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ABSTRACT

In this paper, we propose a scheme that can be used in large-

scale nonlinear facial image classification problems. An ap-

proximate solution of the kernel Extreme Learning Machine

classifier is formulated and evaluated. Experiments on two

publicly available facial image datasets using two popular fa-

cial image representations illustrate the effectiveness and ef-

ficiency of the proposed approach. The proposed Approxi-

mate Kernel Extreme Learning Machine classifier is able to

scale well in both time and memory, while achieving good

generalization performance. Specifically, it is shown that it

outperforms the standard ELM approach for the same time

and memory requirements. Compared to the original kernel

ELM approach, it achieves similar (or better) performance,

while scaling well in both time and memory with respect to

the training set cardinality.

Index Terms— Nonlinear Facial Image Classification,

Extreme Learning Machine, Approximate Methods

1. INTRODUCTION

Extreme Learning Machine (ELM) [1] is an algorithm for

Single-hidden Layer Feedforward Neural (SLFN) networks

training that has attracted considerable research attention in

the last decade due to its effectiveness and efficiency in many

medium-scale pattern classification problems [2, 3]. The idea

of exploiting randomness in neural network training processes

has been proposed in early 1990’s [4, 5, 6, 7] and has rejuve-

nated in middle 2000’s [1, 8] under the term Extreme Learn-

ing Machine (ELM). Algorithms following this approach set

the assumption that the learning processes adopted for the de-

termination of the hidden layer and the output weights need

not be connected. In addition, it is assumed that the net-

work hidden layer weights can be randomly assigned, this

way defining a random (nonlinear) mapping of the input space

to a new (usually high-dimensional) feature space.

By using a large number of (independent) hidden layer

weights, it is expected that the problem to be solved is trans-

formed to a linear problem in the new feature space and, thus,

linear techniques like mean square estimation can be em-

ployed for the determination of the network’s output weights.

Specifically, in ELM approaches, the network input weights

are randomly assigned, while the network output weights are

analytically calculated so as to minimize the network training

error. Randomized ELMs not only tend to reach the smallest

training error, but also the smallest output weight norm as

well. For feedforward networks reaching a small training

error, smaller output weight norm results in better general-

ization performance [9]. It has been proven that, by using an

adequate number of hidden layer neurons, randomized ELMs

have the properties of global approximators [10, 8].

Recently, kernel versions of the ELM algorithm have

been proposed [11, 12, 13], which have been shown to out-

perform the standard ELM approach that uses random input

parameters. A possible explanation of this fact is that kernel

ELM networks have connections to infinite single-hidden

layer feedforward networks [14]. However, the superior per-

formance of kernel ELMs comes with a higher computation

cost and memory requirements. Specifically, kernel ELMs

require the calculation of the corresponding kernel matrix

K ∈ R
N×N , having a quadratic computational complexity

with respect to the number of training data N , while the cal-

culation of the network parameters requires the inversion of

K, having a cubic computational complexity with respect to

N , i.e. O(N3). This fact renders the application of kernel

ELMs in large scale classification problems prohibitive.

In order to make the application of ELM-based classifica-

tion in large scale classification problems possible, an SMO-

based optimization algorithm has been proposed in [12] for

the case where the hinge loss of the prediction error is ex-

ploited. This method has the drawbacks that it still requires

the calculation of the entire kernel matrix K and that the opti-

mization process is still very slow for large scale datasets. For

squared loss criteria, the randomized ELM approach has been

proposed in [11]. It has the disadvantage that, by employing

randomly sampled hidden layer parameters, the obtained per-

formance is inferior, when compared to the kernel approach

[14].

Approximation approaches have been found to be both ef-

ficient and effective. A line of work in approximate methods

determines a low-rank approximation of a Gram matrix of the

form K ≃ Q = CQ̃CT , where C ∈ R
N×n and Q̃ ∈ R

n×n.

C is formed by n (uniformly or data-dependent nonuniformly



sampled) columns of K and Q̃ is a matrix constructed by the

intersection between those n columns of K and the corre-

sponding n rows of K [15]. By using such matrix approxima-

tion approaches, approximate Linear Algebra methods, like

matrix multiplication and Singular Value Decomposition, and

their application in kernel machines have been proposed that

have provable guarantees on the quality of obtained approx-

imate solution [16, 17, 18, 19, 15]. In addition, it has been

recently shown that the adoption of such an approximate ap-

proach can be exploited in kernel-based clustering [20, 21, 22]

with state-of-the-art performance. While the above-described

approximate approach has the advantage that the entire ker-

nel matrix needs not be computed, for KELM-based classi-

fication the the inversion of the corresponding approximate

kernel matrix Q ∈ R
N×N still has a computational com-

plexity equal to O(N3). Another approximate approach ex-

ploits a so-called “randomized kernel”, which is constructed

by randomly sampling a small set n of the N training data

[18, 23, 24]. This approach has the disadvantage that the cor-

responding methods exploit information appearing only in the

subset of the training data employed for the calculation of the

randomized kernel.

In this paper, we propose a novel kernel ELM approxi-

mation (noted as AKELM hereafter). We show that the pro-

posed approach is able to scale well in memory and oper-

ates very fast, when compared to the kernel ELM approach,

while achieving comparable, or even better, performance with

that of kernel versions of ELM. We evaluate the proposed

approach in medium and large scale classification problems,

where we compare its performance with that of randomized

ELMs [1, 11], kernel ELM applied on the entire training set

[11] and kernel ELM that exploits a randomized kernel ob-

tained by using Ñ < N samples, similar to [18, 23, 24].

2. EXTREME LEARNING MACHINES

In this section, we briefly describe the ELM, regularized ELM

and kernel ELM algorithms proposed in [1] and [11]. Let us

denote by X a set of N vectors xi ∈ R
D and by ci the cor-

responding class labels (ci ∈ {1, . . . , C}). An ELM network

is essentially a combination of C one-versus-rest classifiers.

It consists of D input, L hidden and C output neurons. The

elements of the network target vectors ti = [ti1, ..., tiC ]
T ,

each corresponding to a training vector xi, are set to tik = 1
for vectors belonging to class k, i.e., when ci = k, and to

tik = −1 when ci 6= k. In randomized ELMs, the network

input weights Win ∈ R
D×L and the hidden layer bias val-

ues b ∈ R
L are randomly assigned, while the network output

weights Wout ∈ R
L×C are analytically calculated.

Let us denote by qj , wk, wkj the j-th column of Win, the

k-th row of Wout and the j-th element of wk, respectively.

Given an activation function Φ(·) for the network hidden layer

and using a linear activation function for the network output

layer, the response oi = [oi1, . . . , oiC ]
T of the network cor-

responding to xi is calculated by:

oik =

L
∑

j=1

wkj Φ(qj , bj ,xi), k = 1, ..., C. (1)

It has been shown that almost any nonlinear piecewise con-

tinuous activation functions Φ(·) can be used for the calcu-

lation of the network hidden layer outputs, e.g. the sigmoid,

sine, Gaussian, hard-limiting, Radial Basis Function (RBF),

RBF-χ2, Fourier series, etc [8, 25, 11, 26, 27, 28]. By stor-

ing the network hidden layer outputs φi ∈ R
L correspond-

ing to all the training vectors xi, i = 1, . . . , N in a matrix

Φ = [φ
1
, . . . ,φN ], equation (1) can be expressed in a matrix

form as:

O = WT
outΦ, (2)

where O ∈ R
C×N is a matrix containing the network re-

sponses for all training data xi.

By assuming that oi = ti, i = 1, . . . , N , or in a matrix

notation O = T, where T = [t1, . . . , tN ] is a matrix con-

taining the network target vectors, the network output weights

Wout can be analytically calculated by:

Wout = Φ† TT , (3)

where Φ† =
(

ΦΦT
)−1

Φ is the generalized pseudo-inverse

of ΦT . After the calculation of the network output weights

Wout, the network response for a vector xl ∈ R
D is given

by:

ol = WT
outφl, (4)

where φl is the network hidden layer output for xi.
The calculation of the network output weights Wout

through (3) is sometimes inaccurate, since the matrix ΦΦT

may be singular. A regularized version of the ELM algorithm
that allows small training errors and tries to minimize the
norm of the network output weights Wout has been proposed
in [11], where the network output weights are calculated by
solving the following optimization problem:

Minimize: JRELM =
1

2
‖Wout‖

2

F +
λ

2

N
∑

i=1

‖ξ
i
‖22 (5)

Subject to: W
T

outφi
= ti − ξ

i
, i = 1, ..., N, (6)

where ξi ∈ R
C is the error vector corresponding to xi and

λ is a parameter denoting the importance of the training er-

ror in the optimization problem, satisfying λ > 0. By solv-

ing the equivalent to (5) dual optimization problem under the

constraints in (6) [29], the network output weights Wout are

obtained by:

Wout =

(

ΦΦT +
1

λ
I

)−1

ΦTT , (7)

or

Wout = Φ

(

Φ
T
Φ+

1

λ
I

)

−1

T
T
= Φ

(

K+
1

λ
I

)

−1

T
T
, (8)



where K ∈ R
N×N is the ELM kernel matrix, having ele-

ments equal to [K]i,j = φT
i φj [30]. By using (8), the net-

work response for a given vector xl ∈ R
D is given by:

ol = WT
outφl = Akl, (9)

where A = TQ, Q =
(

K+ 1

λ
I
)−1

and kl ∈ R
N is

a vector having its elements equal to kl,i = φT
i φl, i =

1, . . . , N .

3. PROPOSED KERNEL ELM APPROXIMATION

In order to obtain an approximate kernel ELM solution, we

assume that the network output weights Wout lie on the span

of a subset of the training data (represented in the kernel space

F), i.e. Wout = Φ̃AT , where Φ̃ ∈ R
|F|×n, where A ∈

R
C×n is a matrix containing the reconstruction weights of

Wout with respect to Φ̃. The columns of Φ̃ are randomly

selected from the columns of Φ, i.e.:

Φ̃ = ΦEJ, (10)

where E is a random (column) permutation matrix and J ∈
R

N×n is a matrix with elements Jii = 1 and Jij = 0, i 6= j.

AKELM solves (2), by setting O = T. This can be expressed

as follows:

T = WT
outΦ = AΦ̃TΦ = AK̃, (11)

where K̃ ∈ R
n×N is a submatrix of the original kernel matrix

K ∈ R
N×N . The optimal reconstruction weight matrix A is

given by:

A = TK̃T
(

K̃K̃T
)−1

(12)

and the network output for a vector xl ∈ R
D is given by:

ol = WT
outφl = AΦ̃Tφl = Ak̃l. (13)

It should be noted here that the calculation of A through (12)

is always possible, since n ≤ N .

Comparing (13) and (9), it can be seen that the pro-

posed AKELM algorithm has a much lower computational

complexity, when compared to the KELM. Specifically,

the computational complexity of the KELM algorithm is

equal to O(N3 + (D + C + 1)N2), while the computa-

tional complexity of the proposed AKELM algorithm is

equal to O((2n2 + nD + C)N). By setting n = pN

and D = mN , the time complexity of the KELM algo-

rithm is equal to O((m + 1)N3 + (C + 1)N2) and the

time complexity of the proposed AKELM algorithm is equal

to O((2p2 + p)N3 + CN). Taking into account that, for

large scale classification problems, m ≪ 1 and that satisfac-

tory performance can be achieved by using a value p ≪ 1,

as shown in the experimental evaluation provided in Sec-

tion 4, the computational cost of the proposed AKELM

Table 1. Performance on the BU dataset.
L,n,Ñ ELM KELM RELM AKELM

25 47.14% 28.43% 47.14% 47.71%
50 51.14% 38% 52.29% 56.43%
100 60.57% 46.43% 60.86% 62.43%
250 67.43% 51.57% 67.86% 69.29%
500 67.86% 57.57% 69.19% 69.14%

14000 - 68.29% - -

algorithm in the training phase is significantly lower than

the one of the KELM algorithm. For example, in the

Youtube Faces database [31], the proposed AKELM algo-

rithms achieves a good performance by using a value of

p = 1.6 · 10−3. In that database, where m = 6 · 10−3,

the acceleration achieved by applying the proposed AKELM

algorithm versus KELM is in the order of 103. In the test

phase, the time complexity of KELM algorithm is equal to

O(CN2 + D2N) = O(CN2 + m2N3), while the time

complexity of the proposed AKELM algorithm is equal to

O(Cn2 + D2n) = O(Cp2N2 + m2pN2). Thus, in the

test phase the computational cost of the proposed AKELM

algorithm is significantly lower from that of KELM too. Re-

garding memory requirements, KELM employs a matrix of

N ×N dimensions, while the proposed AKELM a matrix of

pN ×N dimensions.

4. EXPERIMENTS

In this Section, we present experiments conducted in order

to evaluate the performance of the proposed AKELM algo-

rithm. We have employed two publicly available facial im-

age datasets to this end, i.e. BU [32] and YouTube Faces

[31]. In all the experiments we compare the performance and

efficiency of the proposed AKELM algorithms with that of

ELM [1], RELM [11] and Kernel ELM (KELM) [11] algo-

rithms. All the experiments have been conducted on a 4-core,

i7 − 4790, 3.6GHz PC with 32GB RAM using single float-

ing point precision and a MATLAB implementation. For the

ELM methods exploiting a kernel formulation we have em-

ployed the RBF kernel function, where the value of σ is set

equal to the mean Euclidean distance between the training

vectors xi that corresponds to the natural scaling value for

each dataset. In the case of randomized ELMs, we have em-

ployed the RBF activation function where the value b is set

equal to the mean Euclidean distance between the training

data xi and the network input weights qj . The optimal value

of the regularization parameter λ used in RELM and KELM

algorithms has been determined by applying line search using

values λ = 10r, r = −6, . . . , 6.

On the BU dataset, we have resized the facial images to

40 × 30 pixel images and vectorized these images in order

to create vectors xi ∈ R
1200. Since there is not a widely



Table 3. Training and test times and memory during training in BU dataset.

Training time (sec) Test time (sec) Memory (MB)

L,n,Ñ ELM/RELM KELM AKELM ELM/RELM KELM AKELM ELM/RELM KELM AKELM

25 0.179 0.001 0.18 0.002 0.001 0.002 2.67 0.006 2.67

50 0.197 0.002 0.198 0.002 0.001 0.002 5.34 0.024 5.34

100 0.237 0.004 0.239 0.002 0.001 0.002 10.68 0.084 10.68

250 0.414 0.018 0.416 0.004 0.003 0.004 26.7 0.484 26.7

500 0.704 0.08 0.706 0.009 0.005 0.009 53.41 1.938 53.41

14000 - 152.17 - - 1.265 - - 1495.4 -

Table 4. Training and test times and memory during training in Youtube Faces dataset.

Training time (sec) Test time (sec) Memory (MB)

L,n/Ñ ELM/RELM KELM AKELM ELM/RELM KELM AKELM ELM/RELM KELM AKELM

25/- 3.26 - 3.27 0.78 - 0.78 28.25 - 28.25

50/500 3.57 0.06 3.52 0.84 2.02 0.84 56.51 3.81 56.51

100/1000 4.59 0.22 4.64 0.96 3.21 0.96 113.01 15.26 113.01

250/2000 6.11 1.40 5.91 1.35 5.55 1.35 282.53 95.37 282.53

500/5000 10.01 23.68 9.64 1.95 13.06 1.95 565.94 381.47 565.94

1000/10000 21.82 182.81 21.51 3.22 25.85 3.22 1131.9 1525.4 1131.9

2000/20000 42.96 1411.8 41.41 5.63 50.47 5.63 2263.9 1525.4 2263.9

5000/296257 322.52 4 · 105 322.06 13.07 820.9 13.07 4537.6 3 · 105 4537.6

Table 2. Performance (CR) on the Youtube Faces dataset.

L,n/Ñ ELM KELM RELM AKELM

25/− 7.57% - 17.9% 23.93%
50/− 31.3% - 31.31% 36.28%

100/500 45.18% 67.15% 45.18% 51.16%
250/1000 67.32% 76.61% 67.37% 73.84%
500/2000 54.72% 78.37% 54.74% 84.45%
1000/5000 73.81% 83.14% 73.84% 85.08%
2000/10000 77.03% 85.12% 77.03% 89.93%
5000/20000 86.61% 90.18% 86.64% 94.35%

adopted experimental protocol for this dataset, we perform

the five-fold cross-validation procedure [33]. On each cross-

validation step, we enrich the training set by following the

approach proposed in [34]. The cardinality of the training set

used on each cross-validation step is equal to N = 14000.

On the YouTube Faces dataset, we have employed the LBP-

based facial image representation suggested in [31] leading

to a facial image representation xi of D = 1770 dimensions.

In these experiments we have employed the facial images de-

picting persons in at least 500 images, resulting to a dataset

of 370319 images and 340 classes. Since there is no widely

adopted experimental protocol on the YouTube Faces dataset

for multi-class classification, we retain 80% of the facial im-

ages for training and the remaining 20% for testing, leading

to a training set cardinality equal to N = 296257.

In order to test the performance of the original KELM

algorithm in these datasets, we adopt training data sampling

for the creation of a training set of smaller cardinality Ñ [23,

24]. The performance, the computational cost and memory

requirements of each algorithm for different values of L, n, Ñ

are illustrated in Tables 1 - 4. As can be seen, the proposed

AKELM is both effective and efficient, outperforming the re-

maining methods in most cases, while requiring a much lower

computational cost.

5. CONCLUSIONS

In this paper, we proposed an approximate solution of the ker-

nel Extreme Learning Machine classifier that is able to scale

well in both training/test computational cost and memory. Ex-

perimental evaluation on facial image classification problems

illustrates that the proposed approximate approach is able to

operate extremely fast in both the training and test phases and

to provide satisfactory performance, outperforming relating

classification schemes in most cases.
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