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Large-Scale Nonlinear Control System Fine-Tuning

through

Learning

Elias B. Kosmatopoulos and Anastasios Kouvelas

Abstract—Despite the continuous advances in the fields of simplified models is virtually unavoidable in most complex

intelligent control and computing, the design and deploymset

of efficient Large-scale Nonlinear Control Systems (LNCS) e-
quires a tedious fine-tuning of the LNCS parameters prior and
during the actual system operation. In the majority of LNCSs
the fine-tuning process is performed by experienced persormh
based on field observations via experimentation with diffeent
combinations of controller parameters, without the use of a
systematic approach. The existing adaptive/neural/fuzzgontrol

methodologies cannot be used towards the development of a

systematic, automated fine-tuning procedure for general LICS

due to the strict assumptions they impose on the controlled
system dynamics; on the other hand, adaptive optimization
methodologies fail to guarantee an efficient and safe perfanance

during the fine-tuning process, mainly due to the fact that tlese

methodologies involve the use of random perturbations.

In this paper, we introduce and analyze both by means of
mathematical arguments and simulation experiments, a new
learning/adaptive algorithm that can provide with convergent,
efficient and safe fine-tuning of general LNCS. The proposed
algorithm consists of a combination of two different algo-
rithms proposed by the authors in the past [10], [11] and the
Incremental-Extreme Learning Machine Neural Networks (I-
ELM-NN). Among the nice properties of the proposed algorithm
is that it significantly out-performs the algorithms of [10],
[11] as well as other existing adaptive optimization algothms.
Moreover, contrary to the algorithms of [10], [11], the proposed
algorithm can operate efficiently in the case where the exogeus
system inputs (e.g. disturbances, commands, demand, etcjea
unbounded signals.

Index Terms

Adaptive Optimization, Simultaneous Perturbation Stochas-
tic Approximation (SPSA), Adaptive Fine-Tuning, Incremental-
Extreme Learning Machine Neural Networks, Nonlinear Control
Systems

I. INTRODUCTION

control system applications. As a result there is a majodnee
for careful and efficient fine-tuning of the LNCS parameters
prior to the actual system operation that arises from the use
of simplified models and control designs while medium- or
long-term unpredictable variations of the system dynamics
may call for frequent updates. In the majority of LNCSs
the fine-tuning process is performed by experienced peetonn
based on field observations via experimentation with déffier
combinations of controller parameters, without the use of a
systematic approach.

Urban and motorway traffic networks, large chemical pro-
cesses, sensor networks, advanced computer networksy powe
networks, Mega City power, water and communication net-
works are specific examples of large-scale, nonlinear gsese
that are controlled via corresponding LNCSs and call for
a tedious fine-tuning procedure for the calibration of their
parameters, whose number may range from dozens to several
hundreds or more. Such a fine-tuning procedure may take
months, or, in extreme cases, even years, until the LNCS
actually reaches the desired performance. In most casgs thi
procedure may lead to an acceptable, but not necessarily
optimal, control behavior, while the need for frequent upda
calls for a quasi-continuous effort with all related tedanhi
and organizational (e.g. change of personnel) risks. Inesom
known cases the outlined procedure has even led to a complete
failure, i.e. the use of the LNCS was abandoned after thiaiinit
deployment due to the failure of the fine-tuning process to
achieve a satisfactory performance (see, e.g. [17]).

Unfortunately, the existing methodologies are unable to
provide with a generic, efficient and systematic approach fo
the automated fine-tuning of LNCS. More precisely:

o Adaptive control as well a neural network, fuzzy and

Despite the continuous advances in the fields of intel-
ligent control and computing, the design and deployment
of efficient Large-scale Nonlinear Control Systems (LNCS)
remains a particularly challenging problem. This is partly
due to the fact that practical control design approaches are
often based on simplified models for the system dynamics,
leading to LNCS control parameters with suboptimal or even
unacceptable performance. On the other hand, the use of
more complex models for the design of effective LNCS is
often hardly feasible due to the lack of adequate theory and
reliable and practicable design approaches. Thus, the fuse o
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learning control methodologies are, in general, not ap-
plicable to the fine-tuning of control systems that have
been developed using non-adaptive techniques. Most
importantly, these methodologies suffer from the so-
called “loss-of-controllability” problem (see e.g. secti

9.7 of [6] and [9]). Roughly speaking, the “loss-of-
controllability” problem can be explained as follows:
adaptive or adaptive-like techniques make use of an
estimation model of the actual system and the adaptive
controller is designed as if the estimation model were
the actual one; in cases where the estimation model
becomes uncontrollable, it is impossible to construct a
controller based on this estimation model. To overcome
this difficulty most adaptive control designs impose strict
assumptions on the controlled system, see e.g. [12], [6];



such assumptions become extraordinarily strict in the case
of large-scale systems. On the other hand, removal of
these assumptions results in very complicated control de-e
signs, which moreover have the disadvantage of very poor
transient behavior, see e.g. [9], [23] and the referenecs
therein.

performance on the controller parameters and system
exogenous inputs.

Most importantly, they guarantee a safe and efficient fine-
tuning procedure, contrary to other popular AO methods
that cannot exclude the possibility of poor or even unsta-
ble performance during the automatic fine-tuning process.

On the other hand, methodologies that are based PRe key idea behind the development of these algorithms is
Adaptive Optimization (AO) principles (e.g., the Kieferto use neural approximators, accompanied with appropriate
Wolfowitz (KW) algorithm [8], [2], the Random Direc- |earning mechanisms for adjusting the neural network wisigh
tions Kiefer-Wolfowitz (RDKW) [14], the Simultaneousin order to approximate (learn) the overall system perforoea
Perturbation SA (SPSA) [20], [21], etc), although theWs a function of the controller parameters and the exogenous
are applicable to control designs that have been d@puts. In other words, the algorithms of [10], [11] use

veloped using non-adaptive techniques and they do ngipropriate neural mechanisms to approximate (learn) the
require any a priori knowledge or assumption on thgslationship

system dynamics, they do not have any mechanism to
incorporate the knowledge captured in the past regard-

SysPer = J (ConPar, ExInp))

ing the dependence of the system performance on fiere 7 is an unknown, highly nonlinear function,
controller parameters and system exogenous inputs; gtgs Per =System PerformanceonPar =Controller Pa-
case where such a dependence is highly nonlinear aigheters andizInp are exogenous signals that are either
complex, the aforementioned algorithms fail to producgajlaple for measurement (e.g., measurable disturbasges
any improvement during the fine-tuning process. Such@enous commands, demand, etc) or can be estimated via

case is reported in [10] where these techniques fail

propriate estimation algorithms. The approximatiod e&n

to produce any fine-tuning improvement for virtuallyye then used in one of the following ways:

any choice of their design parameters when applied to
the fine-tuning of an urban traffic control system. Most
importantly, AO methodologies possess the disadvantage
of not guaranteeing efficient and safe control behavior
during the fine-tuning process: due to the fact that these
methodologies involve the use of random perturbations,
there is always the possibility that, during the fine-tuning
process, the controller exhibits poor or, even worse,
unstable performance, see e.g. [11].

Recently, we introduced and analyzed a new family of AO

algorithms that can be used towards the development of a
generic, efficient and systematic approach for the autainate
fine-tuning of LNCS [10], [11]. The main attributes of these
algorithms may be summarized as follows:

« They are based on Adaptive Optimization (AO) principle
and, as a result, they do not require any a priori kno
edge or assumption on the system dynamics; moreo

of the methodology used for the original design of th8
LNCS.

They are robust with respect to exogenous disturbanc
noisy measurements, system interactions, component f
ures, etc.

They are utterly generic, computationally efficient anf®
straightforward to embed to any type of LNCS, regardle%@
of its size, level of complexity and level of decentraliza-
tion.

They incorporate powerful learning and estimation meclz’:'
anisms which render them adaptable to short-term al
long-term variations of system characteristics such §
demand long-term variations, system aging etc. Mo
over, through these learning and estimation mechanis

(CP)

(GD) To construct an approximation of the gradient.of

with respect toConPar, in which case, standard
Gradient-Descent (GD) optimization algorithms can
be applied to obtain a — local — minimizer far, it

is worth noting that the algorithm of [10] is based
on this principle.

To check the effect of differedton Par to SysPer;

in this case, algorithms like the ones presented and
analyzed in [11] can be used which, at each iter-
ation, check the effect of Candidate Perturbed (CP)
versions of the currerfon Par and select the “best”
among these candidate perturbed versions to be the
next ConPar.

Rigorous mathematical arguments presented in [10], [11]
gstablished that the algorithms that are based on the above
\A)P_rinciples — when used for LNCS fine-tuning — preserve a
vegnvergentas well as efficient and safe performance, uhder t
gg’sumption that the system exogenous inputs, disturbagtces
re bounded signals. Unfortunately, in many LNCS applica-
tions such an assumption is not realistic; LNCS application

g1ere the exogenous inputs are Gaussian noise signals, LNCS

I mitigating the effects of earthquakes in civil struesy
CS for sensor networks, etc, are few of the many practi-
| LNCS applications where the exogenous inputs may be
bounded signals.

In this paper, we show that an appropriate combination of
the principles GD and CP presented above, accompanied with
e Incremental-Extreme Learning Machine Neural Network
-FLM-NN) [4], [5] can guarantee a convergent as well as
icient and safe performance even in the case of unbounded
rgxogenous signals. The proposed algorithm switches — at eac
rHg,ration — among an algorithm that is based on the GD

t[hey are capable of i_ncorporating the knOWIedge C""ptl*”'(:“'dThe terminology “unbounded signals” is used to denote $sgftat which
in the past regarding the dependence of the systets impossible toa priori assess an upper bound of their magnitude.



principle (which is similar to the algorithm proposed in [LO where

and a CP-based algorithm; an I-ELM-NN, accompanied with w(z) = { L, i |z| <a

appropriate learning laws, is used to estimate the unknown 0 otherwise

function /. The switching among a GD-based and a CP-basggh, | > 0. An I-ELM-NN used for the approximation of’

algorithms is crucial for the overall algorithm performanc takes the form

since the CP-based algorithm is needed in order for the heura

approximator to be able to efficiently learn the unknown F(x) =9"¢(x) =0 1 () + ...+ 9] o1, (x) (1.2)

function J, while the use of the GD-based algorithm is o

essential for convergence under unbounded exogenousssignahereF denotes the approximation &, ) denotes the matrix
Simulations experiments performed on a “difficult-to-fineef parameter estimates., denotes thedimensionof the I-

tune” large scale traffic control system exhibit the effitierELM-NN estimator (1.2) and, finally) denotes the non-linear

performance of the proposed algorithm. More precisely, tivector function of I-ELM-NNsneurons

proposed algorithm is shown to always guarantee an efficient

and safe fine-tuning procedure, while the existing algorith ¢i(x) = S(Ajz + b;) (1.3)

either totally fail 10 produce any improvement of the OVbr.a{NhereS(-) is an invertible smooth nonlinear function; finally,

control system (this happens in the case of the SPSA algmrltrhe vectord; € ®™ and the real parametéy are randomly

and the algorithm of [10]) or may lead to poor steady—sta{e !

. . . nerated (with4;, b; being zero-mean).
performance as it happens in the case of the algorithm of [ﬁfLet Us fix( an I-ELM-NNgof the form ()1 2) With., neurons
. )

of the form (1.3) and the constant Then, theoptimal

A. Notations . . )
_ parameter matrixy* and theoptimal modeling error w.r.t.
The notationvec (4, B, ...,), where A, B,... are scalars, L,, ¢, F are defined as follows:

vectors or matrices, is used to denote a vector whose elemerit

are the entries ofd, B, C, ... (taken columnwise)Z denote v =W(Ly, ¢, F) = argmgin |F(z) =07 p(x)]|la  (1.4)
the set of nonnegative integers, denotes the:-dimensional ‘
identity matrix. || denotes the integer part of For a vector and
x € R", |z| denotes the Euclidean norm of (i.e. |z| = B B r
Vz7z), while for a matrixA € ®*°, |A| denotes the induced v(@) = N(Lg, ¢, F)() = F(x) — 0" ¢(x) (1.5)

matrix norm of A. A function f is said to beC"™, wherem  ysing the results of [15], [4], it can be seen that I-ELM-NNs
is a positive integer, if it is uniformly continuous and itssfi satisfy the following property:

m derivatives are uniformly continuous. . .
’ . . (P1) Consider an I-ELM-NN of the form (1.2) with
- n
A random (or random-like) vector € R" is said to be L, neurons of the form (1.3). Then, there ex-

full-rank, zero-meanp-width, where« is a positive real, if . . 5 e
Elz;] = 0, x € {—«,a}™ and, moreover, for any sequence Ists a scalar functiom : R% > ¥y, satisfying
’ n(0,x) = n(x,0) = 0,Vx € Ry, n(x,v) <

xi,1 € {1,...,n} of such vectors, the following condition is
Saﬂsﬁeg: ) ? N0 ), n( x) < (@, X7, ¥, x, X € Ryt x <

x’, such that
(1.1)

[a:l,...,mn]fl <

o |

1

whereZ= is a finite positive constant. [vla <n <L_’a> (1.6)

Finally, in order to avoid definition of too many variables, g
constants, etc, we will use the following notation: fif (x)
is a function parametrized by the nonnegative parameter
we will use the notatiory, = O («), if there exists a strictly
increasing scalar, at least', function g satisfying g(0) = Let us consider a general LNCS application where the
0,9(a) > 0, Yo # 0, such that| f,(z)| < g(a),Vx,Va. Note underlying system dynamics are described according to the
that our definition ofO(-) differs from the usual “order of” following nonlinear difference equation
definition.

II. PROBLEM FORMULATION: FINE-TUNING WITH SAFE
AND EFFICIENT PERFORMANCE

Zip1 = 9(2,us, dy), 20 = 2(0) (2.1)

B. I-ELM Neural Ne-tworks- ) where z;, u;, d; denote the vectors of system states, control
As already mentioned, in this paper we make use ofjgnyts, and exogenous signals, respectivietignotes the time-
special family of neural networks, the I-ELM-NNs [4], [S]oF index, andg(-) is a — possibly unknown — sufficiently smooth

this reason, some preliminaries are needed regarding I-ELNbn_linear vector function, while the control law applied t
NNs and their approximation capabilities. More precis#y, the system (2.1) is described as follows:

F . R — R™2 be an unknowrC™, m > 1 function to be
approximated and lef - ||, denote one of the following two up = w(0, z) (2.2)
norms

wherew(-) is a known smooth vector function artdis the

1F|o = / lw(z)F(z)]>dz or |Flla = sup |w(z)F(z)] vector of control parameters. Note that we do not impose any
¢ R Y penrm restriction on the form of the controller (2.2).



The performance of the controller (2.2) is evaluated thioug I1l. THE PROPOSEDALGORITHM

the following objective function (performance index) This section presents the details of the proposed algorithm

-1 the mathematical analysis of the convergence and perfa@nan
J(0;20,Dr) = mr(zr)+ Z 7y (2, ur) properties of the proposed algorithm is presented in thé nex
t=0 section. In the sequel, the dimensions of the vectors are

T—1 .
denoted byny andn,, respectively.
mr(zr) + Z m (20, (0, %)) (2.3) Remark 1 (Availability of the estimat®,): The proposed

= algorithm assumes that an estimate — or prediction;—
where ; are known nonnegative functions; denotes the f ihe vectorz), is available. In many applications such an

time-horizon over which the control law (2.2) is applied andssymption is realistic since the entriesagf correspond to

JAN . . X K i
Dr = [do,dy,...,dr] denotes the time-history of thesystem states and exogenous inputs which are available for
exogenous signals. By defining= vec (2o, Dr), (2.3) may measurement or can be estimated/predicted using appipria
be rewritten as estimation algorithms (see the simulation section for such
J(0,2) = J (0; 20, Dr) (2.4) an example). However, there may be cases where such an

assumption is not realistic; in this case it can be readignse

The problem in hand is to construct an appropriate algorithfila+ ail the results of the paper are still valid by setting= 0.
which (herek denotes the current number of fine-tuning eXgee g1s0 Corollary 1 in section IV.

periments, where the duration of each fine-tuning experimen | .
is assumed to be equal f0):
« evaluates, at each iteration, the LNCS (2.1)-(2.3) perfor-  AJy AJ(AOk, Ok—1, 21, 211)
mance ford = 6, through the measurement = J(On_1 + A0k, ap) — J(Or_1,71-1) (3.1)

I = J Ok, zx) (2.5) where Ady, = 0, — 0,_1. The proposed algorithm makes use
« updates the current controller parameter veéjoso that of a user-defined collection af* I-ELM-NN neurons of the
it converges as close as possible to one of the lodarm (note that as already noticed in subsection UB,b; are
minima ¢* of the average value of (wrt the random randomly generated):
vectorszy), defined according to ¢i(0,2,0,7) = S (A]vec(d+6,z)+b;)

E {a—J (0%, 2x) |gk] =0 (2.6) — 5 (ATvec(6,7) + b)) (3.2)

00

where G, is an appropriately defined-field generated Also, the proposed algorithm makes use of two user-defined
— among others — by the past values of the exogendR@sitive sequencesy, fi; Ly, . and 3 will be specified in
inputs (see section IV for the formal definition 6f). the sequel.

The requirement of convergence @&f to one of the local _S_tarti_ng with an initial vecto,, the prqposed aIgori_thm
minima 6* is not sufficient in most practical situations; addiinitially imposes a full-rank, zero-meaa, -width perturbation
tionally to this requirement, the fine-tuning algorithm slib 261 and evaluates the objective function fbr= 6, and 6 =
be able to provide wittsafe and efficienperformance during 1 SO as to calculate the first difference/, = J(A6, +

the fine-tuning process. More precisely, at each iteratibn &> %1) — J(fo,z0). Then, fork = 2,3,..., the following

the fine-tuning algorithm the performance index measuremd$epPs are taking place: _

should satisfy 1) A collection of ¢;,i € {1,..., Lk} of the form (3.2) is
Je < Je1 + €x (2.7) randomly constructed in order to form an I-ELM-NN withf

: . , . ., . neurons, wher@l;’gc is calculated as follows:
where ¢, is an appropriately defined “small” positive term,

whose magnitude is proportional to the magnitude and vari- Ly =min {|k/2],Ly} (3.3)
ance of the exogenous inputs. The requirement (2.7) is more _ ] ] o

than crucial in most practical LNCS fine-tuning applicatipn With L, being a user-defined positive mtegesc. The I-ELM-NN
since violation of such requirement may cause serious, tif igsSociated to the collection f,i € {1,..., Lg} IS used for
catastrophic, performance, safety, etc, problems. Faarieg, (he estimation of the unknown functiah J;, £ < &:

in tht_a case of _fme—tunlng of traffic control _systems, the @(A9e79e—1,iz,ﬂ?z—1) =ﬂTé(k)(Aé’e,Hz_1,a?"z,50e_1)
violation of requirement (2.7) may lead to serious problems (3.4)
(e.g., complaints, dangerous driving, etc) that may folee twhere@(Aw,94,1,:25,5:4,1) denotes the estimate a.J;

_trafflc operator; to ca_ncel the fine-tuning process; sityilar parameterized by the parameter veator §RL’;"
in the case of fine-tuning of LNCS for mechanical structures,

the violation of requirement (2.7) may cause the permanenb(’”(Aeg,94_1,@,3?@_1) = vec (¢i(Abp,0p—1,T¢,Tp—1))
deformation or even the destruction of the structure. Itastiv (3.5)
noting, that standard AO methodologies such as the RDKfar ¢ € {1,. ..L’;} and, as already mentioned; denotes an
and SPSA algorithms cannot guarantee that the requiremestimate/prediction of,.

(2.7) holds during the fine-tuning process mainly due to ti8) CP-Phase:If & is an_oddnumber, then the following are
use of random perturbations of the controller parametelp [1taking place:



1) ng full-rank, zero-mean,a,-width vectors Aé,gj) € wheré

H k—1
R, 5 e {1,...,ny} are generated asandidatesfor = _
g { ere o Io =0 D Adegy” (3.16)

2) For each of thefw,(j) generated in the previous step as

=0y,

well as for its negativea biased least-squares estimatgnote thatJ;, above coincides with the solution of the uncon-
of AJ(x,00—1,me,20-1), x € R™ is generated as strained least-squares optimization problem (3.12)),
follows:

k—1
— _ (k) ( (k)
AT 500,001, %0, 1) = 05,00 (x, 601, B0, To—1) =3 0" (4”)
(3.6) =t
where,?. ; is the solution of the following constrained- 1 BN\ 1 (8)
optimization problem: B+ > =y, AJe ((bg ) @, 0, 317
= ) - (¢(k))Tq)—1¢(k) (317)
Y1; +— argmin - Z (AJg — 197(]5?6)) £ kT
25 Remark 2:1t is worth noting that, similarly to the pro-
subject to (3.7) posed algorithm, the algorithm proposed and analyzed ih [10
ﬁTéf? < B consists of two phases: the GD-phase, which is exactly the
7 same as the one of the proposed algorithm and the P-phase,
where ¢gk> = W (AOy, 01, T, To—1), ¢§fj> — which, similarly to conventional AO algorithms, introdwsce
P (iﬁez(cj)ﬁk—l,i"k,fck_1) and random perturbations to the current control parameterovect

with T}, being a user-defined nonnegative integer.
3) Finally, the perturbatiod\@;, is chosen as follows

6. On the other hand, the algorithm proposed and analyzed
r = max {k — 2L} — T},,0} (3.8) in [11], involves only one phase which is similar to the CP-
phase of the proposed algorithm. The replacement of the P-
phase by the CP-phase is crucial for the efficiency of the
proposed algorithm: contrary to the P-phase which — due
to the use of random perturbations — may introduce poor

k—1

: 1 - 2 . . . .

Aby = arg min }5 E (AJe — 0%, ﬁk)) performance or instability problems, the algorithm used in
=10y,

where, with some abuse of notation,

(£5) _ .
A0, GE{Lme the CP-phase guarantees safe and efficient performance in th

sense that requirement (2.7) is fulfilled. On the other hand,
the alternation among the GD- and CP-phases possesses the
A@,(fj) — iAg}ij) (3.10) advantage — over the algorithm of [11] which involves only a
CP-phase — of efficiently dealing with unbounded exogenous

(3.9)

3) GD-Phase:If k is an evennumber, then the following inputs something that was not possible in the case of the
are taking placeAdy is updated based on ambiased least- algorithm of [11]; moreover — see the simulation section —
squares estimaté/,, of AJ, defined as follows: the alternation between GD- and CP-phases seems to lead to

Z(\]k(AGZ; 94717 3_:/@7 3_:[71) = _;c—(yb(k) (Aefa 94717 3_:/@7 3_3‘571)

a better performance over the algorithms that use only a CP-
phase.

A1 . . .
Where (3.11) It is also noting that the presence of the CP-phase is more
- than crucial for the efficiency of the proposed algorithm;
- 1« )2 in particular, the CP-phase is responsible for providing th
Uk > arg mn g Z (AJZ — 0y ) (3.12) proposed algorithm with the so-calléersistence of Excita-
b=t tion — (PE) property, see e.g. [6], which is a sufficient and
Then, Ad; is calculated as follows necessary condition for the neural approximaiof to be able
AT w(akes, b9y Tp Frs) - to efficiently learn the unknown functioA.J.
ANby; = — Bk RAThEL TRy Tk The2) 4 Op—2i — Op—1,i Remark 3 (Number of NeuronsContrary to other applica-

wheree; denotes they, dimensional vector with entries; =
1,ei; =0, i # j andf,_, is defined as follows:

Xk (3.13) tions of neural approximators where the number of neufgns

should be large enough to guarantee efficient approximation
over the_wholenput set, this is not the case here: in the case
of the proposed algorithm it is sufficient that the approxiona

p { Op—_a if ‘ék_g’ < ¢y has enough regressor terms to come up with an approximation
k—2 =

of the unknown functionAJ over a small neighborhood

arg min _1110¢| otherwise
BNy, re{ty,..ok-1} |04 (3.14) around the most recent vectér. As a matter of fact, in all

wherecy is a sufficiently large user-defined positive constarractical applications of algorithms using neural appmead
By applying the well-known Kuhn-Tucker theorem [7], [13]ors for optimization purposes, (see [10], [11]) as well @s i
to the constrained optimization problem (3.7) we obtairt thavarious applications where we tested the proposed algoyith

Vi

Oy if 97 ¢(k? < —B 2By using equality (A.3) — see Appendix A — it can be seen mgﬂ exists
= _ C1 (k) i_J - (3.15) with probability 1 and, moreover, that the denominator ofL{3 is different
Uk — A @y by otherwise than zero with probability 1.



a choice forL,, T}, according toL, ~ 2(ny + n;), T, = 50 where ag

was found to produce quite satisfactory results. {9 :

> 0,80 > 0. Moreover, let Cg

0=0+A0,A0 € {—ay,a,}™ and ’A_HT%(é,xk)‘ <

B + 11 (zk—1)neai +v2(0, xx — z,—1) }. Then,

IV. MAIN RESULTS

In this section, we establish the properties of the proposedf
algorithm. Our basic analysis is based on two assumptions:
The first assumption is described as follows:

(A1) z is bounded for all £ and, moreover,
E[xk — .fk|gk] =0and F |Ik — jk|2 |Qk < 00,
where G, denotes the o-field generated by
{370,... 7£k717907A917...7A02Lk/2J_1}.

In simple words, assumption (A1) requires that the exogsnou
input estimation error.;, — z;, is zero-mean with finite variance
and the estimate;, is bounded; note that assumption (Al) (b
allows for x;, to be unbounded. Note also that in the case
where there is no available estimatg, assumption (Al)
reduces to the requirement that the exogenous vegtois
zero-mean with finite variance.

In order to describe our second assumption some prelim-
inaries are needed: Lepy , = \/ne(CQ +¢)? + nyc2 where
¢ is an O(max{a;}) + O(max{f;}) constant such that
|0x] < ¢o + ¢ VE andc, is a sufficiently large positive
constant; let also (see subsection 1.B)

>-’L‘k717j'07 s

(a)

(©)

lim |0 — 0% = O <77 (
k—oo

At the CP-phasethe following holds:
Ok—1 & Cr—1,

1
Jp < S =B+ 0 (77 (ﬁ,ce,x)) 4.3)
g

+0 < | :f4|>
1}

sup
KE{Zk,...,k

while, if 0,1 € Cx—1

Jp < Jp_1 + ﬁk + O (mk) ngai + O (|xk — xk_1|) (4.4)
At the GD-phasethe following holds:
aJ /- 2
I < Jp—2 — B 20 (91%273%) +7ir  (4.5)

wherery, = 8,0 (n (# ce,x)) + O (1) nga? +

(@) (xk — jk) +0 (xk — -i?k—l)-

Moreover, ifcy is sufficiently large,

%,ce,z>) , with probability 1
! (4.6)

- k (k)
Uk W(L?’ o™, Ad) ) . / Proof: See Appendix B. [ ]
= argmin[|AJ(AG, 0, z,27) — 97" (A6,0,2,2')|c, . In simple words, Theorem 1 states that both of the require-
q ments posed in section Il are met by the proposed algorithm.
an

More precisely, according to Theorem 1:

V(00,0 z,2') = AJ(AD, 0, z,2') — 957 ¢ (A, 0, 2, 2")

o The proposed algorithm guarantees convergence of the

Then, the second assumption is described as follows:
(A2) Evp(A0e, 001,70, 70-1)|Gr] =
@ (n (#ch)) Wk > Ly, V0 € {ly, ... k}.
Typical exampleé that satisfy (A2) are presented below:

1) The case where the exogenous signails bounded with
probability 1; in this case, property (P1) implies (A2).

2) The case wherd(0,z) = J(0) + = andz;, = 0; then
assumption (Al) and property (P1) imply (A2) with
Co,x = Co + C.

3) The case where the functighin (3.2) is bounded and
E [x2,1|Gk] = 0, wherexz, . is defined as follows

p =Tpr1, + (1 —Ig) xok

whereZ, = 1 if |zx| < ¢, andZ, = 0, otherwise.
The next theorem summarizes the properties of the proposed
algorithm (3.2)-(3.9).
Theorem 1:Let assumptions (A1), (A2) hold. Suppose ad-
ditionally that

0opy1 >0, Bopy1 >0, Vne Z

hmn—>oo Qopy1 — O > 07 hmn—>oo ﬁQ'rH—l - ﬁ >0 (41)
Qop = a()ninlvnl € (07 1/2>
Inn (4.2) Or—1
Bon = 507 or B, = Bon M 1/?

control parameter vectaf;, arbitrarily close to one of
the local minimag*. The “distance” betweefi* and the
limit of 6;, depends on the number of neurons used by the
neural approximator (3.4); roughly speaking, the larger is
the number of neurons in (3.4) the smaller is this distance.

o Moreover, the proposed algorithm guarantees that the

requirement (2.7) is met. To see this, note that from (4.3),
(4.4) and (4.5) we have that

J. < Jp—i — B + N + E}, 4.7

wherei = 1 at the CP-phase and= 2 at the GD-phase,
and

— the tern? By, is a term that is strictly positive when
0y is far from6* and becomes negligible or equal to
the design parametet; if 6, is close tod*;

the termXV, is anO (77 (L%k;, c(m)) term. This term

can be made arbitrary small — fdr > L, — by
increasing the number of neurods, used in the
(3.4);

the termFE}, is a term whose magnitude depends on
the magnitude o, v —x andxy, — T _1; note that
the presence of the terd; in (4.7) is unavoidable
regardless of the particular algorithm used.

3The term By, is defined — at the CP-phase — accordingBp = 3, if

& Crp—1 and B, = —f if 0_1 € C,_1; and — at the GD-phase —
2

according t0By, = By |25 (0k—2,21) |-



Remark 4:Using Lemma A.1 (see Appendix A), it can be
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seen that the SPSA algorithm satisfiés < J,_; + TkSPSA . 0 o
where igﬁ %

aJ _ z s
TkSPSA = O % (kal,l'k) +O(|l‘k,1|)ai+0(|£ﬂk7$k,1|) - §

On the other hand, the standard gradient-descent algorithm
Or = Or—1 — a2 (0k—1,7;) (which is, though, applicable
only in cases where perfect knowledge.bfand its gradient

is available) can be seen to satisfy < J;_1 + rkGD where

8P = O(|xx — Zn|)ow + O|zr_1])a? + O(|lzk — z1])

Note that the terrwkSPSA may become significantly large
especially wherd, is far from a local minimum ofJ wrt
0, in which case the termdZ (0.1, z;)| is large. Note also
that the presence of the ternd¥|z,_1|), O(|xx — zx—_1]) is
unavoidable no matter what is the particularly algorithradis

We close this section, by presenting a direct corollary of
Theorem 1 for the cas&;, = 0, i.e. the case where no
estimation/prediction of the exogenous inputs is avadlabl

Corollary 1: Consider the case wherm, = 0, Vk. Then
assumptions (A1), (A2), (4.1), (4.2) imply parts (a) and ¢b)
Theorem 1 and, moreover,

3
=4
=
to)
=
=
=
]
=
=
S
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klim 0, = 6™, with probability 1 o 2
— 00 g
Proof: Firstly notice that, — 0 implies thaté;, con- z
verges to a constant vectdr Let us re-define); as follows:
» = argmin | AJ(A9, 0) — 976" (A0, 0)].,
where Fig. 1. The motorway stretch used in the simulations.

1£(0,6)|c, = \//R lw (0,0") £(0,0)]* dode’

efficient performance [18]. Next we briefly present some

B ) 1 if |9 _ g‘ < ¢, and |9/ _ g‘ < e details regarding the particular application.
w (6,0') = { 0 otherwise Traffic Network Figure 1 displays a schematic diagram of the
- 17km-long motorway stretch assumed in our experiments; thi
and ¢, = maxcqy,,. k-1 |0¢ —6]. Then, we have that stretch is part of the Monash-CityLink-West Gate Corridor i

the termswy, vy, defined in the proof of Theorem 1, satisfyMelbourne, Australia, operated by VicRoads. The numbered
vk, ve — 1(1/Ly,0) = 0; the rest of the proof is the same agircles in figure 1 represent the network junctions and the

in Theorem 1. B  numbered dots correspond to the detector (sensor) losation
The motorway stretch of figure 1 contains a total of 8 on-ramps
V. SIMULATION EXPERIMENTS and 7 off-ramps; congestion usually appears right dowastre

In this section, we present simulation results on the ag_nctlon N3 and spills back, creating severe shock waves. In

plication of the proposed algorithm to the fine-tuning o ur simulations we assumed that controlled ramp metering

an LNCS applied to a motorway ramp metering system. 'R imposed at all ramps except ramp GRERNTREE since

has to be emphasized that the problem of computing tﬁgngesl,tlgn app(.eTahrs l;pstreafmk;[hat ramp. .
optimal parameters for this particular control system ca ontrol System.The form of the motorway ramp metering

be formulated as a nonlinear optimization probiem Whoé;é)ntrol system assumed in our experiments can be described

solution depends on the traffic demand (vehicles enteriag S follows [18]:

motorway network), see_[18]. As a result, even in the case r(t) = H(L12(t — 1) + L) (5.8)
where the system dynamics are exactly known the computation

of the optimal control parameters is a NP-hard problem, andheret = 0,1, ..., denotes the discrete time-index with sam-
moreover, it requires knowledge of the traffic demand. It isling time period equal to 30 seasdenotes the control input
also noted that — after a tedious and time-consuming finesctor andz is a vector of traffic measurements. The control
tuning — the implementation of the control system treatédput vectorr corresponds to the ramp flows allowed through
in this section in various motorway networks produced vetyie implementation of ramp metering and corresponds



to the vector of average densities at the detector locatioestimaté 7, of the traffic demand can be constructed based
downstream the controlled ramps. The density measuremestraffic measurements at the networks origins; see [10] for
from detectors 7980, 7977, 7972, 7848, 7846 and 7838 wenere details. In the particular application treated hehe, t
used to form the vector. The nonlinear (saturation) operatomethodology of [10] produced a vectay, with dimension

H is used to guarantee that the control decisions satisfy = 60.

minimum and maximum allowable ramp flow constraintsAlgorithm and I-ELM-NN DesignAs explained in the para-
Finally, the constant matrixX; and the constant vectat, graph “Simulations Runs” below, the proposed algorithm was
denote the tunable controller parameters. It is worth motirmpplied for 149 iteratiorfsin all simulation experiments; as a
that the popular local ramp metering strategy ALINEA [18tesult, the maximum allowable number of I-ELM-NN nodes
has exactly the form (5.8) with the matrix being a diagonal — denoted byL, in section Il — is equal toL, = 75; see
matrix and the vectoi., depending on the critical densitiesalso equation (3.3). The I-ELM-NN activation function ing)

of the locations downstream of the on-ramps. Also, a varietyas chosen according $(x) = tanh(z), while the entries of

of multivariable (network-wide) ramp-metering strategisee A, andb; in (1.3) were chosen — at each algorithm iteration
[18], have the form (5.8) in which cage;, L, are calculated — to be Gaussian zero-mean random terms with variance
using nonlinear optimization or optimal control technigue equal to0.1. The design constarif}, in (3.8) was chosen
Traffic Network SimulatioriThe macroscopic traffic simulationaccording to7}, = 50; see Remark 3. The design sequences
tool METANET [16] was used for the simulation experimentsy, 5, were chosen according t@s,+1 = a, fBont1 = 5

The traffic model parameters assumed in METANET wend as,, = agn™'/3, Ba, = ﬁ()ln—n”, where o, 3, ag, 5y are
obtained by use of nonlinear parameter estimation teclsiquositive constants. The choice of the constamta,, 3 was
[19], minimizing the mismatch between the METANET stateguite straightforward. More precisely, by checking theuesl

and actual traffic data provided by VicRoads. of Ly, L, produced by the control strategy ALINEA in similar
Traffic Demand Scenario8ased on actual traffic data pro-applications, we found that a modification of the elements of
vided by VicRoads, dasic daily traffic demand scenarid; ; L1, L2 according to the choice = ay = 0.001 was sufficient
(where D; ; denotes the number of vehicles entering ihe to produce a non-negligible change in the performance index
th motorway origift at the-th interval) with duration equal without introducing stability problems; on the other haitd,

to 8 hours was designed based on actual measurementscan be seen thaf corresponds to a “doable” increase of
each fine-tuning experiment, a random perturbation of tilee performance index (mean speed) at each iteration of the
basic scenario was used. More precisely, at each fine-tunilgorithm; as a result a choice ¢f= 1 is sufficient since it
experiment, the traffic demand was calculated according @erresponds to a mean speed increase of 1 km/h. While the
Df, = max{0,D;; + D;,wk,}, where D¥, denotes the choice fora, ag, 8 was quite straightforward, this was not the
traffic demand at thé-th fine-tuning experiment and”, is case for the constani,; as a result, different values fgf,

a Gaussian zero-mean term with variance equdl.fo It is Were tested throughout the simulation experiments.

worth noting that the basic demand scenario correspondedniiial Controller Parameters The initial matricesZ; and Lo
highly congested traffic conditions. Note also that due ® thvere set equal to zero and, therefore, the starting point of
use of the Gaussian random temﬁt, the exogenous signal the fine-tuning algorithms was a controller incorporatirgg n
x;, — whose entries correspond to the element®pf — is an knowledge about the overall system dynamics.
unboundedignal in the sense that it is not possible to a prioomparison with Existing AO Algorithmi order to evaluate
assess an upper bound for its magnitude. the efficiency of the proposed approach, its performance was
Performance IndexThe average mean speed of the wholgompared with the following existing AO algorithms: the
traffic network (in knyh) over the 8 hours was used asPSA algorithm [20] as well as the algorithms P-GD [10]
the performance metric to be optimized by the fine-tunir@d?d CP [11]. Since, the design of the three aforementioned
algorithm. 1t is worth noting that the average mean spe@dgorithms involves quite few design parameters (simi@r t
can be calculated based on detector measurements. NBgdesign parametets, fo, Ly, T, etc of the proposed algo-
also that since the goal of a traffic control system is tdthm), the performance of each of these three algorithms wa
maximizemean speed, performance index maximization (f3Ptimized by experimenting with different sets of their ides
appropriately modifying the proposed algorithm) instedd ®arameters. In all cases, the proposed algorithm perfarenan
minimization was implemented. was compared to the optimized set of design parameters for
Tunable ParametersAll entries of L, and L, were fine- the aforementioned three algorithms. Due to space liroitati

tuned, corresponding to a vector of tunable parameters witlP'e details on th_e choice of the design parameters of these
dimension equal t@ x 7 + 7 = 56. algorithms are omitted. ,

Estimation of Exogenous SignalsThe exogenous vector Simulation RunsFor each of the compared algorithms, 10
4 in this particular application corresponds to the traffififferent Runs using the same algorithm's design pararseter
demandD*,. As it was shown in [10], a low-dimension, noisybUt different randomly generated traffic demand scenacails (

81t is worth noting that the methodology of [10] for calcutadiz;, results
4The motorway origins are defined as the mainstream originiNFigure in an estimation errog:;, — &, that is also an unboundesignal.
1 as well as the 8 on-ramps. “The number of days (iterations) the fine-tuning was active elsen to
50nly the “peak hours period”, i.e. the period of high traffiensind within ~ be equal to 149 in order to provide all algorithms considénetie simulations
the day, was considered in the simulations. with sufficient time to converge to their “best” value fér



culated as described in paragraph “Traffic Demand Sceriariose AverMSAfterFEaverage daily mean speed (over all 10

of this section) were executed. In this way, a significant different Runs and all days 150-170) after fine-tuning was

number of samples was created. It has to be noted that in all stopped, i.e.

Runs considered, the fine-tuning process was active for 149 10 170

days (iterations); after day 149, the fine-tuning process wa AverMSAfterFT— Z Z JE

stopped and the besamp metering controller (corresponding 10 x 21 £= —~

to 6, that produced the maximum mean speed over the 149

daily experiments) obtained throughout the fine-tuningcpss

was tested for the next 20 daily experiments.

Evaluation Criteria In order to compare the algorithms’

performance three different evaluation criteria were used

« TotDaysBellowMSthresaverage number of days (over all

10 different Runs) with mean speed below an approp
ately defined threshold, i.e.

This criterion provides with an estimate of the steady-
state convergence characteristics of the algorithm being
evaluated.

Figure 2 shows some instances of the application of SPSA,
P-GD and CP algorithms, respectively, for different sintiola
Runs. As already mentioned, the performance of the above
three algorithms for the best set of their design paraméters
exhibited. Figure 3 shows some instances the performance of

1 L0 149 " the proposed algorithm (referred as the CP-PD algorithm) fo
TotDaysBellowMSthres: 7o > T(JF <MSthres gifferent values of the parametgp. Table 1 summarizes the
R=1d=1 performance evaluation based on the three evaluatiorriarite

where R denotes the Run index,denotes the day (itera- defined previously.
tion) index, JI* denotes the daily mean speed at thth Close inspection of Table 1 and figures 2, 3 reveals the
algorithm iteration for theR-th Run, MSthresdenotes following:

the aforementioned threshold afi/* < MSthre =1 ., SPSA and P-GD algorithms practically fdid produce
if J& < MSthreskm/h andZ(J} < MSthres = 0, any improvement on the overall system performance.
otherwise. TheMSthreswas chosen so that it reflects a  |n almost all Runs — for both algorithms — the best
daily mean speed bound beyond which the overall system performance achieved was about the same as the one
operation is considereginsafe It is worth noting that in achieved using the initial ramp meter controller.
practical ramp metering applications the traffic operators. The CP algorithm guarantees a safe performance while in
impose such thresholds; if these thresholds are repeatedly most cases it achieves a quickly converging performance.
violated then the fine-tuning process, or, even the overall However, there may be cases where the CP algorithm fails
ramp metering system operation may be canceled. The to produce a significant performance improvement. Such
particular value forMSthreswas chosen according to  a case is exhibited in case of Simulation Run 3 (figure
MSthres50km/h; this particular choice is 2-3 km/h below 2, lower plot). In other words, while the CP algorithm
the average mean speed obtained uding= 0, L; = 0. guarantees safe performance, there is always the risk
Apparently, the criterionfotDaysBellowMSthrets used the CP algorithm to fail to improve the overall system
for evaluating the safety attributes of the compared algo- performance.
rithms, i.e., their ability to keep the constantin (2.7) . The proposed algorithm always achieves to improve
as small as possible. considerably the overall control system’s performance.
« AverConvDayMaxConvDay-the average and maximum  Note, however, that the improvement in the overall system
day number (over all 10 different Runs) the algorithm  performance is made possible by sacrificing safety, since
performance reaches a 10% distance from the best algo- the proposed algorithm’s safety attributes (identified by

rithm performance over the days 1-149, i.e. the criterionTotDaysBellowMSthrdsan be slightly (case
TR Bo = 0.01) or significantly worse (cas@g, = 0.1, or
AverConvDay= — " argmin J (i > 0.9JF) By = 1) than those of the CP algorithm. In all cases,
10 R=1 ¢ though, the steady state improvement produced by the

proposed algorithm is significantly larger than that of

MaxConvDa i B>09JE . ;
= m}%}(argmdmj (Jd 2 0.9, ) the rest three algorithms (see last column in Table 1).

where J (J1 >0.9J8) = d if JE > 09J% and Moreover, having in mind that for_all_ghoice_s of the
T (Jf > 0-9Jf‘) — 149, otherwise, withJ” denoting proposed algonthm produces a S|gn|f|c§1nt improvement
the best algorithm performance over days 1-149, i.e. OVer the rest algorithms and, moreover, in the case \_/vhere
JE = maXge(1, . 149} J(f_ This criterion was introduced By = 0.01 theTotDays_BeI]owMSthres.qune small, it is
in order to evaluate theonvergence rateof the al- expected that a real-life implementation of the proposed

gorithms being evaluated. Note that due to the highly —@lgorithm can be extremely successful.

stochastic nature of the fine-tuning problem considered

in this section, the iteration (day) number the algorithms VI. CONCLUSIONS

converge to — or close to — their optimal value can vary Fine-tuning of Large-Scale Nonlinear Control Systems

significantly and that is the reason we incorporate tHeNCS) if often a tedious, complicated and risky task that

worst case performance, identified BJaxConvDay in is usually performed by human experts without the use of

the convergence rate evaluation. a systematic approach. In this paper, a new adaptive/neural



10

Table 1. Performance of AO algorithms.

TotDaysBellowMSthres AverBestDay MaxConvDay| AverMSAfterFT
SPSA [20] 24.7 81.3| 122 54.7
P-GD [10] 154 50.5| 113 55.1
CP [11] 2.0 26.0| 67 63.2
CP-GD (3, = 0.01) 5.3 17.2| 25 68.1
CP-GD (B, = 0.1) 28.2 54.3| 125 72.3
CP-GD (6 = 1) 36.7 63.7| 132 71.4

algorithm has been proposed that can be used towards Qﬁg@ \§|2. By settingfl = 6,_1,2 = z1_1,0 = +A0;
development of a systematic, automated procedure that vill (A.2) and using the above inequality we obtain
make possible the efficient and safe fine-tuning of LNC&J(+A0, 0k 1,25 1,251) = A0 (0p 1,2 1) +

k
through appropriate learning mechanisms. The proposed apr(zx—1,A0;) where yll(mk_l,AH;:;e is a term
proach combines appropriately existing algorithms prepossatisfying  |y11(zx—1, A6)] < % |A9k|2. The
by the authors in the past and the Incremental-Extreme keapnoof is established by defining,(z) = 2L(z) and
ing Machine Neural Network (I-ELM-NN). Among the nicevs (0, — xx_1) = J(0, 2x) — J(0, 21 _1). [ ]

properties of the proposed algorithm is its ability to deal Lemma 2:For all & odd, the following holds, provided that
with unbounded exogenous signals as well as its signifigandl,, ,, > 0, ¥n € Z:
improved convergence over the existing algorithms.
rank[ M, e, e| = LE, with probability 1 (A.3)
APPENDIXA
TECHNICAL PROOES Proof: We only provide with a sketch of the proof: it
%?n be seen that — sincg is invertible — if (A.3) does
ot hold then there exists a nonzero vectprsuch that
X" (Avec (ABOp,Tp —Ty—1)+b) =0, £ = {y,...,k—1, and
XT (Avec (AH,&*”,@ — fk_l) + b) = 0 where A denotes
the matrix whose rows are the vectod$ andb = vec(b;).
Since A4;,b; and Ao,(f” are randomly chosen and moreover
Af, # 0 (due to the requirement thaty,, 1 > 0), it is quite
straightforward to show that the probability a nonzero oect

The following lemmas are needed for the establishment
the proof of Theorem 1 presented in Appendix B:
Lemma 1:The following holds:
AJ(EAO, Op—1, Tk, 1) = £AOL ST (1, 21-1)
Y11 (w1, Ak) + Y2 (Or—1 & A0k, 2 — Tp—1)
Y1 (Th-1, A0) < y1(wpo1) |AG[?
(A1)

where v, (x) is® a positive function that is bounded for : . .
boundedr ands (61 + Aby, ¢, — x4_1) is a function sat- x to satisfy the above system of equations is zero. [ |

L Lemma 3:Consider the assumptions imposed in Theorem
isfyin 0,z —xp—1) =0 — xi—1]|) for any bounded -
e 9720wk = wk-1) = O (jax = ia]) y 1. ThenAJ (A0 0, 1 2y, 2 1) < — 3 implies (B.6).

Proof: Following the approach adopted in [1], we fix two _ Proof:  Using (B.1) ~we directly —obtain that
5 : i AT (AOED 0, g m) < —B :>19*T¢>(k?+17 <
vectorsf,0 and define as the scalar parameter satlsfylndl koo Vk=1Thky k-1 k E P+ £ =

g(&,x) = J(0 + £€0,x). Using the chain rule we have that—3; where vy; = uk(Ae ek_l,xk,x@_l) +

% (¢,x) = 0791 (0 + &0, x). Therefore, (68 (A0FD 0p 1w ap1)  —  dR(A0FD 6, 4,

J0+0.2) — J(0.2) (12) - g(0.2) Zr, Tp—1)). Using the above relationship it is straightforward
T T 7g T T

to see that); € Si; where
Jo F(&2)dE = [ 07550 + €0, 2)d¢ Lo
= Jo 9“” ,0)dE + Jy (07250 + €0.2) — 0724(0.) de Sij = {0 € RE 90 < — B + (9]}
zéTg—Gx )+ [ (0725(0 +€0,x) — 07220, x)) de _ o _
(A.2) Note now that relation (B.6) is directly obtained from (B.5)
Since J is at leastC?, we have that there exists a positiveand (B.4) in the case whetk,.; = 0; therefore it suffices to
function L(z) (which is bounded for boundeg such that for establish (B.6) in the case whefe.; # 0: sinceAy; # 0, it
all 6,0 is easily seen thaty; € X%, where

0J - 0J
T <

and therefore the second term in the RHS of (A.2)loreover, from (B.4) and\y; # 0 we have thatd, € I'yj,
satlsfles ‘fo (9”” 9+§9 x) - 9“’” 9 ) df‘ < where

8Note thaty; (z) is a function that is bounded for boundedand nota

bounded function; in other words; () may be unbounded whenbecomes Itis not diffic_:ult for Someone to see thd@ci is the projection
unbounded. of a vectord;, € I'y; into X4 ;. Note also that the subsets

0"

) [0 -0 Say = {0 eRH076l) = —4i} C Sy
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Fig. 3. Fine-tuning results using the proposed algorithmdiierent values
Fig. 2. Fine-tuning results using SPSA [20] (upper plot) B-&0] (middle  of the parametep,.
plot) and CP [11] (lower plot) algorithms: in all three caghs algorithm’s

performance for optimized set of their design parameteexiigbited.
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S+j,%4;,T'+; are convex We have three cases: (8).; N whered, = 95 — 9 denotes the parameter estimation error
I'y; # 0. In this case, and

19:i:j e E:I:j mF:i:j (A4) Dk(A9797xvxlajajl) = Vk(A9797x7xl) (83)

+057 (60 (A0, 0,2, 2") — W) (A0,0,7,7))
and thus it is easily seen — sin¢e.;,I'L; are convex — i .
that the distance betweel and . ; is bounded byl7,|,  YSing (3.16), (B.1), (B.3) we obtain
which establishes (B.6) for this case; B).; NI'y; =0 and < _ _

k—1 -1
197¢§f]? > —f, V¥ € I'1;. In this case, it can be easily seeny, = Z ¢ék) ((ﬁék)) ) Z (19;;7'¢§k) T 174) ék)

that the distance betweetj andd..; is bounded by, ;| (see (=0, (=0

the definition of the subsef. ;) which establishes (B.6) for k—1

this case; (CP+; NIy, =0 anda?ﬁz)gf]? < —fBk, V9 € 'y, = Up+&;" Z ") = 9% + oy, (B.4)
or, equivalently,A.; = 0, which is a contradiction. Thus, =0,

(B.6) has been established. where — with some abuse of notaton + =

(AH[,@; 1,%¢,To—1, T, Te—1). Let also
Lemma 4:Consider the assumptions imposed in Theorem

L Then A0 if %qﬁf} < =Bk
(+5) : T 200 otherwise
AJ(AG J ,Qk,l,xk,xk,l)>76k,v‘]€{1,...,n9} ¥k P4
implies that6y, € C,_; and that (5.17) holds. Using (3.15) we have that
Proof: Let VJi_1 = (gk 1, Zk_1). From e 55
(A1) — see Lemma 1 - We have thatf, < £ k +j (B.5)

AT(AOTT 01,z a1) < (Ae +5) ) V-1 + For each+j : j € {1,...,n¢9} we have the following two
()2 . different cases:
Y1 (zk—1) ‘AH ’ + 7201 + A6F 2 — 2y 1) which 1) AJ(Aegiij)ﬁk—hxk,xk_l) e In Lemma 3 we

implies (sincer(ij) iAG(J)) that establish that in this case the following holds:
_ 12 gk - -
+A"VI. ., < vec (ﬂk + 71 (zh1) ‘Ael(j:])‘ (A.5) |19:|:] V1| < max {|vy/, |V:|:]|} (B.6)
(£5)
(+5) B Whereyij = I/k(A9 9k 1y Ty Th—1, Ly Th— 1)
R ) 2) AJ(AOF 01, ap,211) = —By > —f. Using
_ 1) (n0) ) o . similar arguments as those of the proof of Lemma 3,
whereA = [A6,7,..., A0, |. By using (1.1) it is straight- we can see that in this case
forward to establish that, _; € Cx_1. Using the definition of ® _
the subset, the fact thatf,_, € C,—; and Lemma 1, we B Ot = Bk — Vxj (B.7)
have — since\d;, = Ao(ij) € {—ag, ax}™ for some+tj €
{ngs.. —1.1,....ng} — that AJ(A@k,Qk T ) < Moreover, from (3.7) we have that
(A0) Vot + Yi(zho1) [AO° + 32 (O, 2x — 2-1) < ;jqb(f; < B (B.8)
Br+271(2p—1) | AOk > +272(0), 2 — 21,1 ) Which establishes
(B.17). u Subtracting (B.7) from (B.8), we obtain that
O —05) o) < — (Br — Br) + i
APPENDIX B (Vs W) 0x; < (ﬁk ﬁk) -
PROOF OFTHEOREM 1 which implies that
Since the proposed algorithm is applied after iteratioa 04; — 05| > ecamax {8, — B — 74,0} (B.9)
2, the proof concentrates in the case where 2. Note also N
that from (3.14) and the fact tha, is bounded, we have that for some positive constamt.
0 is _bounded fO_f_a_Wf- _ Consider now the process of selection &f;, = Ao,(f”
Using the definitions off;, v, (see section IV), we have according to (3.9). We have the following two cases:
that (@) 3 € {-ng...,—1,1,...,ns} such that
h
AT = 97 ¢M(A0,0,%,7) + vk (A0,0,2,2')  (B.1) AJ(AOM 1, wp, w5-1) < — B

LT <¢(k) (A, 0, 2,2") — ¢(k)(A97973—3,f/)) If Af, defined in (3.9) satisfieAd;, = AH,(JL), then we have
from (B.6) that
wherez, 7’ ’ denote the estimates of 2/, respectively there-

h * = ~
fore, if AJ(AG,0,7,5) — 976*) (A0, 0. 7, 7), then ‘ﬂi)*ﬁk < max {|7k|, |[7n]} (B.10)

AJ(AG,0,x,2") — AJ(A9 0,z,7")

( On the other hand, ifA9, = A@,‘j") for some j* €
=97 qb(k)(AH 0,7,7") + vk (A0,0,x, 2"z, ")

B.2 :
(B.2) {—ng,...,—1,1,...,np} with j* # h, we have that
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AJ(AOk, 0k 1,71, 0—1) = —Br > — B With B, < 8. From can be decomposed ag, = Vk(Ae,ék_g,xk,l‘k_Q) +

(3.9) we have that sinca6y, = A6 ") andj* # h, 0T (¢,<k> (A0, 0o, T, Tho—2) — ¢<k>(Ao,ék,g,f,€,zk,2)),
k-1 . o k-l o 2 v = (DO, 01,z m1) + 95T (W) (MG, 01,
Z (AJ@ — 191(;1) ¢§k)) > Z (AJZ — 19,(5 ) ﬁk)) xe,xg_l) — (b(k) (AH@, 95_1, jg,_jg_Al)) and, thus
(=0, L=ty (B.11) we have that IATL(AD, Ok —o, Tk, Tr—2) -

: AT (DO i T — L
Using the above inequality, (B.10) and the definitionjgfin ATR(A0, O, T, T2, T T—2)es.. = O (77 (LE ’ Ce’“’))
(B.4) it can be easily established that +0 gsupee{éhwk]} |z¢ — Z¢| ). Using the above equality and
. 3.13) it is quite straightforward for someone to see that
97— w7 | < 8.12) g ghtionw, S S
. OJ /-~
Moreover, we have that in this case (B.9) holds, i.e. Ok = Or—2 — 5’@@ (9’6*2799’6) + B
‘191(5*) — 03| = emax { By, — B — 7;+,0} where
which implies — by taking into account (B.12) — that hy = O (77 <%7697$)> +0 < sup  |we — M)
_ - o g £€{ly,....k]}
1B = Be| = | Be| < max (|l 175-1} (B.13) *

Combining the above two equalities with Lemma 1 we readily
Usmg the definitions o, vy, v+, the fact that from Lemma establish part (b).

2 @, is bounded with probability 1 and property (P1) it can Coming to part (c), firstly notice that from (A1) we have
be seen after some manipulations, that that the second term in the above equation is zero-mean
‘B and has finite variance; moreover, from (Al), (A2) and
k|l =

| ’ (B.14) (3.14) we have thatE [yk(A_e,ék_g,xk,xk_gﬂgk -
F0Osts, ky T{ln ik} — Tityrik}) L )
_ 0(u( ). B[n@b 2] 16, <

Wh(e|fev p(B1e...., k}w{%wk} = T{tgk})
O (|T(th,ky = T(tn....ky|); (here the notationz, . xy Bl (AG,. 0 - _ O( (L ))
is used to denote a matrix whose columns are the vector[ k(802 Be-1, ze, 471)|g2k] -77 L O .
Ly, ...,z notice also thap(-) is a zero-mean term) and £ |[vk(A0¢, 0¢—1, x¢, zo—1))| |gk} < oo. Using the analysis
1 above, we obtain that
D o =0 (0=, con B.15 .
174t <77 (ng “ >) (8.15) Abgi = +Ok—2i— k1, (B.18)
By combining (B.10) and (B.13), we finally conclude that 3 (AJk(aiei,ékQ,fk,a‘ckg) Pk,i g;m->
~ - k o o
Jp < Jp—1 — Br + B (B.16) ah e Gk
where§;, satisfies (B.14). where p,; = O (n ﬁ,c@,x)) and g ; is a zero-mean
B)  AJ(AOED 6, 1 apx 1) > —fr Vj € sequence with finite variance. Moreover, by defining
{1, ey ne}. L o7
In Lemma 4 we show that in this cage_; € C,_; and, VJi(0) = [89 (e ng]

moreover, that

we can rewrite (B.18) as
Je < Jo—1 + B + 271 (ze—1)noaq, + 2720k, 2k — T—1)

(B.17) O = 0Op_o (B.19)
Therefore, we have that conditiomv)( holds for 0,1 ¢ - N p 0
: : B ( VTk1(Or—2) — BeHp—p — 25 — =2
Ci—1; this together with (B.16), (B.14), (B.15) and (B.17) k k—1\Vk-2 R T e ok

establish part (a). X

We will now establish parts (b) and (c): in the establishmenthere Hj, o = vec ( 2Z(ie0li2..Te 2>) — VT e—1(0k—2)
of the proof of parts (b) and (c) we consider only th@npg pr = vec(pri), ok = Vec(g;”) If the term p;, was
gradient-descent phase; therefore from now on the subbdcrilhot present, then the above difference equation would
corresponds to an even number. be in the standard KW form, in which case convergence
_ Consider  any  bounded ng-dimensional  vector of ¢, could be established by using standard arguments,
A#; by using similar arguments as in (B.l)see e.g. [14], [3]; in the analysis that follows, we will

(B.2) we  obtain AJk(A9 Oy 2, Thy T—2) = show that the termp, cannot have a destabilizing
9760 (A9, Opo, B, Thz)  +0,0™ (B, O 2, Ty, Tr2) effect. Let Jy(0) = fwk )0 = E[J(0,2)|Gk] and
+1, (A, O 2y Thy T2y Ty Tho 2) = AJk(AG 05 2, Ok = Hp_o — P—k - Standard arguments — see e.g. the
Tk, l‘k_g, Tk, Tp—2) + uk(AH, Op_2, 2k, ack 2, T, Tr—2) + proof of Proposmon 3. 1 of [3] — can be used to establish that
((;5 V(AG, 032, Tp, Tp_2)) "5 S0 ;k 7 where Hi_2 = ciay, + 0y, wheree; > 0 andp,, is a zero-mean term

Uy, = U7 — U and the second equality equality was obtainefyith finite variance. Therefore, we have that (B.19) implies
by using (B.4). The termsy, i in the above relation Jk—1(6k) = Ji-1 (9k 2= BV T ko1 (Or—2) — ﬁk@k) <



Joo1(Ok—2) — BiVTe 10k _2)" (Wk—l(ék—Q) +§k) +
BiK <<Wk1(ék2) + ék)2> < Teo1(Bs—2) —

. 2 _
% VJk—l(ek—Q)’ Bk T k-1 (B—2) 0k +B2K (21,)°+53ca

wherec,y is an O(cy) finite constant ands is the Lipschitz
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definition of g, we obtain
7 F o h Bk == 4 2
E[J(6:)IGs] < ﬁkﬂﬁkﬂ——EWVJb4whg‘

B VT k-1(0—2)" (& + Clak)
a,

+B2KE [(20)* G| + Biex

IN

_ R - “ 2
Ti-1(0r—2) — % ‘Wk_l(ek_Q)‘

2
125, <Z—k+clak) + 7. (B.20)
k

where 7, = B2KE [(@k)Q |gk} + B2es. It is not difficult

2
for someone to see thaf,/ax, — 0, > .° (ﬁ—k) <

Qg
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