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Abstract
Mobility-on-demand (MoD) systems consist of a fleet of shared vehicles that can be
hailed for one-way point-to-point trips. The total distance driven by the vehicles and
the fleet size can be reduced by employing ridesharing, i.e., by assigning multiple
passengers to one vehicle. However, finding the optimal passenger-vehicle assignment
in an MoD system is a hard combinatorial problem. In this work, we demonstrate
how the VGA method, a recently proposed systematic method for ridesharing, can
be used to compute the optimal passenger-vehicle assignments and corresponding
vehicle routes in a massive-scale MoD system. In contrast to existing works, we
solve all passenger-vehicle assignment problems to optimality, regularly dealing with
instances containing thousands of vehicles and passengers. Moreover, to examine
the impact of using optimal ridesharing assignments, we compare the performance
of an MoD system that uses optimal assignments against an MoD system that uses
assignments computed using insertion heuristic and against an MoD system that uses
no ridesharing. We found that the system that uses optimal ridesharing assignments
subject to the maximum travel delay of 4 minutes reduces the vehicle distance driven
by 57% compared to an MoD system without ridesharing. Furthermore, we found
that the optimal assignments result in a 20% reduction in vehicle distance driven and
5% lower average passenger travel delay compared to a system that uses insertion
heuristic.
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1. Introduction

In densely-populated cities, private cars are considered to be an unsustainable mode of
transportation. Typically, the parking capacity and the road capacity are insufficient
to accommodate all private transport and, at the same time, difficult to expand due to
lack of available urban space or high cost. As a result, many modern cities suffer from
traffic congestion, unavailability of parking space, and air pollution.

One of the proposed remedies to these problems is a large-scale deployment of
metropolitan mobility-on-demand systems (MoD) that would serve as an alternative
to private transportation. An MoD system consists of a fleet of shared vehicles that
jointly serve the travel requests of the system’s users. For each incoming travel request,
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the MoD system dispatches a vehicle to transport the passenger to the desired location.
Examples of MoD systems include the existing transportation companies such as Uber
or Lyft, as well as the future systems of autonomous self-driving cars being developed
by companies such as Waymo.

MoD systems employ vehicle sharing, so they can serve the existing transportation
demand with a smaller, highly-utilized vehicle fleet and thus, significantly reduce the
need for urban parking space. To further improve the system’s efficiency, the provider
can implement ridesharing, where multiple passengers can be transported in one vehicle
simultaneously. Efficient ridesharing increases vehicle occupancy, which consequently
reduces the required fleet size and total distance driven by the vehicle fleet, resulting
in ecological and economic benefits.

1.1. Related work

Recently, a number of mobility-on-demand system models have been developed with
the aim to provide quantitative insights into the potential of large-scale carsharing and
ridesharing to improve the efficiency of urban transportation.

Most existing models of MoD systems assume unit-capacity vehicles (Bischoff & Ma-
ciejewski, 2016; Fiedler et al., 2017; Maciejewski & Bischoff, 2018; Spieser et al., 2014;
Venkatraman & Levin, 2019). However, transportation systems that do not employ
ridesharing suffer from poor operational efficiency because the vehicles need to travel
empty from the drop-off point of a passenger to the pick-up point of the following
passenger. Such unallocated trips can generate significant extra vehicular traffic in the
system; various studies indicate the growth in vehicle distance traveled from 17 % to
40 % depending on the system configuration (Bischoff & Maciejewski, 2016; Fiedler
et al., 2017; Maciejewski & Bischoff, 2018). The average vehicle occupancy observed
in such systems is considerably lower than one passenger per vehicle (Fiedler et al.,
2018), a finding which also corresponds to the average vehicle occupancy measured in
already operating taxi services (NYC Taxi & Limousine Commission, 2016). The low
occupancy in MoD systems can lead to congestion, which could be partially alleviated
by a congestion-aware dispatching (Venkatraman & Levin, 2019).

Therefore, it is beneficial to consider vehicles with a capacity higher than one and
allow ridesharing between passengers. In contrast to peer-to-peer ridesharing (Li et al.,
2019; Masoud & Jayakrishnan, 2017; Tamannaei & Irandoost, 2019), here we are in-
terested in the centralized setting, where a central dispatcher decides on an efficient
assignment of travel requests to fleet vehicles. This problem is commonly formulated
as a Vehicle Routing Problem with Pickup and Deliveries (VRPPD) or, more specifi-
cally, as Dial-a-Ride Problem (DARP) (Cordeau & Laporte, 2007; Toth & Vigo, 2014).
These formulations can be solved optimally using off-the-shelf Integer Linear Program-
ming (ILP) solvers or domain-tailored ILP solution techniques. However, the existing
exact solution methods focus on small-scale instances with tens of vehicles and re-
quests (Cordeau & Laporte, 2007; Ho et al., 2018) making them unsuitable for large-
scale fleets in urban mobility-on-demand systems consisting of thousands of vehicles.
For example, in New York City (NYC), there are almost 100 000 active taxis per hour
during peak traffic (NYC Taxi & Limousine Commission, 2018).

A popular heuristic method for large-scale dynamic DARP is the Insertion Heuristic
(IH) (Bischoff et al., 2017; Campbell & Savelsbergh, 2004; Fiedler et al., 2018; Kalina
et al., 2015). Also, IH is often used as a subcomponent of more sophisticated algo-
rithms. For example, in ridesharing with demand prediction (van Engelen et al., 2018),
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when integrating ridesharing with public transport (Ma et al., 2019), or as an initial
solution generator for metaheuristic methods (Muelas et al., 2013). The meta-heuristic
methods, which are effective in solving conventional DARP problem instances (Ho et
al., 2018), typically target scenarios with less than twenty vehicles (Masmoudi et al.,
2016), and suffer from scalability issues when applied to large-scale DARPs. A popular
meta-heuristic is simulated annealing by Jung et al. (2015). One of the largest sce-
narios solved using this method contains 600 operating vehicles. Other popular meta-
heuristics include Greedy Randomized Adaptive Search Procedure (GRASP) by Santos
and Xavier (2013), and Adaptive Large Neighborhood Search (ALNS) (Masmoudi et
al., 2016) that, however, are limited to even smaller problem instances. Muelas et al.
(2013) also solved four types of specialized DARP scenarios with up to 90 vehicles us-
ing Variable Neighborhood Search. Later, Muelas et al. (2015) modified this approach
to a distributed version which was able to solve scenarios with up to 1668 vehicles and
16 000 requests.

A systematic and scalable approach for pairwise ridesharing based on bipartite
matching in the so-called shareability network was proposed by Santi et al. (2014).
The analysis revealed that up to 80% of the trips could be pairwise shared while keep-
ing the travel delay lower than a couple of minutes. Later, Alonso-Mora et al. (2017)
proposed a new method that lifted the limit of two passengers per car and evaluated
this method on the NYC taxi dataset. Finally, Čáp and Alonso-Mora (2018) utilized
this method to study the trade-offs between the quality of service and the operation
cost inherent in ridesharing.

1.2. Contribution

In this work, we extend the existing study of ridesharing in large-scale MoD sys-
tems (Fiedler et al., 2018) by analyzing the impact of passenger-vehicle assignment
optimality on system performance. To do this, we use a variant of the vehicle-group
assignment (VGA) method used by Alonso-Mora et al. (2017) and Čáp and Alonso-
Mora (2018). The contribution of this paper is 3-fold:

1) Optimality : We took special care to ensure that all ridesharing assignments and
routes are computed optimally. This is in contrast to Alonso-Mora et al. (2017) who
used a similar solution algorithm to evaluate shareability within the NYC taxi dataset,
but to maintain computational tractability, they computed the routes for groups with
more than four passengers heuristically, and they terminated the assignment optimiza-
tion process after 15 seconds. In this work, we identified and solved several algorithmic
bottlenecks, and consequently, we were able to obtain optimal solutions. As an ex-
ample, we discovered that the size of the optimization problem can be significantly
reduced by an equivalent reformulation that replaces all binary decision variables for
vehicles parked in a station with one non-binary decision variable.

2) Scale: We implemented performance optimizations that enable us to significantly
scale the algorithm and compute optimal ridesharing assignments for instances of un-
precedented size peaking at more than 21 000 active travel requests and 11 000 vehicles.
This is in contrast to Čáp and Alonso-Mora (2018) who proposed the optimal version
of the VGA method but were only able to solve problem instances with a bit less than
500 requests.

3) Impact of Assignment Optimality : We quantify the potential to reduce the fleet
size, the amount of vehicle distance traveled, the quality of the service, and the traffic
load that can be achieved by employing different ridesharing strategies. Specifically,
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we compare the above metrics in five scenarios: a) a present-day transportation us-
ing private vehicles, b) an MoD system without ridesharing, c) an MoD system with
ridesharing based on the IH, d) an MoD system with optimal ridesharing computed
using Vehicle Group Assignment (VGA) method, and e) an MoD system with rideshar-
ing solved by a resource-limited VGA method. This allows us to give a quantitative
answer to the question of how much do we gain by actually taking the effort to compute
optimal assignments?

The performance comparison of the system that uses optimal assignments against
the system that uses IH is particularly interesting, as the latter approach is widely
used in existing studies of large-scale MoD systems (Bischoff et al., 2017; Campbell &
Savelsbergh, 2004; Fiedler et al., 2018), while the former represents the fundamental
bound on system performance.

Our evaluation revealed that optimal ridesharing assignments can reduce the dis-
tance driven in the system by 57 % compared to an MoD system without ridesharing,
and simultaneously, we managed to maintain the passenger travel delay below 4 min-
utes. Furthermore, we found that the optimal ridesharing assignments are considerably
more efficient than the assignments computed by IH. Specifically, in the system that
uses optimal assignments, the total vehicle distance driven is reduced by 20 %, and
simultaneously, average passenger travel delay is reduced by 5 %.

2. Methodology

We use a travel demand model to generate a dataset of all private car trips in Prague.
Then, we design an MoD system that can serve these existing trips with the re-
quired service quality. After that, we implement the considered solution methods for
passenger-vehicle matching. Finally, we simulate various scenarios in multi-agent sim-
ulation and analyze the results.

2.1. Input data

The set of trips that represent the transportation demand is generated by the multi-
agent activity-based model of Prague and Central Bohemian Region (Čertický et al.,
2015). We chose the city of Prague, the Czech Republic for a case study because a) we
have access to the travel demand model for the area and b) because its demand density,
demand structure, and road topology are representative for a large European city. This
is in contrast to previously considered urban areas, such as Manhattan or Singapore,
which due to an extremely high density of travel demand, lead to overly-optimistic
estimates of system performance.

In contrast to traditional four-step demand models (Hensher & Button, 2007), which
use trips as the fundamental modeling unit, activity-based models employ so-called ac-
tivities (e.g., work, shop, sleep) and their sequences to represent the transport-related
behavior of the population. Travel demand then occurs due to the agents’ necessity to
satisfy their needs through activities performed at different places at different times.
These activities are arranged in time and space into sequential daily schedules. Trip
origins, destinations, and times are endogenous outcomes of activity scheduling. The
activity-based approach considers individual trips in context and therefore allows rep-
resenting realistic trip chains.

The model used in this work covers a typical workday in the metropolitan area
of Prague. The population of over 1.3 million is modeled by the same number of
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autonomous, self-interested agents, whose behavior is influenced by their sociodemo-
graphic attributes, current needs, and situational context. Individual decisions of the
agents are implemented using machine learning methods (neural networks, decision
trees, random forests, etc.) and trained using various real-world data sets, including
census data, travel diaries, and other transportation-related surveys. Planned activity
schedules are simulated and tuned, and finally, their temporal, spatial, and structural
properties are validated against additional historical real-world data (origin-destination
matrices and surveys) using the six-step validation framework VALFRAM (Drchal et
al., 2016; Drchal et al., 2015). The model generates over three million trips by all modes
of transport in one 24-hour scenario, out of which there are roughly one million trips
by private vehicles (Figure 1). In this work, we select only the trips realized by private
vehicles in two representative time intervals: the peak dataset includes trips that start
between 06:30 and 08:00, and the off-peak dataset includes trips that start between
10:30 and 12:00. The two datasets contain about 130 000 and 45 000 trips, respectively.

Figure 1.: Demand for personal vehicle traffic in Prague. The start positions of all
vehicle trips are discretized to squares of 200 square meters. Darker color translates to
higher demand, and the color bar has a logarithmic scale.
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Figure 2.: MoD system stations in the city of Prague. There are 73 stations in total,
shown as red circles.

2.2. System model

We adopt a station-based methodology for the design of MoD systems (Wallar et al.,
2019). In this methodology, the vehicles make use of stations that contain facilities such
as temporary parking, refueling/charging, and cleaning. We use 73 stations shown in
Figure 2 chosen such that every point on the road network (excluding roads without
travel requests such as tunnels, highways, etc.) can be reached from one of the stations
within four minutes.

2.2.1. MoD System Design

Vehicles are initialized in stations and leave a station only to serve travel requests.
Whenever a vehicle becomes idle, it starts driving to the nearest station to park there.
The set of all vehicles will be denoted as V = 1, . . . ,m. The stock of vehicles at each
station is stabilized by a vehicle rebalancing process that continuously sends empty
vehicles from stations with a surplus of vehicles to stations that have a shortage of
vehicles. We use the rebalancing policy introduced by Pavone et al. (2012) and later
evaluated by Spieser et al. (2014) in the Singapore MoD case study. Our objective
is to achieve full service availability during the entire experiment, i.e., every request
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should be served. We experimentally determined that in order to be able to serve every
request during the morning peak (see Section 2.1) without ridesharing, the MoD system
requires a total of 68 201 vehicles, and we used the same fleet size also for the off-peak
scenarios. Specifically, to determine the number of vehicles needed to ensure full service
availability, we first created a dedicated vehicle for each request in the station closest
to the requested pickup location. Then, we started iteratively reducing the number of
vehicles in each station until the first vehicle shortage event occurred in the scenario
without ridesharing. This procedure guarantees that there is a sufficient number of
vehicles to serve all requests from the nearest station.

2.2.2. Problem Formulation

Travel requests are modelled as a sequence (t1, o1, d1), (t2, o2, d2), . . . , where ti, oi,
and di are the announcement time, origin point, and destination point of request i,
respectively. The i-th request is revealed only at time ti.

The state of a vehicle v at a particular time point encodes its current position, the
set of passengers currently on-board of the vehicle, and its current plan. The plan of a
vehicle is represented as a sequence of locations p = l1, l2, . . . , where each location li is
either an origin location oi, or a destination location di of request i that is scheduled to
be serviced by the plan. A vehicle plan is valid only if the plan contains origin location
and later destination location for each onboard passenger.

The operational cost of vehicle v when following plan p is denoted c(p, v). For sim-
plicity, we define c(p, v) to be equal to the distance driven by the vehicle when it follows
plan p. The travel delay of request r when it is served by vehicle v following plan p
is denoted qr(p, v) and is defined as the difference between the travel time in a shared
vehicle and a travel time along the fastest route:

qr(p, v) := (tdropoff
r − tr)− δbaseline

r .

Here, tdropoff
r is the time when the request is dropped off under plan p and δbaseline

r is
the duration along direct route from the request’s origin to its destination. Our goal is
to minimize the total operational cost of the system, such that the discomfort of every
passenger is bounded by a constant qmax. That is, we desire to minimize∑

v

c(p, v)

subject to

qr(p, v) ≤ qmax

for each request r, while serving all requests.

2.3. Request-vehicle matching

In an MoD system, new requests dynamically arrive and need to be served. A rideshar-
ing algorithm tries to find the optimal system plan (i.e., a collection of vehicle plans),
such that 1) every request is served, 2) maximum discomfort constraint qmax is re-
spected, and 3) the total operation cost is minimized. This planning procedure is
repeated periodically, and each such planning period is referred to as a batch. During
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Algorithm 1: Insertion Heuristic
input : Current plan pv of each vehicle v that was computed in one of the

previous iterations of the algorithm and the set of new requests Dn,
i.e. , requests announced in the nth batch.

1 for r ∈ Dn do
2 δmin

c ←∞ ; /* min. cost increment */
3 v∗ ← null ;
4 for v ∈ V do
5 for i ∈ 1, . . . , |pv| do
6 for j ∈ x+ 1, . . . , |pv|+ 1 do
7 pnew

v ← pv;
8 insert or to pnew

v before index i;
9 insert dr to pnew

v before index j;
10 δc ← c(pnew

v )− c(pv);
11 if pnew

v is feasible and δc < δmin
c then

12 δmin
c ← δc;

13 p∗ ← pnew
v ;

14 v∗ ← v;

15 if v∗ not null then
16 vehicle v∗ follows plan p∗

one batch, we collect all newly announced requests and execute a planning procedure
that computes request-vehicle matching and corresponding vehicle plans.

The request-vehicle matching can be modeled as a Dial-a-Ride (DARP) problem,
which is known to be NP-hard (Toth & Vigo, 2014). In this work, we implement and
compare two methods for computing such request-vehicle matching. First, we imple-
ment Insertion Heuristic (IH) (Campbell & Savelsbergh, 2004), a popular heuristic al-
gorithm for DARP and other vehicle routing problems. Second, we implement Vehicle-
Group Assignment (VGA) method, (Čáp & Alonso-Mora, 2018), which is a recently
proposed exact solution method for DARP exhibiting good scalability properties.

2.3.1. Insertion Heuristic

The pseudocode of the IH is presented in Algorithm 1. The algorithm is implemented
as follows: For each new request, the IH algorithm attempts to insert the request into
the plan of every vehicle. The current plan of a vehicle v, denoted as pv, is the plan
computed in one of the previous iterations of the algorithm. For a particular vehicle v,
we try all possible indexes i in plan pv to insert pickup of the new request before i and
all possible indexes j, j > i to insert drop off of the new request before j. We denote
such plan as pnew

v . Note that the relative ordering of all locations from pv remains
unchanged in the new plan. Finally, among all plans generated this way, we select the
plan (and the corresponding vehicle) that minimizes the increase in operating cost and
at the same time satisfies the service discomfort constraints.
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Algorithm 2: VGA method
input : The current state of vehicles V and the set of waiting requests Dw.

1 for v ∈ V do
2 Γv ← generate_groups(v, Dw);
3 π∗ ← Solve Problem 1 using Γ1 . . .Γm;
4 All vehicles follow the optimal system plan π∗

2.3.2. Vehicle Group Assignment Method

The VGA method relies on the performance improvement coming from conversion of
a DARP problem to a variant of assignment problem. In this work, we generalize the
formulation by Čáp and Alonso-Mora (2018) to be applicable in an online optimization
setting. That is, we reformulated the algorithm to be able to deal with unknown future
demand.

The VGA method can be divided into two phases: group generation (Algorithm 3)
and vehicle-group assignment (Problem 1). We can see the overall pseudocode in Al-
gorithm 2. Let Dw be a set of waiting requests, i.e., the set of requests that have not
been picked up yet. Further, let group be a set of requests such that for each group
R, R ⊆ Dw. In the first phase, for each vehicle, we compute all groups that can be
serviced by the vehicle without violating the service quality guarantees using the group
generation algorithm (Algorithm 3). The second phase uses ILP (Problem 1) to map
exactly one group to every vehicle so that every request is serviced and the system
plan is optimal. The whole procedure is demonstrated by an example in Figure 3.

We say that a group R is feasible for vehicle v if a feasible plan exists for the vehicle
that serves all requests from R and if all requests onboard vehicle v are members of the
group. We denote a set of all groups feasible for vehicle v by Γv. The key property of
feasible groups, observed by Alonso-Mora et al. (2017), is that if a group R1 is feasible,
all subsets of the group R2 ⊂ R1 are also feasible. This structural property is used to
limit the number of groups we need to test for feasibility in the first part of the VGA
method, the group generation algorithm. To determine if a group is feasible, we define
function f(R, v) that indicates whether the group R is feasible for vehicle v.

The group generation algorithm (Algorithm 3) computes feasible groups for each
vehicle independently. First, the group generation algorithm computes all feasible re-
quests for each vehicle v, i.e., the feasible groups of size 1 marked as Γ1

v. Then, we find
larger groups iteratively by combining the feasible groups from the previous iteration
with all feasible requests. At the end of this step, we have a set of feasible groups for
each vehicle, as it is illustrated in Figure 3a.

The second part of the method finds the assignment of groups to vehicles that
minimizes the total traveled distance resulting from vehicle plans such that for each
vehicle, exactly one of the groups feasible for the vehicle is assigned, and all requests
are served. The assignment of groups to vehicles is formulated as an ILP. There is a
binary variable ξgv for each possible vehicle-group assignment where ξgv = 1 if a group
g ∈ {1, . . . , |Γv|} is assigned to vehicle v and ξgv = 0 otherwise. Using these variables,
the problem is defined as:
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Figure 3.: Example of the VGA method assigning three passengers to two vehicles. In
Figure 3a, we show all possible request groups for each vehicle. The lines between the
request (left) and the group (middle) denote the membership in the group. The lines
between the groups and vehicles denote feasible group assignments. In Figure 3b, the
final assignment between vehicles and groups is shown (bold lines).
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Algorithm 3: Function generate_groups that generates groups for vehicle v.
The boolean-valued function f(R, v) evaluates to true, if vehicle v can serve all
requests from group R.
input : A vehicle v and the set of waiting requests Dw.
output: Set of all feasible groups for the vehicle (Γv).

1 Let Rinit be the set of requests onboard vehicle v;
2 k ← max(|Rinit|, 1);
3 Γk

v ← {Rinit};
4 for r ∈ Dw do
5 if f({r}, v) then
6 Γ1

v ← {{r}} ∪ Γ1
v;

7 while Γk
v 6= ∅ do

8 Γk+1
v ← ∅;

/* not check groups repeatedly */
9 checked← ∅;

10 forall R ∈ Γk
v , {r} ∈ Γ1

v do
11 if (R ∪ {r}) /∈ checked and ∀R′ ⊂ (R ∪ {r}), |R′| = k : R′ ∈ Γk

v and
f(R ∪ {r}, v) then

12 Γk+1
v ← (R ∪ {r}) ∪ Γk+1

v ;
13 checked← checked ∪ (R ∪ {r})
14 k ← k + 1;

15 if |Rinit| > 0 then
16 Γ1

v ← ∅;
17 Γv ← {∅} ∪ Γ1

v ∪ Γ2
v ∪ · · · ∪ Γk

v ;

Problem 1 (Vehicle-group Assignment)

min

m∑
v=1

|Γv|∑
g=1

ξgvc(p
g∗
v ),

subject to

|Γv|∑
g=1

ξgv = 1 ∀v ∈ V (1)

m∑
v=1

|Γv|∑
g=1

1Rg
(r)ξgv = 1 ∀r ∈ Dw (2)

In the objective function, pg∗v denotes the optimal plan for vehicle v to serve groupRg.
Constraint 1 states that only one group can be assigned to each vehicle. Constraint 2
ensures that each request is served by exactly one vehicle plan. The indicator function
1Rg

(r) is equal to 1 if the request r is a member of the group Rg and 0 otherwise.
By solving the above described ILP, we obtain an optimal assignment of vehicles to
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feasible groups (see Figure 3b for example assignment). This assignment can be directly
translated into vehicle plans that replace vehicle plans from the previous iterations.

2.4. Ridesharing Implementation

For our case study, we implemented the IH and the VGA method in Java. The ILP
appearing in the VGA method is solved using Gurobi.1 The request-vehicle matching
procedure is run every 30 s of the simulation for both IH and VGA. For both methods,
the maximum delay constraint is set to 4 min, and the vehicle capacity is set to five
passengers. The ILP solver in the VGA method computes the optimal solution with the
maximum optimality gap of 0.02 %. Note that both the vehicle-group assignment and
the group generation processes are very complex combinatorial problems. In particular,
the group generation requires a lot of computational time because the function f(R, v)
needs to be implemented as an exhaustive search to guarantee optimality. In order to
demonstrate the anytime property of the VGA method and its ability to achieve dif-
ferent trade-offs between ridesharing efficiency and computational cost, we also tested
a more resource-constrained setup of the VGA method with ILP solver runtime lim-
ited 30 s (using the TimeLimit parameter of the Gurobi solver) and group generation
time-limited to 30 ms per vehicle.

We compute passenger-vehicle assignments together with the simulation sequen-
tially, and thus from a simulation perspective, the ridesharing computation is an in-
stantaneous event. In the case of practical deployment, one could achieve sufficiently
low wall-clock running time by computing on a computational cluster with many CPU
cores because the VGA algorithm is easily parallelizable.

Finally, we modified the VGA method to leverage the specific properties of the
station-based MoD system. If the groups were generated for all vehicles that are parked
in the stations, both the group generation and the vehicle group assignment process
would become computationally intractable. Therefore, we reduce the number of vehicles
for which the groups are generated as follows: First, we observe that we need at most as
many vehicles as the number of waiting requests since, in the worst case, each request
will be transported in a dedicated vehicle from the nearest station. Second, we exploit
symmetries in the solution space. We observe that vehicles parked in a station can be
arbitrarily relabeled without any effect on the solution quality. Therefore, we generate
only one set of feasible groups that represents feasible groups for any vehicle currently
parked in the station. Consequently, in the assignment ILP, we can relax Constraint 1
corresponding to this set of feasible groups to allow selecting as many groups as there
are vehicles parked in the station.

2.5. Simulation

In our experiments, we simulated the following five scenarios:

• Present state: All the requests are served by private vehicles. The vehicles are
parked at the request’s start location, i.e., there is no delay. The number of used
vehicles is equal to the number of requests, and the total distance traveled is
equal to the sum of the shortest paths between the origins of all requests and
their destinations.
• MoD w/o ridesharing : MoD system without ridesharing, the plans are computed

1http://www.gurobi.com/
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using IH, and the vehicle capacity is set to one, i.e., the passengers are not allowed
to share rides.
• MoD w. IH Ridesharing : MoD system with ridesharing computed by the IH.
• MoD w. VGA Ridesharing (optimal): MoD system with ridesharing computed

by the VGA method to optimality.
• MoD w. VGA Ridesharing (runtime limited): MoD system with ridesharing com-

puted by the VGA method, with the group generation time-limited to 30 ms per
vehicle and the maximum ILP solver time of 30 s.

We simulate a morning peak time interval 7:00-8:00 and an off-peak time interval
11:00-12:00. To avoid the “cold start” artifacts, the simulation begins 30 minutes before
the analyzed time interval, at 6:30 and 10:30, respectively, but for subsequent analysis,
we only use the data captured after the thirty-minute start period. Including the 30 min
warm-up time, there are 122 473 requests in the morning peak, and 42 633 requests in
the off-peak experiment.

The scenarios were simulated in the multi-agent transportation simulation frame-
work AgentPolis2. The simulation environment consists of a) road network composed
of nodes (crossroads) and edges (road segments), b) on-demand vehicle stations, c)
on-demand vehicle agents, and d) passenger agents. In Figure 4, we show a screenshot
of the AgentPolis visualization captured during one of the simulation experiments.

(a) (b)
Video: https://sum.fel.cvut.cz/agentpolis/

Figure 4.: AgentPolis visualization of the simulated traffic in Prague during the traffic
peak. Figure 4a (left): the entire city of Prague in the simulation. A more detailed
(zoomed in) view can be seen in Figure 4b (right). Vehicles are represented as blue
triangles, with a number indicating the onboard passenger count. Red circles represent
passengers. Some vehicles are highlighted, and their current plan is drawn with a yellow
line. The pick-up and drop off locations of the remaining actions are marked with cyan
and pink circles, respectively, with a number indicating passenger ID. Note that in
Figure 4b, there are some passengers already driving in two of the vehicles, so the
number of drop-off locations is greater than the number of pick-up locations. The
green triangles are vehicles that travel empty between stations (rebalancing).

We use an OpenStreetMap3 road network consisting of 158 674 edges and 63 995
nodes. The speed limit for each road segment was also taken from OpenStreetMap

2https://github.com/aicenter/agentpolis
3https://www.openstreetmap.org/
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Mobility-on-Demand

Present No Ridesh. IH VGA opt. VGA lim.

Total veh. dist. (km) 757 984 1 002 661 537 500 430 347 463 276

Avg. delay (s) - 132 190 180 176

Avg. dens. (veh/km) 0.0078 0.0086 0.0054 0.0046 0.0050

Congested seg. 9 27 2 0 0

Heavily loaded seg. 170 303 35 15 22

Used Vehicles 122 473 33 057 15 553 13 925 14 744

Avg. comp. time (ms) - 12 10 176 039 33 861

Table 1.: Main results from the considered scenarios during the morning peak (7:00-
8:00). Congested segments are segments on which traffic density is above critical den-
sity, and heavily loaded segments are segments with density above 50 % of the critical
density.

data, and missing entries were generated according to following rules based on the
local legislation: highway: 130 km/h, living street: 20 km/h, otherwise: 50 km/h.

During initialization, we create vehicle stations, each filled with the pre-determined
number of vehicles. During the simulation, we are creating passenger agents for each
request at its announcement time and origin point. Each passenger is then picked up by
the assigned on-demand vehicle, driven to the desired location, dropped off, and finally
released from the simulation. The vehicle to serve the passenger is selected using the
passenger-vehicle matching procedure (see Section 2.3), either IH or VGA. Note that
each passenger can be either matched to one of the empty vehicles parked in a station
or to a vehicle already serving some previously assigned requests. Each vehicle executes
its plan until it becomes empty (i.e., all assigned passengers have been dropped off),
then it drives to park itself in the nearest station.

3. Results

In this section, we present the simulation results. To run the experiments, we used a
desktop system with Intel Core i7-8700K CPU (3.7 GHz, 6/12 physical/virtual cores)
and 64 GB RAM.

3.1. Operating Cost and Computational Time

Tables 1 and 2 summarize the main results of the experiments. As explained in Sec-
tion 2.2, we computed the size of the fleet to always guarantee full service availability.
Since the service level is always 100 %, we do not show this metric in result tables
and plots. The first row shows the value of our optimization criterion, i.e., the system
operation cost measured in terms of total distance driven by the fleet vehicles. We can
see that when using the VGA method instead of IH during the morning peak, we can
save almost 107 153 km of vehicle distance driven, which represents more than 20 %
reduction. Compared to the “no ridesharing" scenario and to the present state, the
VGA method saves over 572 314 km (57 %) and 327 637 km (43 %), respectively. Even
in off-peak time, the VGA method can save about 17 % of the total distance driven
compared to the IH, and about 48 % compared to the “no ridesharing" scenario.

The VGA method is considerably slower than IH. The average computational time
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Mobility-on-Demand

Present No Ridesh. IH VGA opt. VGA lim.

Total veh. dist. (km) 283 415 344 382 210 879 175 591 178 154

Avg. delay (s) - 131 191 179 179

Avg. density (veh/km) 0.0045 0.0047 0.0034 0.0031 0.0031

Congested seg. 0 0 0 0 0

Heavily loaded seg. 9 11 4 1 1

Used Vehicles 42 633 7670 4641 4748 4877

Avg. comp. time (ms) - 1 3 5431 4188

Table 2.: Main results from the considered scenarios, off-peak (11:00-12:00). Congested
segments are segments on which traffic density is above critical density, and heavily
loaded segments are segments with density above 50 % of the critical density.

per one optimization batch in the peak scenario was about 177 s, compared to 10 ms
for the IH. Such a difference in the computational time may look extreme, but we
have to consider the scale of the scenarios that were solved to optimality using the
VGA method. The largest assignment problems (batches) contained more than 3000
waiting requests, 21 000 active requests (including passengers already driving to their
destination), and 11 000 vehicles.

The runtime-limited experiment shows that we can speed up the VGA method
significantly by merely limiting the computational time for the group generation and
the solver. In the VGA limited experiment, we reduce the computation time more than
five-fold over the unconstrained version of the VGA method while still reducing the
total traveled distance by more than 14 % over the IH. In the off-peak scenario, the
limited version of the VGA method performs almost the same as the unconstrained
version because the time limits are rarely reached.

3.2. Trade-off Between Operating Cost and Passenger Discomfort

Another metric that we tracked is the service quality, represented by the passenger
delay relative to transportation by the private vehicle. From Tables 1 and 2, we can
see that the optimal VGA method saves about 5 % time over the IH in both peak and
off-peak experiments. The trade-off between the operating cost (distance traveled) and
the service quality (average delay) is depicted in Figure 5.

A more detailed overview of the passenger delays with a delay histogram for the four
MoD scenarios in both time windows is in Figure 6. It is clear that for both peak and
off-peak time, the VGA method reduces the passenger delay resulting from ridesharing
compared to the IH. Nevertheless, even in the case of the VGA method, there is a
noticeably greater delay compared to the no ridesharing scenario, where the delay can
occur only before the passenger is picked up or over the present state, where there is
no delay because a car is assumed to be available at the origin of each passenger trip.

3.3. Impact of MoD on Congestion

In addition to the operational cost, we measured the impact of the MoD system on
congestion. We consider road segments with traffic density above the critical density
of 0.08 vehicle m−1 (Tadaki et al., 2015) as congested. Segments with density above
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Figure 7.: Traffic density map of the four scenarios during the morning peak. Darker
colors signalize higher traffic density. Black color means that the road segment is con-
gested.

Figure 8.: Traffic density map of the four scenarios during the off-peak time. Darker
colors signalize higher traffic density. Black color means that the road segment is con-
gested.

0.04 vehicle m−1 are considered as heavily loaded. As you can see in Table 1, in the
morning peak, using the optimal VGA method reduces the average traffic density by
14 % over the ridesharing that uses IH, and by 46 % and 41 % over the MoD without
ridesharing and the current state, respectively. We can see the same trend when we
look at the number of congested and heavily loaded segments. In the off-peak experi-
ment, the situation is similar, but the absolute numbers indeed show that there is no
congestion in any of the scenarios. Finally, Figures 7 and 8 depict traffic densities on
every road for all five scenarios.

3.4. Fleet Size and Vehicle Occupancy

Also, for each scenario, we recorded the number of vehicles that were used at least
once during the simulation. For the present state scenario, we consider a dedicated
vehicle for each request. Therefore, the number of used vehicles is equal to the number
of requests. The results confirm that the VGA method indeed makes the MoD system
more efficient. During peak-hour, the optimal VGA used 1628 (10 %) fewer vehicles
than the IH. Compared to the MoD system without ridesharing, the MoD system with
optimal ridesharing used about one-third of the vehicle fleet, and compared to the
present state system, the reduction is almost thirteen-fold.

In the off-peak time, however, we registered that the optimal VGA method uses
about 2 % more vehicles than IH. By analyzing the simulation output, we found an
explanation for this perhaps surprising result. First, counterintuitively, it is possible
that a suboptimal vehicle assignment that generates plans with longer total distance
can lead to fewer vehicles being used, as it is illustrated in Figure 9. Second, by ana-
lyzing the vehicle trips in both IH and VGA scenario, we found that such situations
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Figure 9.: Example of the capital cost paradox. In Figures 9a and 9b, we can see two
iterations of the IH. In Figure 9a, there are three vehicles: vehicles A and B, and vehicle
C that resides in the station, representing a potentially unlimited pool of vehicles.
Also, there are two passengers (1 and 2), that request the travel from their current
locations P1 and P2 to their destinations D1 and D2 (denoted by dashed arrows).
Solid arrows denote the plans for both vehicles computed by the first iteration of the
IH. In Figure 9b, there is the same scenario in the next iteration. Both cars moved
by five steps in the grid, and also, a new request appeared. We can see the new plans
generated by the second iteration of IH too. The second set of Figures ((9c) and (9d))
shows the exact same two iterations solved by the VGA method. Note that although
we saved one segment of traveled distance (vehicles traveled 14 segments in the grid
combined compared to 15 segments in case of the IH), we used one extra vehicle (vehicle
C) that was not needed in the IH scenario, thus effectively increased the required fleet.

occur frequently due to unbalanced demand. In other words, the optimal method uses
more vehicles not despite, but because its plans are more operating cost-efficient: the
vehicles simply serve requests too quickly, which increase the chance of ending up in the
areas with lower demand, where they need to wait a long time before another request
appears nearby. This reminds us that to fully understand MoD systems, we need to
study not only operation cost vs. service quality trade-offs, but also operation-cost vs.
capital cost trade-offs associated with different design and control strategies.

Next, we measured vehicle occupancy: Figure 10 shows the occupancy histogram for
the four compared scenarios. We can see that vehicle occupancy is the highest when
using the optimal method in both peak and off-peak scenarios.

3.5. Computational Time Analysis of the VGA Method

Finally, we analyzed various metrics for the VGA scenarios. In Figure 11, we show
the evolution of the number of active requests (top), maximum computed group size
(middle), and computational time for group generation and group-vehicle assignment
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Figure 10.: Occupancy histogram of all five scenarios.

process (bottom) during the peak scenarios, including the warm-up period. Looking at
the maximum group size, we see that the 30 ms limit for the group generation results
in groups of the maximum size of 5-7 in most batches, while in the optimal scenario,
the maximum group size has high variance and goes up to 11.

When we compare the maximum group size with the computation times, we can
obtain other valuable insights: a) the group generation time is strongly dependent on
the maximum group size, and thus it has low variance in the limited scenario and high
variation in the optimal scenario, b) the solver time does not depend on maximum
group generation time much, and it is highly variable in both limited and optimal
variant, and c) the group generation time dominates in the optimal scenario. These
findings suggest that a VGA method with a limit only on group generation time could
achieve an even better trade-off between the solution cost and computational time.

4. Conclusion

Urban MoD systems represent a promising alternative to private car transport that
can reduce the number of vehicles by employing massive vehicle sharing. To further im-
prove the efficiency of an MoD system, the system operator can implement large-scale
ridesharing, where multiple passengers are transported in one vehicle simultaneously.
Ridesharing can increase vehicle occupancy and reduce the total distance driven in the
system, but finding the optimal assignment of passengers to vehicles is a hard combi-
natorial problem. Traditional exact algorithms for vehicle routing are only applicable
to the instances that are orders of magnitude smaller than instances occurring in the
metropolitan-scale MoD systems. Therefore simpler heuristic methods for ridesharing
are often employed. Recently, the Vehicle-Group Assignment (VGA) has been shown
to be capable of solving ridesharing problems with up to 500 vehicles and requests
optimally.

In this work, we implemented algorithmic improvements that allowed us to suc-
cessfully apply the VGA method to a metropolitan-scale MoD system. In contrast to
previous studies that sacrifice either scale or optimality, we can regularly compute op-
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timal assignments of more than 21 000 active requests to over 10 000 vehicles. Also, we
study the trade-off between the MoD system efficiency and computational performance
for several other passenger-vehicle assignment methods. Specifically, we compared five
different scenarios: 1) the "status quo" system with private vehicles, 2) MoD system
without ridesharing, 3) MoD system with ridesharing using IH, 4) MoD system with
ridesharing using optimal assignments computed by the VGA method, and 5) MoD
system with ridesharing that uses a resource-limited version of the VGA method. For
all five scenarios, we measured operation cost (total vehicle distance driven), service
quality (average delay), fleet size, and congestion levels. Also, we measured the com-
putational time for ridesharing methods, and in the case of the VGA method, we
performed an analysis of the contribution of different sub-problems to the overall com-
putational time.

The results confirmed that ridesharing dramatically increases the efficiency of an
MoD system: by employing the VGA method, we reduced the total distance driven in
the system by more than 57 % compared to the present state. Moreover, we demon-
strated that the optimal ridesharing assignments are significantly more efficient than
assignments computed by the heuristic approach. Our results show that by using the
optimal method instead of the IH, we can reduce the total distance traveled by more
than 20 % while simultaneously reducing the average passenger delay by 5 %. Finally,
our resource-constrained VGA method provides more than 14 % travel distance saving
over IH while reducing the computational time by more than 80 %.

We believe that these findings bring valuable insight into the potential of ridesharing
in MoD systems and that it can help both researchers and practitioners to understand
the trade-offs between different MoD system operating policies. In future work, we
plan to include more advanced metaheuristics in the comparison. Also, we plan to
investigate the process of MoD system design, including fleet-sizing, fleet composition,
and MoD operation from a multi-objective perspective, studying trade-offs between
capital cost, operation cost, and service quality.
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Figure 11.: Computational efficiency analysis of the VGA scenarios during the peak
time. In the top figure, we show the evolution of the number of active requests over
time. We can see that after the warm-up time, the number of active requests in the
system is stable, only slowly decreasing. The middle figure displays the maximum
group size that was computed in each batch. The bottom figure demonstrates how the
computational time, consisting of the group generation time and the ILP solver time,
change during the simulation.
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