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Large-Scale Nonlinear Control System Fine-Tuning
through Learning

Elias B. Kosmatopoulos and Anastasios Kouvelas

Abstract—Despite the continuous advances in the fields of
intelligent control and computing, the design and deployment
of efficient Large-scale Nonlinear Control Systems (LNCS) re-
quires a tedious fine-tuning of the LNCS parameters prior and
during the actual system operation. In the majority of LNCSs
the fine-tuning process is performed by experienced personnel
based on field observations via experimentation with different
combinations of controller parameters, without the use of a
systematic approach. The existing adaptive/neural/fuzzycontrol
methodologies cannot be used towards the development of a
systematic, automated fine-tuning procedure for general LNCS
due to the strict assumptions they impose on the controlled
system dynamics; on the other hand, adaptive optimization
methodologies fail to guarantee an efficient and safe performance
during the fine-tuning process, mainly due to the fact that these
methodologies involve the use of random perturbations.

In this paper, we introduce and analyze both by means of
mathematical arguments and simulation experiments, a new
learning/adaptive algorithm that can provide with convergent,
efficient and safe fine-tuning of general LNCS. The proposed
algorithm consists of a combination of two different algo-
rithms proposed by the authors in the past [10], [11] and the
Incremental-Extreme Learning Machine Neural Networks (I-
ELM-NN). Among the nice properties of the proposed algorithm
is that it significantly out-performs the algorithms of [10],
[11] as well as other existing adaptive optimization algorithms.
Moreover, contrary to the algorithms of [10], [11], the proposed
algorithm can operate efficiently in the case where the exogenous
system inputs (e.g. disturbances, commands, demand, etc) are
unbounded signals.

Index Terms

Adaptive Optimization, Simultaneous Perturbation Stochas-
tic Approximation (SPSA), Adaptive Fine-Tuning, Incremental-
Extreme Learning Machine Neural Networks, Nonlinear Control
Systems

I. I NTRODUCTION

Despite the continuous advances in the fields of intel-
ligent control and computing, the design and deployment
of efficient Large-scale Nonlinear Control Systems (LNCS)
remains a particularly challenging problem. This is partly
due to the fact that practical control design approaches are
often based on simplified models for the system dynamics,
leading to LNCS control parameters with suboptimal or even
unacceptable performance. On the other hand, the use of
more complex models for the design of effective LNCS is
often hardly feasible due to the lack of adequate theory and
reliable and practicable design approaches. Thus, the use of
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simplified models is virtually unavoidable in most complex
control system applications. As a result there is a major need
for careful and efficient fine-tuning of the LNCS parameters
prior to the actual system operation that arises from the use
of simplified models and control designs while medium- or
long-term unpredictable variations of the system dynamics
may call for frequent updates. In the majority of LNCSs
the fine-tuning process is performed by experienced personnel
based on field observations via experimentation with different
combinations of controller parameters, without the use of a
systematic approach.

Urban and motorway traffic networks, large chemical pro-
cesses, sensor networks, advanced computer networks, power
networks, Mega City power, water and communication net-
works are specific examples of large-scale, nonlinear processes
that are controlled via corresponding LNCSs and call for
a tedious fine-tuning procedure for the calibration of their
parameters, whose number may range from dozens to several
hundreds or more. Such a fine-tuning procedure may take
months, or, in extreme cases, even years, until the LNCS
actually reaches the desired performance. In most cases this
procedure may lead to an acceptable, but not necessarily
optimal, control behavior, while the need for frequent updates
calls for a quasi-continuous effort with all related technical
and organizational (e.g. change of personnel) risks. In some
known cases the outlined procedure has even led to a complete
failure, i.e. the use of the LNCS was abandoned after the initial
deployment due to the failure of the fine-tuning process to
achieve a satisfactory performance (see, e.g. [17]).

Unfortunately, the existing methodologies are unable to
provide with a generic, efficient and systematic approach for
the automated fine-tuning of LNCS. More precisely:

• Adaptive control as well a neural network, fuzzy and
learning control methodologies are, in general, not ap-
plicable to the fine-tuning of control systems that have
been developed using non-adaptive techniques. Most
importantly, these methodologies suffer from the so-
called “loss-of-controllability” problem (see e.g. section
9.7 of [6] and [9]). Roughly speaking, the “loss-of-
controllability” problem can be explained as follows:
adaptive or adaptive-like techniques make use of an
estimation model of the actual system and the adaptive
controller is designed as if the estimation model were
the actual one; in cases where the estimation model
becomes uncontrollable, it is impossible to construct a
controller based on this estimation model. To overcome
this difficulty most adaptive control designs impose strict
assumptions on the controlled system, see e.g. [12], [6];
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such assumptions become extraordinarily strict in the case
of large-scale systems. On the other hand, removal of
these assumptions results in very complicated control de-
signs, which moreover have the disadvantage of very poor
transient behavior, see e.g. [9], [23] and the referenecs
therein.

• On the other hand, methodologies that are based on
Adaptive Optimization (AO) principles (e.g., the Kiefer-
Wolfowitz (KW) algorithm [8], [2], the Random Direc-
tions Kiefer-Wolfowitz (RDKW) [14], the Simultaneous
Perturbation SA (SPSA) [20], [21], etc), although they
are applicable to control designs that have been de-
veloped using non-adaptive techniques and they do not
require any a priori knowledge or assumption on the
system dynamics, they do not have any mechanism to
incorporate the knowledge captured in the past regard-
ing the dependence of the system performance on the
controller parameters and system exogenous inputs; in
case where such a dependence is highly nonlinear and
complex, the aforementioned algorithms fail to produce
any improvement during the fine-tuning process. Such a
case is reported in [10] where these techniques failed
to produce any fine-tuning improvement for virtually
any choice of their design parameters when applied to
the fine-tuning of an urban traffic control system. Most
importantly, AO methodologies possess the disadvantage
of not guaranteeing efficient and safe control behavior
during the fine-tuning process: due to the fact that these
methodologies involve the use of random perturbations,
there is always the possibility that, during the fine-tuning
process, the controller exhibits poor or, even worse,
unstable performance, see e.g. [11].

Recently, we introduced and analyzed a new family of AO
algorithms that can be used towards the development of a
generic, efficient and systematic approach for the automated
fine-tuning of LNCS [10], [11]. The main attributes of these
algorithms may be summarized as follows:

• They are based on Adaptive Optimization (AO) principles
and, as a result, they do not require any a priori knowl-
edge or assumption on the system dynamics; moreover,
they can be implemented to any type of LNCS regardless
of the methodology used for the original design of the
LNCS.

• They are robust with respect to exogenous disturbances,
noisy measurements, system interactions, component fail-
ures, etc.

• They are utterly generic, computationally efficient and
straightforward to embed to any type of LNCS, regardless
of its size, level of complexity and level of decentraliza-
tion.

• They incorporate powerful learning and estimation mech-
anisms which render them adaptable to short-term and
long-term variations of system characteristics such as
demand long-term variations, system aging etc. More-
over, through these learning and estimation mechanisms,
they are capable of incorporating the knowledge captured
in the past regarding the dependence of the system

performance on the controller parameters and system
exogenous inputs.

• Most importantly, they guarantee a safe and efficient fine-
tuning procedure, contrary to other popular AO methods
that cannot exclude the possibility of poor or even unsta-
ble performance during the automatic fine-tuning process.

The key idea behind the development of these algorithms is
to use neural approximators, accompanied with appropriate
learning mechanisms for adjusting the neural network weights,
in order to approximate (learn) the overall system performance
as a function of the controller parameters and the exogenous
inputs. In other words, the algorithms of [10], [11] use
appropriate neural mechanisms to approximate (learn) the
relationship

SysPer = J (ConPar,ExInp])

where J is an unknown, highly nonlinear function,
SysPer =System Performance,ConPar =Controller Pa-
rameters andExInp are exogenous signals that are either
available for measurement (e.g., measurable disturbances, ex-
ogenous commands, demand, etc) or can be estimated via
appropriate estimation algorithms. The approximation ofJ can
be then used in one of the following ways:

(GD) To construct an approximation of the gradient ofJ
with respect toConPar, in which case, standard
Gradient-Descent (GD) optimization algorithms can
be applied to obtain a – local – minimizer forJ ; it
is worth noting that the algorithm of [10] is based
on this principle.

(CP) To check the effect of differentConPar to SysPer;
in this case, algorithms like the ones presented and
analyzed in [11] can be used which, at each iter-
ation, check the effect of Candidate Perturbed (CP)
versions of the currentConPar and select the “best”
among these candidate perturbed versions to be the
nextConPar.

Rigorous mathematical arguments presented in [10], [11]
established that the algorithms that are based on the above
principles – when used for LNCS fine-tuning – preserve a
convergent as well as efficient and safe performance, under the
assumption that the system exogenous inputs, disturbances, etc
are bounded signals. Unfortunately, in many LNCS applica-
tions such an assumption is not realistic; LNCS applications
where the exogenous inputs are Gaussian noise signals, LNCS
for mitigating the effects of earthquakes in civil structures,
LNCS for sensor networks, etc, are few of the many practi-
cal LNCS applications where the exogenous inputs may be
unbounded1 signals.

In this paper, we show that an appropriate combination of
the principles GD and CP presented above, accompanied with
the Incremental-Extreme Learning Machine Neural Network
(I-ELM-NN) [4], [5] can guarantee a convergent as well as
efficient and safe performance even in the case of unbounded
exogenous signals. The proposed algorithm switches – at each
iteration – among an algorithm that is based on the GD

1The terminology “unbounded signals” is used to denote signals for which
it is impossible toa priori assess an upper bound of their magnitude.
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principle (which is similar to the algorithm proposed in [10])
and a CP-based algorithm; an I-ELM-NN, accompanied with
appropriate learning laws, is used to estimate the unknown
functionJ . The switching among a GD-based and a CP-based
algorithms is crucial for the overall algorithm performance,
since the CP-based algorithm is needed in order for the neural
approximator to be able to efficiently learn the unknown
function J , while the use of the GD-based algorithm is
essential for convergence under unbounded exogenous signals.

Simulations experiments performed on a “difficult-to-fine-
tune” large scale traffic control system exhibit the efficient
performance of the proposed algorithm. More precisely, the
proposed algorithm is shown to always guarantee an efficient
and safe fine-tuning procedure, while the existing algorithms
either totally fail to produce any improvement of the overall
control system (this happens in the case of the SPSA algorithm
and the algorithm of [10]) or may lead to poor steady-state
performance as it happens in the case of the algorithm of [11].

A. Notations

The notationvec (A,B, . . . , ), whereA,B, . . . are scalars,
vectors or matrices, is used to denote a vector whose elements
are the entries ofA,B,C, . . . (taken columnwise).Z denote
the set of nonnegative integers.In denotes then-dimensional
identity matrix.⌊x⌋ denotes the integer part ofx. For a vector
x ∈ ℜn, |x| denotes the Euclidean norm ofx (i.e. |x| =√
xτx), while for a matrixA ∈ ℜn2

, |A| denotes the induced
matrix norm ofA. A function f is said to beCm, wherem
is a positive integer, if it is uniformly continuous and its first
m derivatives are uniformly continuous.

A random (or random-like) vectorx ∈ ℜn is said to be
full-rank, zero-mean,α-width, whereα is a positive real, if
E[xi] = 0, x ∈ {−α, α}n and, moreover, for any sequence
xi, i ∈ {1, . . . , n} of such vectors, the following condition is
satisfied: ∣∣∣[x1, . . . , xn]

−1
∣∣∣ ≤ Ξ

α
(1.1)

whereΞ is a finite positive constant.
Finally, in order to avoid definition of too many variables,

constants, etc, we will use the following notation: Iffα(x)
is a function parametrized by the nonnegative parameterα,
we will use the notationfα = O (α), if there exists a strictly
increasing scalar, at leastC1, function g satisfying g(0) =
0, g(α) > 0, ∀α 6= 0, such that|fα(x)| ≤ g(α), ∀x, ∀α. Note
that our definition ofO(·) differs from the usual “order of”
definition.

B. I-ELM Neural Networks

As already mentioned, in this paper we make use of a
special family of neural networks, the I-ELM-NNs [4], [5]. For
this reason, some preliminaries are needed regarding I-ELM-
NNs and their approximation capabilities. More precisely,let
F : ℜn1 7→ ℜn2 be an unknownCm, m ≥ 1 function to be
approximated and let‖ · ‖a denote one of the following two
norms

‖F‖a =

√∫

ℜn1

|w(x)F (x)|2 dx or ‖F‖a = sup
x∈ℜn1

|w(x)F (x)|

where

w(x) =

{
In2 if |x| ≤ a
0 otherwise

with a > 0. An I-ELM-NN used for the approximation ofF
takes the form

F̂ (x) = ϑτφ(x) = ϑτ
1φ1(x) + . . .+ ϑτ

Lg
φLg

(x) (1.2)

whereF̂ denotes the approximation ofF , ϑ denotes the matrix
of parameter estimates, Lg denotes thedimensionof the I-
ELM-NN estimator (1.2) and, finally,φ denotes the non-linear
vector function of I-ELM-NNsneurons:

φi(x) = S(Aτ
i x+ bi) (1.3)

whereS(·) is an invertible smooth nonlinear function; finally,
the vectorAi ∈ ℜn1 and the real parameterbi are randomly
generated (withAi, bi being zero-mean).

Let us fix an I-ELM-NN of the form (1.2) withLg neurons
of the form (1.3) and the constanta. Then, theoptimal
parameter matrixϑ∗ and theoptimal modeling errorν w.r.t.
Lg, φ, F are defined as follows:

ϑ∗ = W(Lg, φ, F ) = argmin
ϑ

‖F (x) − ϑτφ(x)‖a (1.4)

and

ν(x) = N (Lg, φ, F )(x) = F (x) − ϑ∗τφ(x) (1.5)

Using the results of [15], [4], it can be seen that I-ELM-NNs
satisfy the following property:

(P1) Consider an I-ELM-NN of the form (1.2) with
Lg neurons of the form (1.3). Then, there ex-
ists a scalar functionη : ℜ2 7→ ℜ+, satisfying
η(0, χ) = η(χ, 0) = 0, ∀χ ∈ ℜ+, η(χ, ψ) <
η(χ′, ψ), η(ψ, χ) ≤ η(ψ, χ′), ∀ψ, χ, χ′ ∈ ℜ+ : χ <
χ′, such that

‖ν‖a ≤ η

(
1

Lg
, a

)
(1.6)

II. PROBLEM FORMULATION : FINE-TUNING WITH SAFE

AND EFFICIENT PERFORMANCE

Let us consider a general LNCS application where the
underlying system dynamics are described according to the
following nonlinear difference equation

zt+1 = g(zt, ut, dt), z0 = z(0) (2.1)

where zt, ut, dt denote the vectors of system states, control
inputs, and exogenous signals, respectively,t denotes the time-
index, andg(·) is a – possibly unknown – sufficiently smooth
non-linear vector function, while the control law applied to
the system (2.1) is described as follows:

ut = ̟(θ, zt) (2.2)

where̟(·) is a known smooth vector function andθ is the
vector of control parameters. Note that we do not impose any
restriction on the form of the controller (2.2).
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The performance of the controller (2.2) is evaluated through
the following objective function (performance index)

J (θ; z0, DT ) = πT (zT ) +

T−1∑

t=0

πt (zt, ut)

= πT (zT ) +

T−1∑

t=0

πt (zt, ̟(θ, zt)) (2.3)

where πt are known nonnegative functions,T denotes the
time-horizon over which the control law (2.2) is applied and

DT
△
= [d0, d1, . . . , dT−1] denotes the time-history of the

exogenous signals. By definingx = vec (z0, DT ), (2.3) may
be rewritten as

J (θ, x) = J (θ; z0, DT ) (2.4)

The problem in hand is to construct an appropriate algorithm
which (herek denotes the current number of fine-tuning ex-
periments, where the duration of each fine-tuning experiment
is assumed to be equal toT ):

• evaluates, at each iteration, the LNCS (2.1)-(2.3) perfor-
mance forθ = θk through the measurement

Jk ≡ J(θk, xk) (2.5)

• updates the current controller parameter vectorθk so that
it converges as close as possible to one of the local
minima θ∗ of the average value ofJ (wrt the random
vectorsxk), defined according to

E

[
∂J

∂θ
(θ∗, xk) |Gk

]
= 0 (2.6)

whereGk is an appropriately definedσ-field generated
– among others – by the past values of the exogenous
inputs (see section IV for the formal definition ofGk).

The requirement of convergence ofθk to one of the local
minima θ∗ is not sufficient in most practical situations; addi-
tionally to this requirement, the fine-tuning algorithm should
be able to provide withsafe and efficientperformance during
the fine-tuning process. More precisely, at each iteration of
the fine-tuning algorithm the performance index measurement
should satisfy

Jk ≤ Jk−1 + ǫk (2.7)

where ǫk is an appropriately defined “small” positive term,
whose magnitude is proportional to the magnitude and vari-
ance of the exogenous inputs. The requirement (2.7) is more
than crucial in most practical LNCS fine-tuning applications,
since violation of such requirement may cause serious, if not
catastrophic, performance, safety, etc, problems. For instance,
in the case of fine-tuning of traffic control systems, the
violation of requirement (2.7) may lead to serious problems
(e.g., complaints, dangerous driving, etc) that may force the
traffic operators to cancel the fine-tuning process; similarly,
in the case of fine-tuning of LNCS for mechanical structures,
the violation of requirement (2.7) may cause the permanent
deformation or even the destruction of the structure. It is worth
noting, that standard AO methodologies such as the RDKW
and SPSA algorithms cannot guarantee that the requirement
(2.7) holds during the fine-tuning process mainly due to the
use of random perturbations of the controller parameters [11].

III. T HE PROPOSEDALGORITHM

This section presents the details of the proposed algorithm;
the mathematical analysis of the convergence and performance
properties of the proposed algorithm is presented in the next
section. In the sequel, the dimensions of the vectorsθ,xk are
denoted bynθ andnx, respectively.

Remark 1 (Availability of the estimatēxk): The proposed
algorithm assumes that an estimate – or prediction –x̄k

of the vectorxk is available. In many applications such an
assumption is realistic since the entries ofxk correspond to
system states and exogenous inputs which are available for
measurement or can be estimated/predicted using appropriate
estimation algorithms (see the simulation section for such
an example). However, there may be cases where such an
assumption is not realistic; in this case it can be readily seen
that all the results of the paper are still valid by settingx̄k = 0.
See also Corollary 1 in section IV.

Let

∆Jk ≡ ∆J(∆θk, θk−1, xk, xk−1)

= J(θk−1 + ∆θk, xk) − J(θk−1, xk−1) (3.1)

where∆θk = θk − θk−1. The proposed algorithm makes use
of a user-defined collection ofLk

g I-ELM-NN neurons of the
form (note that as already noticed in subsection I.B,Ai, bi are
randomly generated):

φi(θ, x, θ̄, x̄) = S
(
Aτ

i vec(θ + θ̄, x) + bi
)

−S (Aτ
i vec(θ, x̄) + bi) (3.2)

Also, the proposed algorithm makes use of two user-defined
positive sequencesαk, βk; Lk

g , αk andβk will be specified in
the sequel.

Starting with an initial vectorθ0, the proposed algorithm
initially imposes a full-rank, zero-mean,α1-width perturbation
∆θ1 and evaluates the objective function forθ = θ0 andθ =
θ1 so as to calculate the first difference∆J1 = J(∆θ1 +
θ0, x1) − J(θ0, x0). Then, for k = 2, 3, . . . , the following
steps are taking place:
1) A collection of φi, i ∈ {1, . . . , Lk

g} of the form (3.2) is
randomly constructed in order to form an I-ELM-NN withLk

g

neurons, whereLk
g is calculated as follows:

Lk
g = min

{
⌊k/2⌋, L̄g

}
(3.3)

with L̄g being a user-defined positive integer. The I-ELM-NN
associated to the collection ofφi, i ∈ {1, . . . , Lk

g} is used for
the estimation of the unknown function∆Jℓ, ℓ ≤ k:

∆̂J(∆θℓ, θℓ−1, x̄ℓ, x̄ℓ−1) = ϑτφ(k)(∆θℓ, θℓ−1, x̄ℓ, x̄ℓ−1)
(3.4)

where∆̂J(∆θℓ, θℓ−1, x̄ℓ, x̄ℓ−1) denotes the estimate of∆Jℓ

parameterized by the parameter vectorϑ ∈ ℜLk
g ,

φ(k)(∆θℓ, θℓ−1, x̄ℓ, x̄ℓ−1) = vec (φi(∆θℓ, θℓ−1, x̄ℓ, x̄ℓ−1))
(3.5)

for i ∈ {1, . . . Lk
g} and, as already mentioned,x̄ℓ denotes an

estimate/prediction ofxℓ.
2) CP-Phase:If k is an oddnumber, then the following are
taking place:
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1) nθ full-rank, zero-mean,αk-width vectors ∆θ
(j)
k ∈

ℜnθ , j ∈ {1, . . . , nθ} are generated ascandidatesfor
∆θk.

2) For each of the∆θ(j)k generated in the previous step as
well as for its negative, a biased least-squares estimate
of ∆J(χ, θℓ−1, xℓ, xℓ−1), χ ∈ ℜnθ is generated as
follows:

∆̂J±j(χ, θℓ−1, x̄ℓ, x̄ℓ−1) = ϑτ
±jφ

(k)(χ, θℓ−1, x̄ℓ, x̄ℓ−1)
(3.6)

where,ϑ±j is the solution of the following constrained-
optimization problem:

ϑ±j 7→ arg min
ϑ

1

2

k−1∑

ℓ=ℓk

(
∆Jℓ − ϑτφ

(k)
ℓ

)2

subject to (3.7)

ϑτφ
(k)
±j ≤ −βk

where φ
(k)
ℓ = φ(k)(∆θℓ, θℓ−1, x̄ℓ, x̄ℓ−1), φ

(k)
±j =

φ(k)(±∆θ
(j)
k , θk−1, x̄k, x̄k−1) and

ℓk = max
{
k − 2Lk

g − Th, 0
}

(3.8)

with Th being a user-defined nonnegative integer.
3) Finally, the perturbation∆θk is chosen as follows

∆θk = arg min
∆θ

(±j)

k
, j∈{1,...,nθ}

1

2

k−1∑

ℓ=ℓk

(
∆Jℓ − ϑτ

±jφ
(k)
ℓ

)2

(3.9)
where, with some abuse of notation,

∆θ
(±j)
k = ±∆θ

(j)
k (3.10)

3) GD-Phase: If k is an evennumber, then the following
are taking place:∆θk is updated based on anunbiased least-
squares estimatê∆Jk of ∆Jk defined as follows:

∆̂Jk(∆θℓ, θℓ−1, x̄ℓ, x̄ℓ−1) = ϑ̄τ
kφ

(k)(∆θℓ, θℓ−1, x̄ℓ, x̄ℓ−1)
(3.11)

where

ϑ̄k 7→ arg min
ϑ

1

2

k−1∑

ℓ=ℓk

(
∆Jℓ − ϑτφ

(k)
ℓ

)2

(3.12)

Then,∆θk is calculated as follows

∆θk,i = −βk
∆̂Jk(αkei, θ̂k−2, x̄k, x̄k−2)

αk
+ θ̂k−2,i − θk−1,i

(3.13)
whereei denotes thenθ dimensional vector with entrieseii =
1, eij = 0, i 6= j and θ̂k−2 is defined as follows:

θ̂k−2 =

{
θk−2 if

∣∣∣θ̂k−2

∣∣∣ ≤ cθ

argminθℓ, ℓ∈{ℓk,...,k−1} |θℓ| otherwise
(3.14)

wherecθ is a sufficiently large user-defined positive constant.
By applying the well-known Kuhn-Tucker theorem [7], [13]

to the constrained optimization problem (3.7) we obtain that

ϑ±j =

{
ϑ̄k if ϑτφ

(k)
±j ≤ −βk

ϑ̄k − λ±jΦ
−1
k φ

(k)
±j otherwise

(3.15)

where2

ϑ̄k = Φ−1
k

k−1∑

ℓ=ℓk

∆Jℓφ
(k)
ℓ (3.16)

(note thatϑ̄k above coincides with the solution of the uncon-
strained least-squares optimization problem (3.12)),

Φk =

k−1∑

ℓ=ℓk

φ
(k)
ℓ

(
φ

(k)
ℓ

)τ

λ±j =
βk +

∑k−1
ℓ=ℓk

∆Jℓ

(
φ

(k)
ℓ

)τ

Φ−1
k φ

(k)
ℓ(

φ
(k)
±j

)τ

Φ−1
k φ

(k)
±j

(3.17)

Remark 2: It is worth noting that, similarly to the pro-
posed algorithm, the algorithm proposed and analyzed in [10]
consists of two phases: the GD-phase, which is exactly the
same as the one of the proposed algorithm and the P-phase,
which, similarly to conventional AO algorithms, introduces
random perturbations to the current control parameter vector
θ. On the other hand, the algorithm proposed and analyzed
in [11], involves only one phase which is similar to the CP-
phase of the proposed algorithm. The replacement of the P-
phase by the CP-phase is crucial for the efficiency of the
proposed algorithm: contrary to the P-phase which – due
to the use of random perturbations – may introduce poor
performance or instability problems, the algorithm used in
the CP-phase guarantees safe and efficient performance in the
sense that requirement (2.7) is fulfilled. On the other hand,
the alternation among the GD- and CP-phases possesses the
advantage – over the algorithm of [11] which involves only a
CP-phase – of efficiently dealing with unbounded exogenous
inputs something that was not possible in the case of the
algorithm of [11]; moreover – see the simulation section –
the alternation between GD- and CP-phases seems to lead to
a better performance over the algorithms that use only a CP-
phase.

It is also noting that the presence of the CP-phase is more
than crucial for the efficiency of the proposed algorithm;
in particular, the CP-phase is responsible for providing the
proposed algorithm with the so-calledPersistence of Excita-
tion – (PE) property, see e.g. [6], which is a sufficient and
necessary condition for the neural approximator̂∆J to be able
to efficiently learn the unknown function∆J .

Remark 3 (Number of Neurons):Contrary to other applica-
tions of neural approximators where the number of neuronsL̄g

should be large enough to guarantee efficient approximation
over the wholeinput set, this is not the case here: in the case
of the proposed algorithm it is sufficient that the approximator
has enough regressor terms to come up with an approximation
of the unknown function∆J over a small neighborhood
around the most recent vectorθk. As a matter of fact, in all
practical applications of algorithms using neural approxima-
tors for optimization purposes, (see [10], [11]) as well as in
various applications where we tested the proposed algorithm,

2By using equality (A.3) – see Appendix A – it can be seen thatΦ−1

k
exists

with probability 1 and, moreover, that the denominator of (3.17) is different
than zero with probability 1.
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a choice forL̄g, Th according toL̄g ≈ 2(nθ + nx), Th = 50
was found to produce quite satisfactory results.

IV. M AIN RESULTS

In this section, we establish the properties of the proposed
algorithm. Our basic analysis is based on two assumptions:
The first assumption is described as follows:

(A1) x̄k is bounded for all k and, moreover,
E [xk − x̄k|Gk] = 0 andE

[
|xk − x̄k|2 |Gk

]
< ∞,

where Gk denotes the σ-field generated by
{x0, . . . , xk−1, x̄0, . . . , x̄k−1, θ0, ∆θ1, . . . , ∆θ2⌊k/2⌋−1}.

In simple words, assumption (A1) requires that the exogenous
input estimation errorxk−x̄k is zero-mean with finite variance
and the estimatēxk is bounded; note that assumption (A1)
allows for xk to be unbounded. Note also that in the case
where there is no available estimatēxk, assumption (A1)
reduces to the requirement that the exogenous vectorxk is
zero-mean with finite variance.

In order to describe our second assumption some prelim-
inaries are needed: Letcθ,x =

√
nθ(cθ + c̄)2 + nxc2x where

c̄ is an O(max{αk}) + O(max{βk}) constant such that
|θk| ≤ cθ + c̄, ∀k and cx is a sufficiently large positive
constant; let also (see subsection I.B)

ϑ∗k = W(Lk
g , φ

(k),∆J)

= argmin
ϑ

‖∆J(∆θ, θ, x, x′) − ϑτφ(k)(∆θ, θ, x, x′)‖cθ,x

and

νk(∆θ, θ, x, x′) = ∆J(∆θ, θ, x, x′) − ϑ∗k
τφ(k)(∆θ, θ, x, x′)

Then, the second assumption is described as follows:

(A2) E [νk(∆θℓ, θℓ−1, xℓ, xℓ−1)|Gk] =

O
(
η
(

1
Lk

g
, cθ,x

))
, ∀k ≥ L̄g, ∀ℓ ∈ {ℓk, . . . , k}.

Typical examples that satisfy (A2) are presented below:

1) The case where the exogenous signalxk is bounded with
probability 1; in this case, property (P1) implies (A2).

2) The case whereJ(θ, x) = J(θ) + x and x̄k = 0; then
assumption (A1) and property (P1) imply (A2) with
cθ,x = cθ + c̄.

3) The case where the functionS in (3.2) is bounded and
E [x2,k|Gk] = 0, wherex2,k is defined as follows

xk = Ikx1,k + (1 − Ik)x2,k

whereIk = 1 if |xk| ≤ cx andIk = 0, otherwise.

The next theorem summarizes the properties of the proposed
algorithm (3.2)-(3.9).

Theorem 1:Let assumptions (A1), (A2) hold. Suppose ad-
ditionally that

α2n+1 > 0, β2n+1 ≥ 0, ∀n ∈ Z
limn→∞ α2n+1 → α > 0, limn→∞ β2n+1 → β ≥ 0

(4.1)

α2n = α0n
−η1 , η1 ∈ (0, 1/2)

(4.2)
β2n = β0

lnn

n
or β2n = β0n

−η1−1/2

where α0 > 0, β0 > 0. Moreover, let Ck ={
θ : θ = θ̄ + ∆θ,∆θ ∈ {−αk, αk}nθ and

∣∣∣∆θτ ∂J
∂θ (θ̄, xk)

∣∣∣ <
βk + γ1(xk−1)nθα

2
k + γ2(θ, xk − xk−1)

}
. Then,

(a) At theCP-phasethe following holds:

If θk−1 6∈ Ck−1,

Jk ≤ Jk−1 − βk + O
(
η

(
1

Lk
g

, cθ,x

))
(4.3)

+O
(

sup
ℓ∈{ℓk,...,k]}

|xℓ − x̄ℓ|
)

while, if θk−1 ∈ Ck−1

Jk < Jk−1 + βk + O (xk)nθα
2
k + O (|xk − xk−1|) (4.4)

(b) At the GD-phasethe following holds:

Jk ≤ Jk−2 − βk

∣∣∣∣
∂J

∂θ

(
θ̂k−2, xk

)∣∣∣∣
2

+ τ1k (4.5)

whereτ1k = βkO
(
η
(

1
Lk

g
, cθ,x

))
+ O (xk)nθα

2
k +

O (xk − x̄k) + O (xk − xk−1).

(c) Moreover, ifcθ is sufficiently large,

lim
k→∞

|θk − θ∗| = O
(
η

(
1

L̄g
, cθ,x

))
, with probability 1

(4.6)
Proof: See Appendix B.

In simple words, Theorem 1 states that both of the require-
ments posed in section II are met by the proposed algorithm.
More precisely, according to Theorem 1:

• The proposed algorithm guarantees convergence of the
control parameter vectorθk arbitrarily close to one of
the local minimaθ∗. The “distance” betweenθ∗ and the
limit of θk depends on the number of neurons used by the
neural approximator (3.4); roughly speaking, the larger is
the number of neurons in (3.4) the smaller is this distance.

• Moreover, the proposed algorithm guarantees that the
requirement (2.7) is met. To see this, note that from (4.3),
(4.4) and (4.5) we have that

Jk ≤ Jk−i −Bk +Nk + Ek (4.7)

wherei = 1 at the CP-phase andi = 2 at the GD-phase,
and

– the term3 Bk is a term that is strictly positive when
θk is far fromθ∗ and becomes negligible or equal to
the design parameterβk if θk is close toθ∗;

– the termNk is anO
(
η
(

1
Lk

g
, cθ,x

))
term. This term

can be made arbitrary small – fork ≥ L̄g – by
increasing the number of neurons̄Lg used in the
(3.4);

– the termEk is a term whose magnitude depends on
the magnitude ofxk, xk−x̄k andxk−x̄k−1; note that
the presence of the termEk in (4.7) is unavoidable
regardless of the particular algorithm used.

3The termBk is defined – at the CP-phase – according toBk = βk if
θk−1 6∈ Ck−1 and Bk = −βk if θk−1 ∈ Ck−1; and – at the GD-phase –

according toBk = βk

∣∣∂J
∂θ

(
θ̂k−2, xk

)∣∣2.
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Remark 4:Using Lemma A.1 (see Appendix A), it can be
seen that the SPSA algorithm satisfiesJk < Jk−1 + τSPSA

k

where

τSPSA
k = αk

∣∣∣∣
∂J

∂θ
(θk−1, xk)

∣∣∣∣+O(|xk−1|)α2
k+O(|xk−xk−1|)

On the other hand, the standard gradient-descent algorithm
θk = θk−1 − αk

∂J
∂θ (θk−1, x̄k) (which is, though, applicable

only in cases where perfect knowledge ofJ and its gradient
is available) can be seen to satisfyJk < Jk−1 + τGD

k where

τGD
k = O(|xk − x̄k|)αk + O(|xk−1|)α2

k + O(|xk − xk−1|)

Note that the termτSPSA
k may become significantly large

especially whenθk is far from a local minimum ofJ wrt
θ, in which case the term

∣∣∂J
∂θ (θk−1, xk)

∣∣ is large. Note also
that the presence of the termsO(|xk−1|), O(|xk − xk−1|) is
unavoidable no matter what is the particularly algorithm used.

We close this section, by presenting a direct corollary of
Theorem 1 for the casēxk = 0, i.e. the case where no
estimation/prediction of the exogenous inputs is available.

Corollary 1: Consider the case wherēxk = 0, ∀k. Then
assumptions (A1), (A2), (4.1), (4.2) imply parts (a) and (b)of
Theorem 1 and, moreover,

lim
k→∞

θk = θ∗, with probability 1

Proof: Firstly notice thatβk → 0 implies thatθk con-
verges to a constant vectorθ̄. Let us re-defineϑ∗k as follows:

ϑ∗k = argmin
ϑ

‖∆J(∆θ, θ) − ϑτφ(k)(∆θ, θ)‖ck

where

‖f(θ, θ′)‖ck
=

√∫

ℜ2nθ

|w̄ (θ, θ′) f(θ, θ′)|2 dθdθ′

w̄ (θ, θ′) =

{
1 if

∣∣θ − θ̄
∣∣ < ck and

∣∣θ′ − θ̄
∣∣ < ck

0 otherwise

and ck = maxℓ∈{ℓk,...,k−1}

∣∣θℓ − θ̄
∣∣. Then, we have that

the termsνk, νℓ, defined in the proof of Theorem 1, satisfy
νk, νℓ → η(1/L̄g, 0) = 0; the rest of the proof is the same as
in Theorem 1.

V. SIMULATION EXPERIMENTS

In this section, we present simulation results on the ap-
plication of the proposed algorithm to the fine-tuning of
an LNCS applied to a motorway ramp metering system. It
has to be emphasized that the problem of computing the
optimal parameters for this particular control system can
be formulated as a nonlinear optimization problem whose
solution depends on the traffic demand (vehicles entering the
motorway network), see [18]. As a result, even in the case
where the system dynamics are exactly known the computation
of the optimal control parameters is a NP-hard problem, and,
moreover, it requires knowledge of the traffic demand. It is
also noted that – after a tedious and time-consuming fine-
tuning – the implementation of the control system treated
in this section in various motorway networks produced very

Fig. 1. The motorway stretch used in the simulations.

efficient performance [18]. Next we briefly present some
details regarding the particular application.
Traffic Network: Figure 1 displays a schematic diagram of the
17km-long motorway stretch assumed in our experiments; this
stretch is part of the Monash-CityLink-West Gate Corridor in
Melbourne, Australia, operated by VicRoads. The numbered
circles in figure 1 represent the network junctions and the
numbered dots correspond to the detector (sensor) locations.
The motorway stretch of figure 1 contains a total of 8 on-ramps
and 7 off-ramps; congestion usually appears right downstream
junction N3 and spills back, creating severe shock waves. In
our simulations we assumed that controlled ramp metering
is imposed at all ramps except ramp ONFERNTREE since
congestion appears upstream that ramp.
Control System:The form of the motorway ramp metering
control system assumed in our experiments can be described
as follows [18]:

r(t) = H(L1z(t− 1) + L2) (5.8)

wheret = 0, 1, ..., denotes the discrete time-index with sam-
pling time period equal to 30 secs,r denotes the control input
vector andz is a vector of traffic measurements. The control
input vectorr corresponds to the ramp flows allowed through
the implementation of ramp metering andz corresponds
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to the vector of average densities at the detector locations
downstream the controlled ramps. The density measurements
from detectors 7980, 7977, 7972, 7848, 7846 and 7838 were
used to form the vectorz. The nonlinear (saturation) operator
H is used to guarantee that the control decisions satisfy
minimum and maximum allowable ramp flow constraints.
Finally, the constant matrixL1 and the constant vectorL2

denote the tunable controller parameters. It is worth noting
that the popular local ramp metering strategy ALINEA [18]
has exactly the form (5.8) with the matrixL1 being a diagonal
matrix and the vectorL2 depending on the critical densities
of the locations downstream of the on-ramps. Also, a variety
of multivariable (network-wide) ramp-metering strategies, see
[18], have the form (5.8) in which caseL1, L2 are calculated
using nonlinear optimization or optimal control techniques.
Traffic Network Simulation: The macroscopic traffic simulation
tool METANET [16] was used for the simulation experiments.
The traffic model parameters assumed in METANET were
obtained by use of nonlinear parameter estimation techniques
[19], minimizing the mismatch between the METANET states
and actual traffic data provided by VicRoads.
Traffic Demand Scenarios: Based on actual traffic data pro-
vided by VicRoads, abasic daily traffic demand scenarioDi,t

(whereDi,t denotes the number of vehicles entering thei-
th motorway origin4 at thet-th interval) with duration equal
to 8 hours5 was designed based on actual measurements; at
each fine-tuning experiment, a random perturbation of the
basic scenario was used. More precisely, at each fine-tuning
experiment, the traffic demand was calculated according to
Dk

i,t = max{0, Di,t + Di,tw
k
i,t}, where Dk

i,t denotes the
traffic demand at thek-th fine-tuning experiment andwk

i,k is
a Gaussian zero-mean term with variance equal to0.2. It is
worth noting that the basic demand scenario corresponded to
highly congested traffic conditions. Note also that due to the
use of the Gaussian random termwk

i,t, the exogenous signal
xk – whose entries correspond to the elements ofDk

i,t – is an
unboundedsignal in the sense that it is not possible to a priori
assess an upper bound for its magnitude.
Performance Index: The average mean speed of the whole
traffic network (in km/h) over the 8 hours was used as
the performance metric to be optimized by the fine-tuning
algorithm. It is worth noting that the average mean speed
can be calculated based on detector measurements. Note
also that since the goal of a traffic control system is to
maximizemean speed, performance index maximization (by
appropriately modifying the proposed algorithm) instead of
minimization was implemented.
Tunable Parameters: All entries of L1 and L2 were fine-
tuned, corresponding to a vector of tunable parameters with
dimension equal to7 × 7 + 7 = 56.
Estimation of Exogenous Signals:The exogenous vector
xk in this particular application corresponds to the traffic
demandDk

i,t. As it was shown in [10], a low-dimension, noisy

4The motorway origins are defined as the mainstream origin N12in Figure
1 as well as the 8 on-ramps.

5Only the “peak hours period”, i.e. the period of high traffic demand within
the day, was considered in the simulations.

estimate6 x̄k of the traffic demand can be constructed based
on traffic measurements at the networks origins; see [10] for
more details. In the particular application treated here, the
methodology of [10] produced a vector̄xk with dimension
nx = 60.
Algorithm and I-ELM-NN Design:As explained in the para-
graph “Simulations Runs” below, the proposed algorithm was
applied for 149 iterations7 in all simulation experiments; as a
result, the maximum allowable number of I-ELM-NN nodes
– denoted byL̄g in section III – is equal toL̄g = 75; see
also equation (3.3). The I-ELM-NN activation function in (1.3)
was chosen according toS(x) = tanh(x), while the entries of
Ai and bi in (1.3) were chosen – at each algorithm iteration
– to be Gaussian zero-mean random terms with variance
equal to 0.1. The design constantTh in (3.8) was chosen
according toTh = 50; see Remark 3. The design sequences
αk, βk were chosen according toα2n+1 = α, β2n+1 = β
and α2n = α0n

−1/3, β2n = β0
lnn
n , whereα, β, α0, β0 are

positive constants. The choice of the constantsα, α0, β was
quite straightforward. More precisely, by checking the values
of L1, L2 produced by the control strategy ALINEA in similar
applications, we found that a modification of the elements of
L1, L2 according to the choiceα = α0 = 0.001 was sufficient
to produce a non-negligible change in the performance index
without introducing stability problems; on the other hand,it
can be seen thatβ corresponds to a “doable” increase of
the performance index (mean speed) at each iteration of the
algorithm; as a result a choice ofβ = 1 is sufficient since it
corresponds to a mean speed increase of 1 km/h. While the
choice forα, α0, β was quite straightforward, this was not the
case for the constantβ0; as a result, different values forβ0

were tested throughout the simulation experiments.
Initial Controller Parameters: The initial matricesL1 andL2

were set equal to zero and, therefore, the starting point of
the fine-tuning algorithms was a controller incorporating no
knowledge about the overall system dynamics.
Comparison with Existing AO Algorithms: In order to evaluate
the efficiency of the proposed approach, its performance was
compared with the following existing AO algorithms: the
SPSA algorithm [20] as well as the algorithms P-GD [10]
and CP [11]. Since, the design of the three aforementioned
algorithms involves quite few design parameters (similar to
the design parametersα0, β0, L̄g, Th, etc of the proposed algo-
rithm), the performance of each of these three algorithms was
optimized by experimenting with different sets of their design
parameters. In all cases, the proposed algorithm performance
was compared to the optimized set of design parameters for
the aforementioned three algorithms. Due to space limitations,
more details on the choice of the design parameters of these
algorithms are omitted.
Simulation Runs: For each of the compared algorithms, 10
different Runs using the same algorithm’s design parameters
but different randomly generated traffic demand scenarios (cal-

6It is worth noting that the methodology of [10] for calculating x̄k results
in an estimation errorxk − x̄k that is also an unboundedsignal.

7The number of days (iterations) the fine-tuning was active was chosen to
be equal to 149 in order to provide all algorithms consideredin the simulations
with sufficient time to converge to their “best” value forθ.
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culated as described in paragraph “Traffic Demand Scenarios”
of this section) were executed. In this way, a significant
number of samples was created. It has to be noted that in all
Runs considered, the fine-tuning process was active for 149
days (iterations); after day 149, the fine-tuning process was
stopped and the bestramp metering controller (corresponding
to θk that produced the maximum mean speed over the 149
daily experiments) obtained throughout the fine-tuning process
was tested for the next 20 daily experiments.
Evaluation Criteria: In order to compare the algorithms’
performance three different evaluation criteria were used:

• TotDaysBellowMSthres=average number of days (over all
10 different Runs) with mean speed below an appropri-
ately defined threshold, i.e.

TotDaysBellowMSthres=
1

10

10∑

R=1

149∑

d=1

I(JR
d ≤ MSthres)

whereR denotes the Run index,d denotes the day (itera-
tion) index,JR

d denotes the daily mean speed at thed-th
algorithm iteration for theR-th Run, MSthresdenotes
the aforementioned threshold andI(JR

d ≤ MSthres) = 1
if JR

d ≤ MSthreskm/h and I(JR
d ≤ MSthres) = 0,

otherwise. TheMSthreswas chosen so that it reflects a
daily mean speed bound beyond which the overall system
operation is consideredunsafe. It is worth noting that in
practical ramp metering applications the traffic operators
impose such thresholds; if these thresholds are repeatedly
violated then the fine-tuning process, or, even the overall
ramp metering system operation may be canceled. The
particular value forMSthreswas chosen according to
MSthres=50km/h; this particular choice is 2-3 km/h below
the average mean speed obtained usingL1 = 0, L2 = 0.
Apparently, the criterionTotDaysBellowMSthresis used
for evaluating the safety attributes of the compared algo-
rithms, i.e., their ability to keep the constantǫk in (2.7)
as small as possible.

• AverConvDay, MaxConvDay=the average and maximum
day number (over all 10 different Runs) the algorithm
performance reaches a 10% distance from the best algo-
rithm performance over the days 1-149, i.e.

AverConvDay=
1

10

10∑

R=1

argmin
d

J
(
JR

d ≥ 0.9JR
∗

)

MaxConvDay= max
R

argmin
d

J
(
JR

d ≥ 0.9JR
∗

)

where J
(
JR

d ≥ 0.9JR
∗

)
= d if JR

d ≥ 0.9JR
∗ and

J
(
JR

d ≥ 0.9JR
∗

)
= 149, otherwise, withJR

∗ denoting
the best algorithm performance over days 1-149, i.e.
JR
∗ = maxd∈{1,...,149} J

R
d . This criterion was introduced

in order to evaluate theconvergence rateof the al-
gorithms being evaluated. Note that due to the highly
stochastic nature of the fine-tuning problem considered
in this section, the iteration (day) number the algorithms
converge to – or close to – their optimal value can vary
significantly and that is the reason we incorporate the
worst case performance, identified byMaxConvDay, in
the convergence rate evaluation.

• AverMSAfterFT=average daily mean speed (over all 10
different Runs and all days 150-170) after fine-tuning was
stopped, i.e.

AverMSAfterFT=
1

10 × 21

10∑

R=1

170∑

d=150

JR
d

This criterion provides with an estimate of the steady-
state convergence characteristics of the algorithm being
evaluated.

Figure 2 shows some instances of the application of SPSA,
P-GD and CP algorithms, respectively, for different simulation
Runs. As already mentioned, the performance of the above
three algorithms for the best set of their design parametersis
exhibited. Figure 3 shows some instances the performance of
the proposed algorithm (referred as the CP-PD algorithm) for
different values of the parameterβ0. Table 1 summarizes the
performance evaluation based on the three evaluation criteria
defined previously.

Close inspection of Table 1 and figures 2, 3 reveals the
following:

• SPSA and P-GD algorithms practically failto produce
any improvement on the overall system performance.
In almost all Runs – for both algorithms – the best
performance achieved was about the same as the one
achieved using the initial ramp meter controller.

• The CP algorithm guarantees a safe performance while in
most cases it achieves a quickly converging performance.
However, there may be cases where the CP algorithm fails
to produce a significant performance improvement. Such
a case is exhibited in case of Simulation Run 3 (figure
2, lower plot). In other words, while the CP algorithm
guarantees safe performance, there is always the risk
the CP algorithm to fail to improve the overall system
performance.

• The proposed algorithm always achieves to improve
considerably the overall control system’s performance.
Note, however, that the improvement in the overall system
performance is made possible by sacrificing safety, since
the proposed algorithm’s safety attributes (identified by
the criterionTotDaysBellowMSthres) can be slightly (case
β0 = 0.01) or significantly worse (caseβ0 = 0.1, or
β0 = 1) than those of the CP algorithm. In all cases,
though, the steady state improvement produced by the
proposed algorithm is significantly larger than that of
the rest three algorithms (see last column in Table 1).
Moreover, having in mind that for all choices ofβ0 the
proposed algorithm produces a significant improvement
over the rest algorithms and, moreover, in the case where
β0 = 0.01 theTotDaysBellowMSthresis quite small, it is
expected that a real-life implementation of the proposed
algorithm can be extremely successful.

VI. CONCLUSIONS

Fine-tuning of Large-Scale Nonlinear Control Systems
(LNCS) if often a tedious, complicated and risky task that
is usually performed by human experts without the use of
a systematic approach. In this paper, a new adaptive/neural



10

Table 1: Performance of AO algorithms.
TotDaysBellowMSthres AverBestDay| MaxConvDay AverMSAfterFT

SPSA [20] 24.7 81.3 | 122 54.7
P-GD [10] 15.4 50.5 | 113 55.1
CP [11] 2.0 26.0 | 67 63.2
CP-GD (β0 = 0.01) 5.3 17.2 | 25 68.1
CP-GD (β0 = 0.1) 28.2 54.3 | 125 72.3
CP-GD (β0 = 1) 36.7 63.7 | 132 71.4

algorithm has been proposed that can be used towards the
development of a systematic, automated procedure that will
make possible the efficient and safe fine-tuning of LNCS
through appropriate learning mechanisms. The proposed ap-
proach combines appropriately existing algorithms proposed
by the authors in the past and the Incremental-Extreme Learn-
ing Machine Neural Network (I-ELM-NN). Among the nice
properties of the proposed algorithm is its ability to deal
with unbounded exogenous signals as well as its significantly
improved convergence over the existing algorithms.

APPENDIX A
TECHNICAL PROOFS

The following lemmas are needed for the establishment of
the proof of Theorem 1 presented in Appendix B:

Lemma 1:The following holds:

∆J(±∆θk, θk−1, xk, xk−1) = ±∆θτ
k

∂J
∂θ (θk−1, xk−1)

+γ11(xk−1,∆θk) + γ2(θk−1 ± ∆θk, xk − xk−1)

γ11(xk−1,∆θk) ≤ γ1(xk−1) |∆θk|2
(A.1)

where γ1(x) is8 a positive function that is bounded for
boundedx andγ2(θk−1 ±∆θk, xk − xk−1) is a function sat-
isfying γ2(θ, xk − xk−1) = O (|xk − xk−1|) for any bounded
θ.

Proof: Following the approach adopted in [1], we fix two
vectorsθ, θ̄ and defineξ as the scalar parameter satisfying
g(ξ, x) = J(θ + ξθ̄, x). Using the chain rule we have that
dg
dξ (ξ, x) = θ̄τ ∂J

∂θ (θ + ξθ̄, x). Therefore,

J(θ + θ̄, x) − J(θ, x) = g(1, x) − g(0, x)

=
∫ 1

0
dg
dξ (ξ, x)dξ =

∫ 1

0 θ̄
τ ∂J

∂θ (θ + ξθ̄, x)dξ

=
∫ 1

0
θ̄τ ∂J

∂θ (θ, x)dξ +
∫ 1

0

(
θ̄τ ∂J

∂θ (θ + ξθ̄, x) − θ̄τ ∂J
∂θ (θ, x)

)
dξ

= θ̄τ ∂J
∂θ (θ, x) +

∫ 1

0

(
θ̄τ ∂J

∂θ (θ + ξθ̄, x) − θ̄τ ∂J
∂θ (θ, x)

)
dξ

(A.2)
SinceJ is at leastC2, we have that there exists a positive
functionL(x) (which is bounded for boundedx) such that for
all θ, θ̄

∣∣∣∣θ̄τ ∂J

∂θ
(θ, x) − θ̄τ ∂J

∂θ
(θ̄, x)

∣∣∣∣ ≤ L(x)
∣∣θ − θ̄

∣∣

and therefore the second term in the RHS of (A.2)
satisfies

∣∣∣
∫ 1

0

(
θ̄τ ∂J

∂θ (θ + ξθ̄, x) − θ̄τ ∂J
∂θ (θ, x)

)
dξ
∣∣∣ ≤

∫ 1

0

∣∣θ̄
∣∣ ∣∣∂J

∂θ (θ + ξθ̄, x) − ∂J
∂θ (θ, x)

∣∣ dξ ≤
∣∣θ̄
∣∣ ∫ 1

0
L(x)ξ

∣∣θ̄
∣∣ dξ =

8Note thatγ1(x) is a function that is bounded for boundedx and nota
bounded function; in other words,γ1(x) may be unbounded whenx becomes
unbounded.

L(x)
2

∣∣θ̄
∣∣2. By setting θ = θk−1, x = xk−1, θ̄ = ±∆θk

in (A.2) and using the above inequality we obtain
∆J(±∆θk, θk−1, xk−1, xk−1) = ±∆θτ

k
∂J
∂θ (θk−1, xk−1) +

γ11(xk−1,∆θk) where γ11(xk−1,∆θk) is a term
satisfying |γ11(xk−1,∆θk)| ≤ L(x)

2 |∆θk|2. The
proof is established by definingγ1(x) = 2L(x) and
γ2(θ, xk − xk−1) = J(θ, xk) − J(θ, xk−1).

Lemma 2:For all k odd, the following holds, provided that
α2n+1 > 0, ∀n ∈ Z:

rank
[
φ

(k)
ℓk
, . . . , φ

(k)
k−1, φ

(k)
±j

]
= Lk

g , with probability 1 (A.3)

Proof: We only provide with a sketch of the proof: it
can be seen that – sinceS is invertible – if (A.3) does
not hold then there exists a nonzero vectorχ such that
χτ (Avec (∆θℓ, x̄ℓ − x̄ℓ−1) + b) = 0, ℓ = ℓk, . . . , k − 1, and

χτ
(
Avec

(
∆θ

(±j)
k , x̄k − x̄k−1

)
+ b
)

= 0 whereA denotes

the matrix whose rows are the vectorsAτ
i and b = vec(bi).

SinceAi, bi and ∆θ
(±j)
k are randomly chosen and moreover

∆θℓ 6= 0 (due to the requirement thatα2n+1 > 0), it is quite
straightforward to show that the probability a nonzero vector
χ to satisfy the above system of equations is zero.

Lemma 3:Consider the assumptions imposed in Theorem
1. Then∆J(∆θ

(±j)
k , θk−1, xk, xk−1) ≤ −βk implies (B.6).

Proof: Using (B.1) we directly obtain that
∆J(∆θ

(±j)
k , θk−1, xk, xk−1) ≤ −βk =⇒ ϑ∗k

τφ
(k)
±j + ν̃±j ≤

−βk where ν̃±j = νk(∆θ
(±j)
k , θk−1, xk, xk−1) +

ϑ∗k
τ (φ(k)(∆θ

(±j)
k , θk−1, xk, xk−1) − φ(k)(∆θ

(±j)
k , θk−1,

x̄k, x̄k−1)). Using the above relationship it is straightforward
to see thatϑ∗k ∈ S±j where

S±j =
{
ϑ ∈ ℜLk

g : ϑτφ
(k)
±j ≤ −βk + |ν̃±j |

}

Note now that relation (B.6) is directly obtained from (B.5)
and (B.4) in the case whereΛ±j = 0; therefore it suffices to
establish (B.6) in the case whereΛ±j 6= 0: sinceΛ±j 6= 0, it
is easily seen thatϑ±j ∈ Σk

+, where

Σ±j =
{
ϑ ∈ ℜLk

g : ϑτφ
(k)
±j = −βk

}
⊆ S±j

Moreover, from (B.4) andΛ±j 6= 0 we have that̄ϑk ∈ Γ±j ,
where

Γ±j =
{
ϑ ∈ ℜLk

g : |ϑ− ϑ∗k| ≤ |¯̄νk| andϑτφ
(k)
±j ≥ −βk

}

It is not difficult for someone to see thatϑ±j is the projection
of a vectorϑ̄k ∈ Γ±j into Σ±j . Note also that the subsets
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Fig. 2. Fine-tuning results using SPSA [20] (upper plot) P-GD [10] (middle
plot) and CP [11] (lower plot) algorithms: in all three casesthe algorithm’s
performance for optimized set of their design parameters isexhibited.
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S±j ,Σ±j ,Γ±j are convex. We have three cases: (a)Σ±j ∩
Γ±j 6= ∅. In this case,

ϑ±j ∈ Σ±j ∩ Γ±j (A.4)

and thus it is easily seen – sinceΣ±j ,Γ±j are convex –
that the distance betweenϑ∗k and ϑ±j is bounded by|¯̄νk|,
which establishes (B.6) for this case; (b)Σ±j ∩ Γ±j = ∅ and
ϑτφ

(k)
±j > −βk, ∀ϑ ∈ Γ±j . In this case, it can be easily seen

that the distance betweenϑ∗k andϑ±j is bounded by|ν̃±j | (see
the definition of the subsetS±j) which establishes (B.6) for
this case; (c)Σ±j ∩ Γ±j = ∅ andϑτφ

(k)
±j < −βk, ∀ϑ ∈ Γ±j,

or, equivalently,Λ±j = 0, which is a contradiction. Thus,
(B.6) has been established.

Lemma 4:Consider the assumptions imposed in Theorem
1. Then

∆J(∆θ(±j), θk−1, xk, xk−1) > −βk, ∀j ∈ {1, . . . , nθ}

implies thatθk ∈ Ck−1 and that (B.17) holds.
Proof: Let ∇Jk−1 = ∂J

∂θ (θk−1, xk−1). From
(A.1) – see Lemma 1 – we have that−βk <

∆J(∆θ
(±j)
k , θk−1, xk, xk−1) ≤

(
∆θ

(±j)
k

)τ

∇Jk−1 +

γ1(xk−1)
∣∣∣∆θ(±j)

k

∣∣∣
2

+ γ2(θk−1 + ∆θ
(±j)
k , xk − xk−1) which

implies (since∆θ(±j)
k = ±∆θ

(j)
k ) that

±∆̄τ∇Jk−1 < vec

(
βk + γ1(xk−1)

∣∣∣∆θ(±j)
k

∣∣∣
2

(A.5)

+γ2(θk−1 + ∆θ
(±j)
k , xk − xk−1)

)

where∆̄ =
[
∆θ

(1)
k , . . . ,∆θ

(nθ)
k

]
. By using (1.1) it is straight-

forward to establish thatθk−1 ∈ Ck−1. Using the definition of
the subsetCk, the fact thatθk−1 ∈ Ck−1 and Lemma 1, we
have – since∆θk = ∆θ

(±j)
k ∈ {−αk, αk}nθ for some±j ∈

{nθ, . . . ,−1, 1, . . . , nθ} – that ∆J(∆θk, θk−1, xk, xk−1) ≤
(∆θk)

τ ∇Jk−1 + γ1(xk−1) |∆θk|2 + γ2(θk, xk − xk−1) <
βk+2γ1(xk−1) |∆θk|2+2γ2(θk, xk−xk−1) which establishes
(B.17).

APPENDIX B
PROOF OFTHEOREM 1

Since the proposed algorithm is applied after iterationk =
2, the proof concentrates in the case wherek ≥ 2. Note also
that from (3.14) and the fact that̄xk is bounded, we have that
θk is bounded for allk.

Using the definitions ofϑ∗k, νk (see section IV), we have
that

∆J = ϑ∗k
τφ(k)(∆θ, θ, x̄, x̄′) + νk(∆θ, θ, x, x′) (B.1)

+ϑ∗k
τ
(
φ(k)(∆θ, θ, x, x′) − φ(k)(∆θ, θ, x̄, x̄′)

)

wherex̄, x̄′ denote the estimates ofx, x′, respectively; there-
fore, if ∆̂J(∆θ, θ, x̄, x̄′) = ϑτφ(k)(∆θ, θ, x̄, x̄′), then

∆J(∆θ, θ, x, x′) − ∆̂J(∆θ, θ, x̄, x̄′)

= ϑ̃τ
kφ

(k)(∆θ, θ, x̄, x̄′) + ν̄k(∆θ, θ, x, x′, x̄, x̄′)
(B.2)

where ϑ̃k = ϑ∗k − ϑ denotes the parameter estimation error
and

ν̄k(∆θ, θ, x, x′, x̄, x̄′) = νk(∆θ, θ, x, x′)

+ϑ∗k
τ
(
φ(k)(∆θ, θ, x, x′) − φ(k)(∆θ, θ, x̄, x̄′)

) (B.3)

Using (3.16), (B.1), (B.3) we obtain

ϑ̄k =

(
k−1∑

ℓ=ℓk

φ
(k)
ℓ

(
φ

(k)
ℓ

)τ
)−1 k−1∑

ℓ=ℓk

(
ϑ∗k

τφ
(k)
ℓ + ν̄ℓ

)
φ

(k)
ℓ

= ϑ∗k + Φ−1
k

k−1∑

ℓ=ℓk

ν̄ℓφ
(k)
ℓ = ϑ∗k + ¯̄νk (B.4)

where – with some abuse of notation –̄νℓ =
ν̄k(∆θℓ, θℓ−1, xℓ, xℓ−1, x̄ℓ, x̄ℓ−1). Let also

Λ±j =

{
0 if ϑ̄τ

kφ
(k)
±j ≤ −βk

−λ±jΦ
−1
k φ

(k)
±j otherwise

Using (3.15) we have that

ϑ±j = ϑ̄k + Λ±j (B.5)

For each±j : j ∈ {1, . . . , nθ} we have the following two
different cases:

1) ∆J(∆θ
(±j)
k , θk−1, xk, xk−1) ≤ −βk. In Lemma 3 we

establish that in this case the following holds:

|ϑ±j − ϑ∗k| ≤ max {|¯̄νk| , |ν̃±j |} (B.6)

whereν̃±j = ν̄k(∆θ
(±j)
k , θk−1, xk, xk−1, x̄k, x̄k−1).

2) ∆J(∆θ
(±j)
k , θk−1, xk, xk−1) ≡ −β̄k > −βk. Using

similar arguments as those of the proof of Lemma 3,
we can see that in this case

ϑ∗k
τφ

(k)
±j = −β̄k − ν̃±j (B.7)

Moreover, from (3.7) we have that

ϑτ
±jφ

(k)
±j ≤ −βk (B.8)

Subtracting (B.7) from (B.8), we obtain that

(ϑ±j − ϑ∗k)
τ
φ

(k)
±j ≤ −

(
βk − β̄k

)
+ ν̃±j

which implies that

|ϑ±j − ϑ∗k| ≥ c3 max
{
βk − β̄k − ν̃±j , 0

}
(B.9)

for some positive constantc3.

Consider now the process of selection of∆θk = ∆θ
(±j)
k

according to (3.9). We have the following two cases:

(α) ∃h̄ ∈ {−nθ, . . . ,−1, 1, . . . , nθ} such that
∆J(∆θ

(h̄)
k , θk−1, xk, xk−1) ≤ −βk.

If ∆θk defined in (3.9) satisfies∆θk = ∆θ
(h̄)
k , then we have

from (B.6) that
∣∣∣ϑ(h̄)

k − ϑ∗k

∣∣∣ ≤ max {|¯̄νk| , |ν̃h̄|} (B.10)

On the other hand, if∆θk = ∆θ
(j∗)
k for some j∗ ∈

{−nθ, . . . ,−1, 1, . . . , nθ} with j∗ 6= h̄, we have that
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∆J(∆θk, θk−1, xk, xk−1) = −β̄k > −βk with β̄k < βk. From
(3.9) we have that since∆θk = ∆θ

(j∗)
k andj∗ 6= h̄,

k−1∑

ℓ=ℓk

(
∆Jℓ − ϑ

(h̄)

k+

τ
φ

(k)
ℓ

)2

>

k−1∑

ℓ=ℓk

(
∆Jℓ − ϑ

(j∗)
k

τ
φ

(k)
ℓ

)2

(B.11)
Using the above inequality, (B.10) and the definition ofϑ∗k in
(B.4) it can be easily established that

∣∣∣ϑ(j∗)
k − ϑ∗k

∣∣∣ ≤ max {|¯̄νk| , |ν̃j∗ |} (B.12)

Moreover, we have that in this case (B.9) holds, i.e.
∣∣∣ϑ(j∗)

k − ϑ∗k

∣∣∣ ≥ c3 max
{
βk − β̄k − ν̃j∗ , 0

}

which implies – by taking into account (B.12) – that
∣∣βk − β̄k

∣∣ =
∣∣∣β̃k

∣∣∣ ≤ max {|¯̄νk| , |ν̃j∗ |} (B.13)

Using the definitions of̄νk, ¯̄νk, ν̃±j, the fact that from Lemma
2 Φ−1

k is bounded with probability 1 and property (P1) it can
be seen, after some manipulations, that

∣∣∣β̃k

∣∣∣ ≤ max {|¯̄νk| , |ν̃j∗ |} = ν̂{ℓk,...,k}

+ρ̂(θ{ℓk,...,k}, x{ℓk,...,k} − x̄{ℓk,...,k})
(B.14)

where, ρ̂(θ{ℓk,...,k}, x{ℓk,...,k} − x̄{ℓk,...,k}) =
O
(∣∣x{ℓk,...,k} − x̄{ℓk,...,k}

∣∣); (here the notationx{ℓk,...,k}

is used to denote a matrix whose columns are the vectors
xℓk

, . . . , xk; notice also that̂ρ(·) is a zero-mean term) and

‖ν̂{ℓk,...,k}‖cθ,x
= O

(
η

(
1

Lk
g

, cθ,x

))
(B.15)

By combining (B.10) and (B.13), we finally conclude that

Jk ≤ Jk−1 − βk + β̃k (B.16)

whereβ̃k satisfies (B.14).
(β) ∆J(∆θ(±j), θk−1, xk, xk−1) > −βk ∀j ∈

{1, . . . , nθ}.
In Lemma 4 we show that in this caseθk−1 ∈ Ck−1 and,

moreover, that

Jk < Jk−1 + βk + 2γ1(xk−1)nθα
2
k + 2γ2(θk, xk − xk−1)

(B.17)
Therefore, we have that condition (α) holds for θk−1 6∈

Ck−1; this together with (B.16), (B.14), (B.15) and (B.17)
establish part (a).

We will now establish parts (b) and (c): in the establishment
of the proof of parts (b) and (c) we consider only the
gradient-descent phase; therefore from now on the subscript k
corresponds to an even number.

Consider any bounded nθ-dimensional vector
∆θ; by using similar arguments as in (B.1),
(B.2) we obtain ∆Jk(∆θ, θ̂k−2, x̄k, x̄k−2) =

ϑ̄τ
kφ

(k)(∆θ, θ̂k−2, x̄k, x̄k−2) +˜̄ϑ
τ

kφ
(k)(∆θ, θ̂k−2, x̄k, x̄k−2)

+ν̄k(∆θ, θ̂k−2, xk, xk−2, x̄k, x̄k−2) = ∆̂Jk(∆θ, θ̂k−2,
xk, xk−2, x̄k, x̄k−2) + ν̄k(∆θ, θ̂k−2, xk, xk−2, x̄k, x̄k−2) +

(φ(k)(∆θ, θ̂k−2, x̄k, x̄k−2))
τΦ−1

k

∑k−1
ℓ=ℓk

ν̄ℓφ
(k)
ℓ where

˜̄ϑk = ϑ∗k − ϑ̄k and the second equality equality was obtained
by using (B.4). The terms̄νk, ν̄ℓ in the above relation

can be decomposed as̄νk = νk(∆θ, θ̂k−2, xk, xk−2) +

ϑ∗k
τ
(
φ(k)(∆θ, θ̂k−2, xk, xk−2) − φ(k)(∆θ, θ̂k−2, x̄k, x̄k−2)

)
,

ν̄ℓ = νk(∆θℓ, θℓ−1, xℓ, xℓ−1) + ϑ∗k
τ (φ(k)(∆θℓ, θℓ−1,

xℓ, xℓ−1) − φ(k)(∆θℓ, θℓ−1, x̄ℓ, x̄ℓ−1)) and, thus
we have that ‖∆Jk(∆θ, θ̂k−2, x̄k, x̄k−2) −
∆̂Jk(∆θ, θ̂k−2, xk, xk−2, x̄k, x̄k−2)‖cθ,x

= O
(
η
(

1
Lk

g
, cθ,x

))

+O
(
supℓ∈{ℓk,...,k]} |xℓ − x̄ℓ|

)
. Using the above equality and

(3.13) it is quite straightforward for someone to see that

θk = θ̂k−2 − βk
∂J

∂θ

(
θ̂k−2, xk

)
+ βkhk

where

hk = O
(
η

(
1

Lk
g

, cθ,x

))
+ O

(
sup

ℓ∈{ℓk,...,k]}

|xℓ − x̄ℓ|
)

Combining the above two equalities with Lemma 1 we readily
establish part (b).

Coming to part (c), firstly notice that from (A1) we have
that the second term in the above equation is zero-mean
and has finite variance; moreover, from (A1), (A2) and
(3.14) we have thatE

[
νk(∆θ, θ̂k−2, xk, xk−2)|Gk

]
=

O
(
η
(

1
Lk

g
, cθ,x

))
, E

[∣∣∣νk(∆θ, θ̂k−2, xk, xk−2)
∣∣∣
2

|Gk

]
< ∞,

E [νk(∆θℓ, θℓ−1, xℓ, xℓ−1)|Gk] = O
(
η
(

1
Lk

g
, cθ,x

))
,

E
[
|νk(∆θℓ, θℓ−1, xℓ, xℓ−1)|2 |Gk

]
< ∞. Using the analysis

above, we obtain that

∆θk,i = +θ̂k−2,i − θk−1,i (B.18)

−βk

(
∆Jk(αiei, θ̂k−2, x̄k, x̄k−2)

αk
− ρk,i

αk
− ̺k,i

αk

)

where ρk,i = O
(
η
(

1
Lk

g
, cθ,x

))
and ̺k,i is a zero-mean

sequence with finite variance. Moreover, by defining

∇Jk(θ) = E

[
∂J

∂θ
(θ, xk)|Gk

]

we can rewrite (B.18) as

θk = θ̂k−2 (B.19)

−βk

(
∇Jk−1(θ̂k−2) − βkHk−2 −

ρk

αk
− ̺k

αk

)

whereHk−2 = vec
(

∆Jk(αiei,θ̂k−2,x̄k,x̄k−2)
αk

)
−∇Jk−1(θ̂k−2)

and ρk = vec(ρk,i), ̺k = vec(̺k,i). If the term ρk was
not present, then the above difference equation would
be in the standard KW form, in which case convergence
of θk could be established by using standard arguments,
see e.g. [14], [3]; in the analysis that follows, we will
show that the term ρk cannot have a destabilizing
effect. Let J̄k(θ) =

∫
∇Jk(θ)dθ ≡ E [J(θ, xk)|Gk] and

¯̺k = Hk−2 − ρk

αk
− ̺k

αk
. Standard arguments – see e.g. the

proof of Proposition 3.1 of [3] – can be used to establish that
Hk−2 = c1αk + ¯̺̄

k, wherec1 > 0 and ¯̺̄
k is a zero-mean term

with finite variance. Therefore, we have that (B.19) implies
J̄k−1(θk) = J̄k−1

(
θ̂k−2 − βk∇Jk−1(θ̂k−2) − βk ¯̺k

)
≤
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J̄k−1(θ̂k−2) − βk∇Jk−1(θ̂k−2)
τ
(
∇Jk−1(θ̂k−2) + ¯̺k

)
+

β2
kK̄

((
∇Jk−1(θ̂k−2) + ¯̺k

)2
)

≤ J̄k−1(θ̂k−2) −
βk

2

∣∣∣∇Jk−1(θ̂k−2)
∣∣∣
2

−βk∇Jk−1(θ̂k−2)
τ ¯̺k+β2

kK̄ (¯̺k)
2
+β2

kc2

wherec2 is anO(cθ) finite constant andK̄ is the Lipschitz
constant. Taking conditional expectations and using the
definition of ρ̄k, we obtain

E
[
J̄(θk)|Gk

]
≤ J̄k−1(θ̂k−2) −

βk

2

∣∣∣∇Jk−1(θ̂k−2)
∣∣∣
2

−βk∇Jk−1(θ̂k−2)
τ

(
ρk

αk
+ c1αk

)

+β2
kK̄E

[
(¯̺k)

2 |Gk

]
+ β2

kc2

≤ J̄k−1(θ̂k−2) −
βk

4

∣∣∣∇Jk−1(θ̂k−2)
∣∣∣
2

+2βk

(
ρk

αk
+ c1αk

)2

+ Zk (B.20)

where Zk = β2
kK̄E

[
(¯̺k)2 |Gk

]
+ β2

kc2. It is not difficult

for someone to see thatβk/αk → 0,
∑∞

k

(
βk

αk

)2

<

∞,
∑∞

k (βk)
2
< ∞,

∑∞
k (βk)

2
= ∞,

∑∞
k βkα

2
k < ∞

which imply thatE
[
(¯̺k)2 |Gk

]
<∞ and

∑
k Zk <∞; let us

define the variable (note thatβk/α
2
k → 0)

Xk =





1
4βk

∣∣∣∇Jk−1(θ̂k−2)
∣∣∣
2

− 2βk

(
ρk

αk

)2

if βk

∣∣∣∇Jk−1(θ̂k−2)
∣∣∣
2

− 2βk

(
ρk

αk

)2

≥ 0

0, otherwise

Then, inequality (B.20) last inequality implies

E
[
J̄(θk)|Gk

]
≤ J̄(θ̂k−2) −Xk + 2c1βkα

2
k + Zk

Using the Robbins and Siegmud theorem [22] on nonnega-
tive almost-supermartingales, we have – since

∑
k βkα

2
k and∑

k Zk converge – that
∑

k Xk converges with probability 1;
standard arguments can be now applied – see e.g. proof of part
(b) of Proposition 3.1 of [3] – to show that the convergence
of
∑

k Xk together with the facts that
∑

k βk = ∞ and∇J
is at leastC1 imply (4.6).
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