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Abstract

Neuromorphic computing covers a diverse range of approaches to information processing all of

which demonstrate some degree of neurobiological inspiration that differentiates them from

mainstream conventional computing systems. The philosophy behind neuromorphic computing

has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This

early work influenced others to carry developments forward, and advances in VLSI technology

supported steady growth in the scale and capability of neuromorphic devices. Recently, a number

of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales

and capabilities. These large-scale projects are associated with major new funding initiatives for

brain-related research, creating a sense that the time and circumstances are right for progress in our

understanding of information processing in the brain. In this review we present a brief history of

neuromorphic engineering then focus on some of the principal current large-scale projects, their

main features, how their approaches are complementary and distinct, their advantages and

drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers.

Keywords: neuromorphic systems, brain-inspired computing, large-scale neuromorphics

(Some figures may appear in colour only in the online journal)

1. Introduction

The brain is an enigma, and remains as one of the great

frontiers of science. The 1.4 kg of fatty material that we each

carry around in our heads defines our personalities, stores our

memories, and controls all aspects of our behaviour. Yet,

despite huge progress in neuroscience over the last century,

the fundamental principles of information processing and

storage in the brain are far from understood.

With the widespread introduction over the last half cen-

tury of the stored-programme computer into all areas of

human activity we have an alternative information processing

paradigm against which the brain may be compared, yet

despite superficial similarities in their roles as information

processing and control systems, it is clear that the principles

of operation of the brain and the computer are very different.

While computers excel at speed and precision, the brain still

wins in coping with novelty, complexity and ambiguity, and

in practical tasks such as facial recognition and controlling

bipedal locomotion.

This difference in capabilities has encouraged computer

engineers from the earliest days of computing to wonder

whether there might not be different principles at work in the

brain that could profitably be applied in the design of

machines. Where these principles are derived from our (par-

tial) understanding of the structure and characteristics of

neurons—the basic components from which the brain is

constructed—and the complex networks of neurons in the

brain, the resulting systems are categorized as neuromorphic

computers. This terminology has come to be applied parti-

cularly where the medium in which the system is built is
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based upon very large-scale integrated (VLSI) circuits—

microchips.

Advances in microchip technology have followed

Moore’s Law [1], which predicted exponential growth in the

number of transistors that could be manufactured on a single

microchip. The exponential time constant is short—with a

doubling every18 months to two years—and this has been

sustained for half a century. The primary mechanism for

delivering Moore’s Law has been reducing transistor size, and

as CMOS transistors are made smaller they become cheaper,

faster and more energy-efficient, a win–win scenario that has

led to the ubiquity of cheap, powerful and mobile computer

technology. The only downside is that the costs of designing a

microchip and building a facility to manufacture it have also

risen exponentially, effectively restricting the growth rate to

ensure that each technology generation generates enough

revenue to pay for its investment before the next generation

renders it obsolete.

These advances in microchip technology, funded from

conventional computing applications, are also available to

neuromorphic microchip designers. This has led to growth in

the scale and capabilities of neuromorphic devices which,

although still a long way short of the scales employed by

biology, has led recently to the development of some very

large scale neuromorphic systems, which are the focus of this

review.

The main contributions of this paper are:

• A survey of the features of the brain that are modelled in

neuromorphic systems (section 2);

• a brief history of the early development of neuromorphic

technology (section 3) and more recent advances

(section 4);

• descriptions of the main features of current large-scale

neuromorphic systems (section 5), including the IBM

TrueNorth chip (section 6), the Stanford Neurogrid

(section 7), the Heidelberg BrainScaleS machine

(section 8) and the Manchester Spiking Neural Network

Architecture (SpiNNaker) machine (section 9);

• a discussion of the relative strengths and weaknesses of

each of these large-scale systems (section 10).

2. The brain

The singular characteristic of neuromorphic computing is that

it takes inspiration from what is known about the structure

and operation of the brain. We are still a long way from

having a full understanding of how the brain represents, stores

and processes information, though a great deal is known

about neurons and how they are organised into diverse

structures and topologies to perform different functions in

different regions of the brain.

Neurons have been studied in great detail since the pio-

neering work of Hodgkin and Huxley [2] on the squid giant

axon yielded the first detailed mathematical model of the

mechanisms that are responsible for the generation of the

action potential, or ‘spike’, that characterizes the primary

high-speed communication from one neuron to the next. The

full biological details of the neuron are dauntingly complex

[3], but widely accepted models abstract away most of the

biological detail to yield a multiple-input single-output device

where a range of different mathematical formulations can be

used to describe the input-out transfer relationship.

Much of the ‘action’ in the brain is not in the neuron cell

itself but in the synapse—the junction where the output signal

from one neuron is coupled into the input to the next neuron.

Synapses are also dauntingly complex in their full biological

detail [3], but again their characteristics have been abstracted

into various mathematical formulations that capture the

function of the synapse with varying degrees of biological

fidelity. These models attempt to capture synaptic plasticity,

wherein the efficacy of the synapse is adjusted to allow the

network to learn the statistics of inputs, and in some case

structural plasticity, where neurons rewire to form new

synapses to store more permanent memories.

The scale of the mammalian brain is immense, with each

human brain comprising some 85 billion neurons connected

through a quadrillion (1015) synapses. However, some other

species have much simpler brains. C. elegans has 302 neu-

rons, drosophila has around 100 000; examples can be found

of the neuron playing a useful role in survival in nervous

systems at all scales up to human and beyond.

A feature of the biological brain is that while commu-

nication uses digital techniques for fast signalling over all but

the shortest distances, all of the processing in neurons and

synapses uses much more efficient analogue chemical tech-

niques [3]. This mixed-signal approach contrasts with the all-

digital designs of current general-purpose computers where

digital logic delivers the noise-immunity and deterministic

behaviour that is expected of the universal Turing machine.

Biology sacrifices determinism for efficiency—an approach

that may be of interest to future computer engineers designing

systems, such as robot vision systems, where absolute acc-

uracy is in any case unachievable, and energy-efficiency is a

primary requirement.

The goal of neuromorphic computing is to observe the

formidable complexity of the biological brain and to some-

how extract from what is known about its structure and

principles of operation some more abstract principles that can

be applied in a practical engineered system. No neuromorphic

system attempts to reproduce all of the biological detail, but

all adhere to the idea that computation is highly distributed

across small computing elements analogous in some way to

neurons, connected into networks, with some degree of

flexibility in the way connections are formed. That much is

common; the details vary greatly.

3. Neuromorphic origins

During the 1980s Carver Mead led a number of developments

in bio-inspired microelectronics, culminating in the publica-

tion of his book entitled ‘Analog VLSI and Neural Systems’
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by Addison Wesley in 1989 [4]. He founded companies such

as Synaptics Inc. (established in 1986), who established a

very successful business developing analogue circuits based

on neural networks for laptop touch pads, and he advised

Misha Mahowald in her prize-winning PhD thesis in which

she described the development of a silicon retina [5, 6]. An

international prize for neuromorphic engineering has recently

been established in memory of Misha Mahowald. Among

Mead’s more recent PhD students is Kwabena Boahen, who

led the development of the Stanford Neurogrid, about which

more later.

Mead’s approach to neuromorphic engineering was

grounded in the analogy between the physics that determines

the behaviour of transistors operating in the sub-threshold

region (which digital designers simply describe as ‘off’!) and

the physics at work in biological neurons.

By the end of the 1980s there were a number of related

activities going on in different parts of the world, and a

workshop in May 1989 on ‘Analog Integrated Neural Sys-

tems’ was held in connection with the International Sympo-

sium on Circuits and Systems in Portland, Oregon, focusing

on working chips in this area. The diversity of approaches

represented in the published proceedings [7] is impressive, as

is the list of authors of the papers, many of whom are still

leading figures in neuromorphic engineering and/or related
areas of research a quarter of a century later!

4. Ongoing neuromorphic development

One of the world’s major centres for neuromorphic engi-

neering is the Institute for Neuroinformatics (INI) which was

established at the University of Zurich and ETH Zurich in

1995 by Rodney Douglas and Kevan Martin. Several notable

contributors to neuromorphic development are based at INI,

including Tobi Delbruck, Shih-Chii Liu and Giacomo Indi-

veri, and there is a strong sense of continuity from Mead’s

work at Caltech through to current work at INI.

Recent work at INI includes the development of neuro-

morphic vision sensors [8], silicon cochlea [9], and medium-

scale neuromorphic processors such as the Reconfigurable

On-Line Learning Spiking (ROLLS) and cxQuad chips.

These chips use sub-threshold analogue circuits and have

been used to demonstrate spiking deep neural networks. A

circuit board with nine cxQuad chips and one ROLLS chip

has been demonstrated [10]. The cxQuad chips are used to

implement a hierarchical convolutional network; each chip

incorporates 1024 neurons and 65 536 digital synapses. The

ROLLS chip implements the classification layer for the deep

network and incorporates 256 neurons and 128 k analogue

synapses. The system demonstrates low latency and very low

power consumption compared with a standard deep network

running on a large digital cluster machine.

Research at UCSD led by Gert Cauwenberghs (also a

Caltech alumnus) includes the development of a 65 536-

neuron two-compartment integrate-and-fire transceiver mod-

ules that implement spike-driven continuous time analogue

membrane dynamics interconnected through a Hierarchical

Address Event Representation (HiAER) communications

fabric [11, 12].

In Sylvie Renaud’s lab in Bordeaux, France, analogue

neuromorphic circuits have been interfaced to biological

networks and digital neuron models to investigate thalamic

mechanisms that gate sensory signals on their route to the

cortex [13]. Network research has included developing a

system based upon biologically-realistic analogue neuron

circuits with connectivity and plasticity implemented in a

digital system connected in a real-time closed loop [14]. Both

of these exemplify the use of small-scale neuromorphic

techniques to investigate biological phenomena, and demon-

strate a very close match between the models and those

phenomena.

Recently there has been growing interest in novel devices

such as memristors and phase-change memory and their

intrinsic similarities to biological synapses [15, 16]. Although

these devices do not feature in current large-scale projects,

they may well play a major role in future neuromorphic

systems.

The examples cited above, and others not mentioned

here, show the widespread and diverse interest in using

neuromorphic techniques to model biological processes. This

is a two-way process whereby engineers learn principles from

neuroscience to incorporate into their models, and in return

neuroscientists learn from the results those engineers get from

their models. In some cases the goal is very close reproduc-

tion of detailed biological phenomena; in others the goal is to

apply more abstract biological principles to the solution of

engineering problems. All underline the point that there is still

a great deal to learn about, and to learn from, biological

nervous systems, and building models is a great way to learn!

5. Large-scale neuromorphic systems

A number of large-scale neuromorphic systems have emerged

over recent years, taking advantage of the enormous transistor

resource now available on a single microchip and, in one

case, a full silicon wafer. The capabilities of the technology

combine with scalable architectures to allow neuromorphic

capabilities to extend to support scales of neural network

incorporating many millions of neurons with many billions of

synapses. These new capabilities enable modellers to con-

template building models of the complete brains of animals

from insects up to smaller mammals, or substantial sub-areas

of the human brain, and the same systems also offer platforms

capable of supporting new scales of cognitive architecture.

Although these platforms now exist, in some cases at

considerable scale, their full potential has yet to be realized.

But already they display a diverse range of approaches

motivated by a common conviction that novel brain-inspired

approaches to computation have much to offer.

The large-scale systems described below offer a range of

complementary approaches and divergent goals:

• The IBM TrueNorth chip is based upon distributed digital

neural models aimed at real-time cognitive applications.
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• The Stanford Neurogrid uses real-time sub-threshold

analogue neural circuits.

• The Heidelberg BrainScaleS system uses wafer-scale

above threshold analogue neural circuits running 10 000

times faster than biological real time aimed at under-

standing biological systems, and in particular, long-term

learning.

• The Manchester SpiNNaker machine is a real-time digital

many-core system that implements neural and synapse

models in software running on small embedded proces-

sors, again primarily aimed at modelling biological

nervous systems.

All of these approaches represent trade-offs—compro-

mises between a set of desirable objectives. Energy-effi-

ciency, integration density, flexibility and configurability,

analogue versus digital algorithms, hardware versus software

—all of these factors find different balances in the systems

that are described below.

6. IBM Truenorth

The IBM TrueNorth chip [17, 18] is the outcome of a decade

of work under the DARPA SYNAPSE programme aimed at

delivering a very dense, energy-efficient platform capable of

supporting a range of cognitive applications. The key

component is a very large, 5.4 million transistor 28 nm

CMOS chip that incorporates 4096 neurosynaptic cores where

each core comprises 256 neurons each with 256 synaptic

inputs [19]. The chip is all digital, and operates asynchro-

nously apart from a 1 kHz clock that defines the basic time

step. As a result, the hardware behaves deterministically

exactly as predicted by a software model, which can therefore

be used for application development and to implement

learning algorithms.

6.1. TrueNorth design

The central design of a TrueNorth neurosynaptic core is a

256×256 cross-bar that selectively connects incoming

neural spike events to outgoing neurons. The cross-bar inputs

are coupled via buffers that can insert axonal delays. The

cross-bar switches are binary, although each input is asso-

ciated with one of four synapse ‘types’, and each neuron

assigns an integer weight in the range −255 to +255 to each

of the four types to give a synaptic weight to each connection

—all active synapses associated with a particular input have

the same type which is mapped independently to one of four

weights by each neuron.

The outputs from the cross-bar couple into the digital

neuron model, which implements a form of integrate-and-fire

algorithm with 23 configurable parameters [19] that can be

adjusted to yield a range of different behaviours, and digital

pseudo-random sources are used to generate stochastic

behaviours through modulating the synaptic connections, the

neuron threshold and the neuron leakage.

6.2. TrueNorth communications

Neuron spike event outputs from each core follow individu-

ally-configurable point-to-point routes to the input to another

core, which can be on the same or another TrueNorth chip.

Where a neuron output is required to connect to two or more

neurosynaptic cores, the neuron is simply replicated within

the same core (see figure 1). The deterministic nature of the

digital model ensures that all replicants will produce identical

spike trains.

Figure 1. TrueNorth communications are based on point-to-point links conveying spikes from one neuron to one neurosynaptic core, where
those spikes can connect into any or all of the 256 neurons in that core. Here the leftmost neuron in core 1 connects to core 3. To connect to
cores 2 and 3, the 2nd and 3rd neurons in core 1 duplicate each other, and each makes one connection.
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Inter-chip connections are multiplexed to reduce the

number of electrical connections between chips, but the effect

is to enable the network to extend seamlessly across systems

of multiple TrueNorth chips.

6.3. TrueNorth systems

TrueNorth chips can be connected directly together to form

larger systems, and a circuit board with 16 chips has been

developed (see figure 2), incorporating a total of 16 million

neurons and 4 billion synapses. Larger systems can be

assembled by connecting multiple boards together.

6.4. TrueNorth support software

The TrueNorth hardware is supported by a software emulator

which, exploiting the deterministic nature of the hardware,

can be relied upon to predict the performance of the hardware

exactly. The deterministic behaviour extends to the role of

noise in inducing stochastic behaviour in the system, as the

software model can predict the pseudo-random sequences

generated from a given seed. The binary nature of the

synapses makes on-line learning problematic, so the training

takes place off line in the software environment.

The philosophy underpinning the TrueNorth support

software is to raise the level of abstraction at which appli-

cations are conceived from the level of the individual neuron

to the level of cognitive modules, where each module occu-

pies one neurosynaptic core, and a library of such modules

can be pre-generated and made available with tested and tried

performance and behaviour. This is a very promising

approach if it can be achieved since designing complex sys-

tems at the level of individual neurons incurs the risk of

exposure to a very large parameter search space and can be a

very open-ended endeavour.

6.5. TrueNorth applications

TrueNorth, more than any of the other large-scale neuro-

morphic platforms described here, is designed as an appli-

cation delivery platform. It is intended to address problems

across the range from vision (in particular, using event-based

vision sensors such as those developed by INI) to audition

and multi-sensory fusion. It offers very power-efficient real-

time processing for high-dimensional, noisy, sensory data.

Applications such as real-time object recognition have

been demonstrated running on TrueNorth at remarkably low

power levels [17].

7. Neurogrid

The large-scale neuromorphic development that displays the

strongest association with the heritage of Carver Mead at

CalTech is the Stanford Neurogrid [20], which is perhaps not

surprising since the leader of the Neurogrid project, Kwabena

Boahen, was advised by Mead during his PhD at CalTech.

7.1. Neurogrid design

Neurogrid uses subthreshold analogue circuits to model

neuron and synapse dynamics in biological real time, with

digital spike communication. All inputs to a neuron go to one

of four shared synapse circuits. The neuronal model uses

shared leaky integrator dendritic structures whereby an input

to one neuron affects neighbouring neurons through a

Figure 2. The NS16e circuit board incorporating 16 IBM TrueNorth chips. (Photo courtesy of IBM Corp and reproduced with permission.)
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resistive network. The neuron dynamics are defined by a

quadratic integrate and fire model [20].

7.2. Neurogrid communications

Each Neurocore chip includes a router that is able to route

spike packets between its local chip, its parent chip, and its

two child chips. The routers support a multicast tree routing

organisation (see figure 3), where spikes are passed up point-

to-point to a node that sits above all of the intended

destinations in the tree, and thence down to all of the desti-

nations, being duplicated when required.

7.3. Neurogrid system

The Neurogrid system comprises a software suite for con-

figuration and visualisation of neural activity together with a

hardware platform to support real-time simulation of the

neural network. The hardware is a circuit board incorporating

16 Neurocore chips plus some support circuitry (figure 4),

Figure 3. The Neurogrid tree hierarchy. The layout of the tree structure shown here can be seen reflected in the physical layout of the circuit
board shown in figure 4. The organisation is a binary tree where each Neurocore chip (e.g. chip 1) connects to one parent (0) and two child
chips (3 and 4). Multicast routing is achieved by passing a spike packet up to a chip which sits above all of the destination nodes, and then
back down to those destination nodes, with duplication where required.

Figure 4. The Stanford Neurogrid system. 16 Neurocore chips are connected in a tree structure (see figure 3) on the circuit board. (Photo
courtesy of Kwabena Boahen, Stanford University and reproduced with permission.)

6
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where each Neurocore chip supports 65 536 sub-threshold

analogue neurons.

7.4. Neurogrid support software

The Neurogrid system is controlled by a host computer via a

USB connection. The USB connects to a CPLD that translates

USB packets into Neurogrid packets and vice versa.

The support software includes [20]: a user interface that

allows the model to be specified using Python, real-time

visualization of results, and run-time user interaction; a

hardware abstraction layer that maps the model description

onto the hardware; and hardware drivers that load the mapped

problem onto the hardware using Neurogrid packets.

7.5. Neurogrid applications

The real-time operation of Neurogrid makes it suitable for

robotic control, and it has been interfaced to a robotic arm

with the ultimate goal of controlling a prosthetic limb. Further

funding is aimed at exploiting the very low-power nature of

the technology to develop a chip that can be implanted in the

brain to control a prosthetic limb and to develop technology

for drone control.

8. BrainScaleS

The BrainScaleS neuromorphic system has been developed at

the University of Heidelberg over a series of projects funded

by the European Union, including the FACETS projects and

the BrainScaleS Project. Ongoing support for BrainScaleS

comes from the EU ICT Flagship Human Brain Project.

8.1. BrainScaleS design

The key concepts employed in the design of BrainScaleS are:

• The use of above-threshold analogue circuits to imple-

ment physical models of neuronal processes. Physical

models exploit the analogy between ionic circuits in

biological neurons and electronic circuits. The above-

threshold circuits used here contrast with the sub-

threshold circuits favoured by Carver Mead and used in

the Stanford Neurogrid, and yield much faster circuits,

running at 10 000 times biological speeds.

• The use of wafer-scale integration to deliver large

numbers of analogue neurons that can be interconnected

very efficiently to accommodate the 10 000 times speed-

up [21, 22].

Wafer-scale integration of high-speed analogue circuits is

a very aggressive technological approach to large-scale neu-

romorphic computing, and has required several innovative

technological solutions to be found. For example, although

silicon wafers are used for all microchip manufacture, the

high-precision manufacturing process can only be applied

within a single reticle area of a few square centimetres at a

time, and step-and-repeat is used to produce multiple copies

of the same circuit across the wafer. These copies cannot be

connected to each other during the standard manufacturing

process, so the BrainScaleS wafer uses post-processing to add

an additional metal layer (with coarser resolution than the

metal lines used within a microchip) to achieve global con-

nectivity across the wafer.

Within a BrainScaleS wafer each of the 48 reticles holds

eight High-Count Analogue Neural Network (HiCANN) die,

each of which implements 512 adaptive exponential integrate

and fire (AdExp) [21] neurons and over 100 000 synapses.

8.2. BrainScaleS communications

The primary communication layer in the BrainScaleS system

operates within a wafer. Hi-speed serial channels each convey

the output of 64 neurons from HiCANN die to HiCANN die

in continuous time, with only small timing errors introduced

if two simultaneous output spikes contend for the same

channel. These high-speed channels pass through cross-bar

switches (which implement only sparse connectivity to reduce

the capacitive load on the channels) to route the channels

across the wafer.

In order to support simulations across multiple wafers a

second layer of communication is supported using FPGAs to

implement high-speed serial communications between

wafers. The wafer post-processing is used both to make lateral

connections between adjacent HiCANN die in separate reti-

cles (connections within the same reticle use conventional

wafer metal layers), and also to present signals from within

each HiCANN die for external connection. These external

connections are made through elastomeric strip connectors to

the system board where FPGA communication PCBs time-

stamp the spikes for onward distribution (see figure 5).

The overall wafer module structure integrates the wafer,

power supplies, communications and analogue support

circuits.

8.3. BrainScaleS systems

BrainScaleS hardware is available in small portable form,

based around a single HiCANN die, and also in the form of

the EU Human Brain Project 20-wafer platform which

incorporates a substantial cluster server that acts as host,

executing the network mapping functions and controlling the

overall operation of the machine (see figure 6).

8.4. BrainScaleS support software

The development of the BrainScaleS system has gone hand-

in-hand through a series of European projects with the

development of PyNN [23], a python-based neural network

description language. PyNN supports a population-projection

based view of neural networks wherein a group of similar

neurons are collectively viewed as a population, and this

population projects to synaptic connections with other

populations where a projection can be all-to-all, one-to-one,

sparse with a given probability and so on.

PyNN not only specifies the network but can also define

the network inputs and how the user wishes to visualise the

7
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Figure 5. The BrainScaleS wafer module structure. (Diagram courtesy of Karlheinz Meier, Heidelberg University.)

Figure 6. The Brainscales 20-wafer machine. The wafer modules are mounted four per cabinet in five rack cabinets distributed either side of a
cluster server that manages the system. (Photo courtesy of Karlheinz Meier, Heidelberg University and reproduced with permission.)
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outputs, offering a sophisticated environment for specifying

and managing neural network modelling.

8.5. BrainScaleS applications

The very high speed of the BrainScaleS system renders it

highly suited to applications that take a very long time in

biological terms. Examples of these are long-term learning

tasks, such as modelling several years of childhood devel-

opment, where the 10 000 times speed-up potentially turns

years into hours. Different application domains would include

very large-scale parameter searches, where high-speed batch-

mode operation has direct benefit in terms of run-time.

9. SpiNNaker

The SpiNNaker project [24] has developed a massively-par-

allel digital computer whose communication infrastructure is

motivated by the objective of modelling large-scale spiking

neural networks with connectivity similar to the brain in

biological real time. The current largest SpiNNaker machine

(available as one of the EU Flagship Human Brain Project

platforms) incorporates 500 000 processor cores, with a goal

of doubling this to a million cores over the coming year.

In many respects SpiNNaker resembles a conventional

supercomputer, with the following notable differences:

• The processors in SpiNNaker are small integer cores

originally intended for mobile and embedded applica-

tions, rather than the high-end ‘fat’ cores preferred by

supercomputer designers.

• The brain-inspired communications fabric in SpiNNaker

[25] is optimised for sending large numbers of very small

data packets (each typically conveying one neural spike)

to many destinations following statically configured

multicast paths, whereas supercomputers typically use

large point-to-point packets with dynamic routing.

These differences mean that SpiNNaker should not be

viewed as a general-purpose computer but rather as a spe-

cialised neurocomputer, although it is not, in fact, limited to

modelling neural networks, and could potentially be suitable

for a wider range of applications characterised by large

numbers of relatively simple coupled processes with neuron-

like communication properties. Examples might include cel-

lular automata and finite-element problems. It is, perhaps,

stretching the term to its limits to describe SpiNNaker as a

neuromorphic system, but its inclusion here is justified

because its primary purpose is to model neural networks.

9.1. SpiNNaker design

The design of SpiNNaker is motivated by two primary

considerations:

• Scalability: brains, and especially the human brain,

incorporate very large numbers of components, and

modelling them is computationally very demanding. As

a result, any system aspiring to approach the scale of the

human brain must embody the principle of scalability.

• Energy-efficiency: because of the large scale of the

system, its energy consumption risks becoming uneco-

nomically large. Energy-efficient design is a holistic

discipline, and SpiNNaker’s design is influenced by this

objective throughout.

These considerations lead to the fundamental design of

SpiNNaker, which is based around a small plastic 300 bga

(ball grid array) package which incorporates a custom pro-

cessing chip [26] and a standard 128Mbyte SDRAM memory

chip. The processing chip, designed on a 130 nm CMOS

technology, contains 18 ARM968 processor cores, each with

32 Kbytes of instruction memory and 64 Kbytes of data

memory, a multicast packet router, and sundry support

components. The principle at work here is to minimise the

distances over which frequently accessed data must be

moved: the code and most frequently-used data are within a

millimetre or two of the core, and the less frequently-accessed

data is on the SDRAM which is about 1 cm away from

the core.

Energy-efficiency is achieved by delivering the full 18-

core package with a maximum 1W power dissipation when

all cores are fully loaded, and managing the power down from

this level when the compute load is lower.

Scalability is achieved by designing the package such

that an (almost) arbitrarily large 2D surface can be tiled with

these packages [27].

9.2. SpiNNaker communication

The SpiNNaker communication fabric is based on a 2D tri-

angular mesh with each node formed from a processor layer

and a memory layer (both in the same package) as described

above. The router accepts packets from all of the 18 resident

processor cores and the 6 incoming inter-chip links, and then

uses an associative lookup table to decide how to copy the

packet to any subset (or all) of its local processors and any

subset (or all) of the outgoing inter-chip links. The result is

that a single spike can propagate through an arbitrary tree to

an arbitrary number of destinations within the machine (see

figure 7).

The routing is based upon packet-switched Address

Event Representation and relies on the fact that the connec-

tions from a particular neuron are static, or at most slowly

changing. Each neuron can route through a unique tree,

though in practice routing is based on populations of neurons

rather than individual neurons, and the restricted size of each

routing table makes this optimisation necessary on most

cases.

9.3. SpiNNaker systems

SpiNNaker is delivered in two basic circuit board configura-

tions (see figure 8):

• A 4-node (72-core) board, for training and small network

development, which can be powered from a 5 V 1 A USB

9

J. Neural Eng. 13 (2016) 051001 Topical Review



Figure 7. Multicast communications on SpiNNaker. The sending core (shown as a square) on chip 1 sends a spike packet to its local router
(shown as a hexagon) which then passes it on towards the three destination cores on chips 3 and 4. The first router on the path can use
default routing to pass the packet straight through. The router on chip 2 makes two copies, one to each destination router. The destination
routers then send copies on to the receiver cores on their respective chips. The paths are configured in the router tables and can be arbitrary
trees.

Figure 8. Small-scale SpiNNaker systems. The 4-node (72-core) system (left) can be powered from a USB port and is useful for
familiarisation and small projects, for example in robotics. The 48-node (864-core) system (right) can be used for larger projects and is the
basis of the larger machines. (Photos courtesy of the University of Manchester.)
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port and connected to a host machine (PC or laptop)

through a wired Ethernet connection.

• A 48-node (864-core) board, which implements a

hexagonal array of SpiNNaker nodes with FPGAs that

support high-speed serial board-to-board interconnect,

allowing multiple boards to be assembled into a single 2D

toroidal mesh. This board is the basis of larger SpiNNaker

systems.

The 48-node board uses a standard double extended

Eurocard circuit board configuration that allows multi-board

systems to be assembled in off-the-shelf card frames and

racking. A single 19′′ card frame can accommodate 24 boards

with 20 000 cores requiring a 2 kW 12 V power supply and

forced-air cooling. Five such card frames can be assembled

into a 19′′ rack cabinet giving 100 000 cores at 10 kW (peak),

and multiple cabinets can be wired together to give a single

SpiNNaker toroid incorporating up to a million cores in ten

cabinets. The current large-scale system is half this size at

500 000 cores (see figure 9).

Each 48-node board has two 100 Mbit Ethernet connec-

tions, one to load application data onto the board and to recover

results, the other to communicate with a Board Management

Processor (BMP) that can monitor and configure the board’s

power and communication systems. Only one BMP Ethernet

connection is required per 19′′ card frame as all of theBMPs in a

frame communicate through a backplane bus.

Large SpiNNaker systems require a substantial host

machine (a server or cluster) to map applications onto the

machine and offload results. Ideally the host should be able to

handle concurrent transfers across the Ethernet to all (up to

1200) boards.

9.4. SpiNNaker support software

The host machine is responsible for managing all aspects of

the SpiNNaker system, which can be viewed simply as a

neural accelerator for the host machine.

Applications will normally be described in a high-level

neural description language such as PyNN [23], Nengo [28],

or similar. Software running on the host will map the topol-

ogy of the high-level model onto SpiNNaker’s routing and

compute resources and map the functionality of the model

onto real-time library functions to be run on the respective

cores.

Some aspects of detailing the model can be implemented

more effectively by postponing their expansion until after the

model has been loaded onto SpiNNaker, because then

SpiNNaker’s inherent high levels of parallelism can be

exploited to accelerate this expansion. This also helps over-

come the bottleneck presented by the 100 Mbit Ethernet

connection into each board.

9.5. SpiNNaker applications

Small-scale SpiNNaker systems have been used for a range of

real-time applications such as robot control and vision pro-

cessing, and also for non-real-time modelling of biological

Figure 9. The 500 000-core SpiNNaker machine. Five rack cabinets each hold 120 48-node SpiNNaker boards, with the high-speed serial
wiring that connects the boards into a 2D toroidal surface visible across the fronts of the cabinets (whose doors have been removed for the
photo). The sixth cabinet contains the server that manages the machine. (Photo courtesy of the University of Manchester.)
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circuits. There are few examples of large-scale applications to

date. Perhaps most notable among these is a real-time

implementation of the 2.5 million neuron Spaun model [29],

representing a 9000× speed-up compared with the 2–3 h the

model takes to simulate a second of real time on a high-end

desktop machine.

10. Discussion

The four large-scale neuromorphic systems described above

represent a diverse range of approaches to modelling neural

systems, and with somewhat diverse objectives. Each has its

merits and its drawbacks, and there is no question of any one

approach being superior to the others in every respect.

The diversity in approach makes direct comparison dif-

ficult, but table 1 summarizes some of the main points for

comparison. Of particular note are:

• The energy per (synaptic) connection. This is the average

energy required to pass one spike through one (static)

synapse. Since synaptic processing dominates the system

energy cost, this is the best guide to the overall energy-

efficiency of the system. Here it is notable that the two

analogue systems have very similar measures despite

their significant differences in circuit implementation

(above versus sub-threshold) and speed (10 000× versus

1× biological real time). Perhaps more surprising is that

TrueNorth, using a digital approach, surpasses both

analogue systems, perhaps because it uses a much more

aggressive semiconductor technology, which its digital

nature facilitates.

• Modelling speed.Three of the four systems run at biological

speeds, but BrainScaleS runs 10 000× faster, thereby

potentially compressing years of learning into hours.

• Model flexibility. Here the programmable nature of

SpiNNaker offers significant benefits, albeit at a sig-

nificant cost in terms of energy-efficiency. Novel neuron

models, such as those incorporating stochasticity, can be

incorporated into the library of run-time options relatively

easily, as can novel learning algorithms.

Table 1. A comparison of the major features of the human brain and the four large-scale neuromorphic systems described in this paper.

Platform: Human brain Neurogrid BrainScaleS TrueNorth SpiNNaker

Technology: Biology Analogue, sub-

threshold

Analogue, over

threshold

Digital, fixed Digital, programmable

Microchip: Neurocore HiCANN 18 ARM cores

Feature size: 10 μma 180 nm 180 nm 28 nm 130 nm

# transistors: 23 M 15 M 5.4 B 100 M

die size: 1.7 cm2 0.5 cm2 4.3 cm2 1 cm2

# neurons: 65 k 512 1 M 16 k

# synapses: ∼100 M 100 k 256 M 16 M

power: 150 mW 1.3 W 72 mW 1W

Board/unit: PCB 20 cm wafer PCB PCB

# chips: 16 352 16 48

# neurons: 1 M 200 k 16 M 768 k

# synapses: 4 B 40 M 4B 768 M

power: 3 W 500 W 1W 80W

Reference system: 1.4 kg 20 wafers in 7×19″
racks

600 PCBs in 6×19″
racks

# neurons: 100 B 4 M 460 M

# synapses: 1015 1 B 460 B

power: 20 W 10 kW 50 kW

Energy/connection: 10 fJ 100 pJ 100 pJ 25 pJ 10 nJ

Speed versus

biology:

1× 1× 10 000× 1× 1×

Interconnect: 3D direct

signalling

Tree-multicast Hierarchical 2D mesh-unicast 2D mesh-multicast

Neuron model: Diverse, fixed Adaptive quad-

ratic IF

Adaptive exponen-

tial IF

LIF Programmableb

Synapse model: Diverse Shared dendrite 4-bit digital Binary, 4

modulators

Programmablec

Run-time plasticity: Yes! No STDP No Programmabled

a
This is the approximate diameter of a cortical neuron soma. There are, of course, internal processes at much smaller (molecular) scales.

b SpiNNaker is optimised for point-neuron models, such as leaky integrate and fire (LIF), Izhikevich, and similar. It is less suited to models with high

biological detail.
c As above, computational limits encourage the use of the simpler synapse models such as voltage step or conductance-based with single- or double-

exponential post-synaptic potentials.
d Many synaptic learning rules, such as spike-time dependent plasticity (STDP), are computationally tricky (because of the event-driven software model) and

expensive on SpiNNaker, and approximate implementations can improve efficiency significantly.
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• Physical modelling. In Carver Mead’s seminal work on

neuromorphic systems [4] he made much of the

analogous behaviour of sub-threshold electronics and

neural ion channel behaviour. Both analogue systems

implement the neural equations in continuous time

whereas the digital systems use some form of discrete

time approximation, but only Neurogrid keeps close to

Mead’s original conceptual approach.

So each of the large-scale systems described here has its

strengths: TrueNorth offers a platform for very highly-inte-

grated and energy-efficient application delivery; SpiNNaker

offers maximum flexibility for researching different neural

models and plasticity rules; BrainScaleS brings high accel-

eration for long-term learning; and Neurogrid offers very

good energy-efficiency with models that are closest to the

physics at work in the biology.

All of these systems will evolve over time, and next-

generation versions of most of them are already under

development. But these first-generation large-scale systems

have established a new base-line from which future systems

will emerge, guided by extensive user experience with this

first generation, so that progress is visible not only in terms of

performance and efficiency but also in terms of flexibility and

user-accessibility.

11. Conclusions

A new computational paradigm is emerging based on biolo-

gically-inspired principles, directed both towards enhancing

our understanding of the clear front-runner in table 1—the

human brain itself—and towards applying our current very

partial knowledge to the development of cognitive systems,

neural prosthetics, and similar applications. At this early stage

in the development of such systems much is unknown, and

the diversity represented by the four large-scale systems

discussed here is to be welcomed—we are still some way

from identifying an optimal approach that is as general-pur-

pose in this domain as is the general-purpose programmable

processor in the conventional computing domain.
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