995, IEEE Standard for
Distributed Interactive Simulation -- Application
Protocols. 1995, New York, NY: Institute of
Electrical and Electronics Engineers, Inc.

22. IEEE Std 1278.2-1995, IEEE Standard for
Distributed Interactive Simulation -- Communication
Services and Profiles. 1995, New York, NY: Institute
of Electrical and Electronics Engineers Inc.

23. Kuhl, F., R. Weatherly, and J. Dahmann, Creating
Computer Simulation Systems: An Introduction to the
High Level Architecture for Simulation. 1999:
Prentice Hall.

24. IEEE Std 1516.3-2000, IEEE Standard for Modeling
and Simulation (M&S) High Level Architecture (HLA)
-- Interface Specification. 2000, New York, NY:
Institute of Electrical and Electronics Engineers, Inc.

25. Nicol, D. and P. Heidelberger, Parallel Execution for
Serial Simulators. ACM Transactions on Modeling
and Computer Simulation, 1996. 6(3): p. 210-242.

26. Perumalla, K., et al., Experiences Applying Parallel
and Interoperable Network Simulation Techniques in
On-Line Simulations of Military Networks, in
Proceedings of the 16th Workshop on Parallel and
Distributed Simulation. 2002. p. 97-104.

27. Fujimoto, R.M., Parallel and Distributed Simulation
Systems. 2000: Wiley Interscience.

28. Mattern, F., Efficient Algorithms for Distributed
Snapshots and Global Virtual Time Approximation.
Journal of Parallel and Distributed Computing, 1993.
18(4): p. 423-434.

29. Perumalla, K.S., et al., Scalable RTI-Based Parallel
Simulation of Networks, in Proceedings of the 17th
Workshop on Parallel and Distributed Simulation.
2003. p. 97-104.

30. Riley, G., R.M. Fujimoto, and M. Ammar, A Generic
Framework for Parallelization of Network
Simulations, in Proceedings of the Seventh
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems. 1999. p. 128-135.

31. Riley, G.F., The Georgia Tech Network Simulator, in
Proceedings of the Workshop on Models, Methods,
and Tools for Reproducible Network Research (MoMe
Tools). 2003.

32. Mah, B.A., An Empirical Model of HTTP Network
Traffic, in INFOCOM. 1997. p. 592-600.

33. Floyd, S. and V. Paxson, Difficulties in Simulating the
Internet. IEEE/ACM Transactions onNetworking,
2001. 9(4): p. 392-403.

Proceedings of the 11TH IEEE/ACM International Symposium on Modeling, Analysis and Simulation
of Computer Telecommunications Systems (MASCOTS’03) 1526-7539/03 $ 17.00 © 2003 IEEE

