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Abstract

This paper studies the estimation of large-scale optimal transport maps (OTM),
which is a well known challenging problem owing to the curse of dimensionality.
Existing literature approximates the large-scale OTM by a series of one-dimensional
OTM problems through iterative random projection. Such methods, however, suffer
from slow or none convergence in practice due to the nature of randomly selected
projection directions. Instead, we propose an estimation method of large-scale OTM
by combining the idea of projection pursuit regression and sufficient dimension
reduction. The proposed method, named projection pursuit Monge map (PPMM),
adaptively selects the most “informative” projection direction in each iteration.
We theoretically show the proposed dimension reduction method can consistently
estimate the most “informative” projection direction in each iteration. Furthermore,
the PPMM algorithm weakly convergences to the target large-scale OTM in a
reasonable number of steps. Empirically, PPMM is computationally easy and
converges fast. We assess its finite sample performance through the applications of
Wasserstein distance estimation and generative models.

1 Introduction

Recently, optimal transport map (OTM) draws great attention in machine learning, statistics, and
computer science due to its close relationship to generative models, including generative adversarial
nets [19], the “decoder” network in variational autoencoders [27], among others. In a generative
model, the goal is usually to generate a “fake” sample, which is indistinguishable from the genuine
one. This is equivalent to find a transport map φ from random noises with distribution pX (e.g.,
Gaussian distribution or uniform distribution) to the underlying population distribution pY of the
genuine sample, e.g., the MNIST or the ImageNet dataset. Nowadays, generative models have been
widely-used for generating realistic images [12, 33], songs [4, 13] and videos [32, 53]. Besides
generative models, OTM also plays essential roles in various machine learning applications, say color
transfer [14, 41], shape match [50], transfer learning [10, 38] and natural language processing [38].

Despite its impressive performance, the computation of OTM is challenging for a large-scale sample
with massive sample size and/or high dimensionality. Traditional methods for estimating the OTM
includes finding a parametric map and using ordinary differential equations [8, 2]. To address the
computational concern, recent developments of OTM estimation have been made based on solving
linear programs [44, 37]. Let {xi}ni=1 ∈ R

d and {yi}ni=1 ∈ R
d be two samples from two continuous

probability distributions functions pX and pY , respectively. Estimating the OTM from pX to pY by
solving a linear program requiring O(n3 log(n)) computational time for fixed d [38, 47]. To alleviate
the computational burden, some literature [11, 17, 1, 21] pursued fast computation approaches of the
OTM objective, i.e., the Wasserstein distance. Another school of methods aims to estimate the OTM
efficiently when d is small, including multi-scale approaches [35, 18] and dynamic formulations
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[48, 36]. These methods utilize the space discretization, thus are generally not applicable in high-
dimensional cases.

The random projection method (or known as the radon transformation method) is proposed to estimate
OTMs efficiently when d is large [39, 40]. Such a method tackles the problem of estimating a d-
dimensional OTM iteratively by breaking down the problem into a series of subproblems, each of
which finds a one-dimensional OTM using projected samples. Denote S

d−1 as the d-dimensional
unit sphere. In each iteration, a random direction θ ∈ S

d−1 is picked, and the one-dimensional OTM
is then calculated between the projected samples {x⊺

i θ}ni=1 and {y⊺

i θ}ni=1. The collection of all the
one-dimensional maps serves as the final estimate of the target OTM. The sliced method modifies
the random projection method by considering a large set of random directions from S

d−1 in each
iteration [7, 42]. The “mean map” of the one-dimensional OTMs over these random directions is
considered as a component of the final estimate of the target OTM. We call the random projection
method, the sliced method, and their variants as the projection-based approach. Such an approach
reduces the computational cost of calculating an OTM from O(n3 log(n)) to O(Kn log(n)), where
K is the number of iterations until convergence. However, there is no theoretical guideline on the
order of K. In addition, the existing projection-based approaches usually require a large number of
iterations to convergence or even fail to converge. We speculate that the slow convergence is because
a randomly selected projection direction may not be “informative”, leading to a one-dimensional
OTM that failed to be a decent representation of the target OTM. We illustrate such a phenomenon
through an illustrative example as follows.

Figure 1: Illustration for the “informative” projection direction

An illustrative example. The
left and right panels in Figure
1 illustrates the importance of
choosing the “informative” pro-
jection direction in OTM estima-
tion. The goal is to obtain the
OTM φ∗ which maps a source
distribution pX (colored in red)
to a target distribution pY (col-
ored in green). For each panel,
we first randomly pick a projec-
tion direction (black arrow) and
obtain the marginal distributions of pX and pY (the bell-shaped curves), respectively. The one-
dimensional OTM then can be calculated based on the marginal distributions. Applying such a map
to the source distribution yields the transformed distribution (colored in blue). One can observe that
the transformed distributions are significantly different from the target ones. Such an observation
indicates that the one-dimensional OTM with respect to a random projection direction may fail to
well-represent the target OTM. This observation motivates us to select the “informative” projection
direction (red arrow), which yields a better one-dimensional OTM.

Our contributions. To address the issues mentioned above, this paper introduces a novel statistical
approach to estimate large-scale OTMs. The proposed method, named projection pursuit Monge map
(PPMM), improves the existing projection-based approaches from two aspects. First, PPMM uses a
sufficient dimension reduction technique to estimate the most “informative” projection direction in
each iteration. Second, PPMM is based on projection pursuit [16]. The idea is similar to boosting that
search for the next optimal direction based on the residual of previous ones. Theoretically, we show
the proposed method can consistently estimate the most “informative” projection direction in each
iteration, and the algorithm weakly convergences to the target large-scale OTM in a reasonable number
of steps. The finite sample performance of the proposed algorithm is evaluated by two applications:
Wasserstein distance estimation and generative model. We show the proposed method outperforms
several state-of-the-art large-scale OTM estimation methods through extensive experiments on various
synthetic and real-world datasets.

2 Problem setup and methodology

Optimal transport map and Wasserstein distance. Denote X ∈ R
d and Y ∈ R

d as two continuous
random variables with probability distribution functions pX and pY , respectively. The problem of
finding a transport map φ : Rd → R

d such that φ(X) and Y have the same distribution, has been
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widely-studied in mathematics, probability, and economics, see [14, 50, 43] for examples of some
new developments. Note that the transport map between the two distributions is not unique. Among
all transport maps, it may be of interest to define the “optimal” one according to some criteria. A
standard approach, named Monge formulation [52], is to find the OTM1 φ∗ that satisfies

φ∗ = inf
φ∈Φ

∫

Rd

‖X − φ(X)‖pdpX ,

where Φ is the set of all transport maps, ‖ · ‖ is the vector norm and p is a positive integer. Given the
existence of the Monge map, the Wasserstein distance of order p is defined as

Wp(pX , pY ) =

(∫

Rd

‖X − φ∗(X)‖pdpX

)1/p

.

Denote φ̂ as an estimator of φ∗. Suppose one observe X = (x1, . . . ,xn)
⊺ ∈ R

n×d and Y =
(y1, . . . ,yn)

⊺ ∈ R
n×d from pX and pY , respectively. The Wasserstein distance Wp(pX , pY ) thus

can be estimated by

Ŵp(X,Y) =

(
1

n

n∑

i=1

‖xi − φ̂(xi)‖p
)1/p

.

Projection pursuit method. Projection pursuit regression [16, 24, 15, 26] is widely-used for high-
dimensional nonparametric regression models which takes the form.

zi =

s∑

j=1

fj(β
⊺

j xi) + ǫi, i = 1, . . . , n, (1)

where s is a hyper-parameter, {zi}ni=1 ∈ R is the univariate response, {xi}ni=1 ∈ R
d are covariates,

and {ǫi}ni=1 are i.i.d. normal errors. The goal is to estimate the unknown link functions {fj}sj=1 :

R→ R and the unknown coefficients {βj}sj=1 ∈ R
d.

The additive model (1) can be fitted in an iterative fashion. In the kth iteration, k = 2, . . . , s,

denote {(f̂j , β̂j)}k−1
j=1 the estimate of {(fj ,βj)}k−1

j=1 obtained from previous k − 1 iterations. Denote

R
[k]
i = zi−

∑k−1
j=1 f̂j(β̂

⊺

j xi), i = 1, . . . , n, the residuals. Then (fk,βk) can be estimated by solving

the following least squares problem

min
fk,βk

n∑

i=1

[
R

[k]
i − fk(β

⊺

kxi)
]2

.

The above iterative process explains the intuition behind the projection pursuit regression. Given
the model fitted in previous iterations, we fit a one dimensional regression model using the current
residuals, rather than the original responses. We then add this new regression model into the fitted
function in order to update the residuals. By adding small regression models to the residuals, we
gradually improve fitted model in areas where it does not perform well.

The intuition of projection pursuit regression motivates us to modify the existing projection-based
OTM estimation approaches from two aspects. First, in the kth iteration, we propose to seek a new
projection direction for the one-dimensional OTM in the subspace spanned by the residuals of the
previously k − 1 directions. On the contrary, following a direction that is in the span of used ones
can lead to an inefficient one dimensional OTM. As a result, this “move” may hardly reduce the
Wasserstein distance between pX and pY . Such inefficient “moves” can be one of the causes of
the convergence issue in existing projection-based OTM estimation algorithms. Second, in each
iteration, we propose to select the most “informative” direction with respect to the current residuals
rather than a random one. Specifically, we choose the direction that explains the highest proportion
of variations in the subspace spanned by the current residuals. Intuitively, this direction addresses
the maximum marginal “discrepancy” between pX and pY among the ones that are not considered
by previous iterations. We propose to estimate this most “informative” direction with sufficient
dimension reduction techniques introduced as follows.

1Such a map is thus also called the Monge map.
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Sufficient dimension reduction. Consider a regression problem with univariate response Z and
a d-dimensional predictor X . Sufficient dimension reduction for regression aims to reduce the
dimension of X while preserving its regression relation with Z. In other words, sufficient dimension
reduction seeks a set of linear combinations of X , say B

⊺X with some B ∈ R
d×q and q ≤ d, such

that Z depends on X only through B
⊺X , i.e., Z ⊥⊥ X|B⊺X . Then, the column space of B, denoted

as S(B) is called a dimension reduction space (DRS). Furthermore, if the union of all possible DRSs
is also a DRS, we call it the central subspace and denote it as SZ|X . When SZ|X exists, it is the
minimum DRS. We call a sufficient dimension reduction method exclusive if it induces a DRS that
equals to the central subspace. Some popular sufficient dimension reduction techniques include
sliced inverse regression (SIR) [30], principal Hessian directions (PHD) [31], sliced average variance
estimator (SAVE) [9], directional regression (DR) [29], among others.

Figure 2: The most “informative” projection di-
rection ensures the projected samples (illustrated
by the distributions colored in red and blue, re-
spectively) have the largest “discrepancy”.

Estimation of the most “informative” projec-
tion direction. Consider estimating an OTM be-
tween a source sample and a target sample. We
first form a regression problem by adding a bi-
nary response, which equals zero for the source
sample and one for the target sample. We then uti-
lize the sufficient dimension reduction technique
to select the most “informative” projection direc-
tion. To be specific, we select the projection di-
rection ξ ∈ R

d as the eigenvector corresponds to
the largest eigenvalue of the estimated B. The
direction ξ is most “informative” in the sense that,
the projected samples Xξ and Yξ have the most
substantial “ discrepancy.” The metric of the “dis-
crepancy” depends on the choice of the sufficient
dimension reduction technique. Figure 2 gives a
toy example to illustrate this idea. In this paper,
we opt to use SAVE for calculating B, and hence
the “discrepancy” metric is the difference between Var(Xξ) and Var(Yξ). Empirically, we find other
sufficient dimension reduction techniques, like PHD and DR, also yield similar performance. The
SIR method, however, yields inferior performance, since it only considers the first moment. The
Algorithm 1 below introduces our estimation method of “informative" projection direction in detail.

Algorithm 1 Select the most “informative” projection direction using SAVE

Input: two standardized matrix X ∈ R
n×d and Y ∈ R

n×d

Step 1: calculate Σ̂ ∈ R
d×d, i.e., the sample variance-covariance matrix of

(
X

Y

)

Step 2: calculate the sample variance-covariance matrices of XΣ̂
−1/2 and YΣ̂

−1/2, denoted as

Σ̂1 ∈ R
d×d and Σ̂2 ∈ R

d×d, respectively
Step 3: calculate the eigenvector ξ ∈ R

d, which corresponding to the largest eigenvalue of the

matrix ((Σ̂1 − Id)
2 + (Σ̂2 − Id)

2)/4

Output: the final result is given by Σ̂
−1/2ξ/||Σ̂−1/2ξ||, where || · || denotes the Euclidean norm

Projection pursuit Monge map algorithm. Now, we are ready to present our estimation method
for large-scale OTM. The detailed algorithm, named projection pursuit Monge map, is summarized
in Algorithm 2 below. In each iteration, the PPMM applies a one-dimensional OTM following the
most “informative” projection direction selected by the Algorithm 1.

Computational cost of PPMM. In Algorithm 2, the computational cost mainly resides in the first
two steps within each iteration. In step (a), one calculates ξk using Algorithm 1, whose computational
cost is of order O(nd2). In step (b), one calculates a one-dimensional OTM using the look-up table,
which is simply a sorting algorithm [40, 38].

The computational cost for step (b) is of order O(n log(n)). Suppose that the algorithm converges

after K iterations. The overall computational cost of Algorithm 2 is of order O
(
Knd2 +Kn log(n)

)
.

Empirically, we find K = O(d) works reasonably well. When log(n)1/2 ≤ d ≪ n2/3, the order

of computational cost of PPMM is o
(
n3 log(n)

)
which is smaller than the computational cost of

4



Algorithm 2 Projection pursuit Monge map (PPMM)

Input: two matrix X ∈ R
n×d and Y ∈ R

n×d

k ← 0, X[0] ← X

repeat
(a) calculate the projection direction ξk ∈ R

d between X
[k] and Y (using Algorithm 1)

(b) find the one-dimensional OTM φ(k) that matches X[k]ξk to Yξk (using look-up table)

(c) X[k+1] ← X
[k] + (φ(k)(X[k]ξk)−X

[k]ξk)ξ
⊺

k and k ← k + 1
until converge

The final estimator is given by φ̂ : X→ X
[k]

the naive method for calculating OTMs. When d ≤ log(n)1/2, the order of computational cost
reduces to O (Kn log(n)) which is faster than the exiting projection-based methods given PPMM
converges faster. The memory cost for Algorithm 2 mainly resides in the step (a), which is of the
order O(Knd2).

3 Theoretical results

Exclusiveness of SAVE. For mathematical simplicity, we assume E[X] = E[Y ] = 0d. When
E[X] 6= E[Y ], one can use a first-order dimension reduction method like SIR to adjust means before
applying SAVE.

Denote W = (X +Y )/2, ΣW = Var(W ), and Z = WΣ
−1/2
W . For a univariate continuous response

variable R, one can approximate the central subspace SR|Z by SSAVE, which is the population version
of the dimension reduction space of SAVE. To be specific, SSAVE is the column space of matrix

E[Var(Z|R)− Id]
2 =

1

4

{
E[Var(XΣ

−1/2
W |R)− Id]

2 + E[Var(Y Σ
−1/2
W |R)− Id]

2
}
,

where the above equation used the fact that X ⊥⊥ Y .

Assumption 1. Let P be the projection onto the central space SR|Z with respect to the inner project

a · b = a⊺b. For any nonzero vectors u, v ∈ R
d, such that u is orthogonal to SR|Z and v ∈ SR|Z , we

assume

(a) E(u⊺Z|PZ) is a linear function of Z;

(b) Var(u⊺Z|PZ) is a nonrandom number;

(c) Let (Z̃, R̃) be an independent copy of (Z,R). E
[
v⊺(Z − Z̃)2|R, R̃)

]
is non degenerate;

that is, it is not equal almost surely to a constant.

Theorem 1. Let R be a univariate continuous response variable. Under Assumption 1, the dimension
reduction space induced by SAVE is exclusive. In other words, SSAVE = SR|Z .

Consistency of the most “informative” projection direction. Let Σ̂1 and Σ̂2 be the sample covari-
ance matrix estimator of Σ1 and Σ2, respectively. Denote

ΣSAVE =
1

4

[
(Σ1 − Id)

2 + (Σ2 − Id)
2
]

and Σ̂SAVE =
1

4

[
(Σ̂1 − Id)

2 + (Σ̂2 − Id)
2
]
.

Denote ξ1 and ξ̂1 the eigenvectors correspond to the largest eigenvalues of ΣSAVE and Σ̂SAVE,
respectively. Further, denote r = Rank(ΣSAVE), the rank of ΣSAVE.

Assumption 2. Let {xi,yi}ni=1 be an i.i.d. sample of (X,Y ). We assume that

(a) Denote xij and yik the jth and kth component of xi and yi, respectively. E(xijyik) = 0
for all 1 ≤ i ≤ n and 1 ≤ j, k ≤ d;

(b) There are r1, r2 > 0 and b1, b2 > 0 such that, for any s > 0, 1 ≤ i ≤ n and 1 ≤ j ≤ d,

P (|xij | > s) ≤ exp {−(s/b1)r1} and P (|yij | > s) ≤ exp {−(s/b2)r2} ;
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(c) Let λ1 . . . , λd be the eigenvalues of ΣSAVE in descending order. There exist positive
constants cl cu and c3 such that

cl ≤ min
1≤l≤r−1

(λl − λl+1)d
−1/2 ≤ cu, and 0 ≤ λr+1 < c3.

Theorem 2 shows that Algorithm 1 can consistently estimate the most “informative” projection
direction. The Op in Theorem 2 stands for order in probability, which is similar to O but for random
variables.

Theorem 2. Under Assumption 2, the SAVE estimator of most “informative” projection direction
satisfies,

‖ξ̂1 − ξ1‖∞ = Op(r
4

√
log d

n
+ r4
√
d
log d

n
), as n, d→∞.

Weak convergence of PPMM algorithm. Denote φ∗ as the d-dimensional optimal transport map

from pX to pY and φ(K) as the PPMM estimator after K iterations, i.e. φ(K)(X) = X
[K]. The

following theorem gives the weak convergence results of the PPMM algorithm.

Theorem 3. Suppose Assumption 1 and Assumption 2 hold. Let K ≥ Cd for some large enough
positive constant C, one has

Ŵp

(
φ(K)(X),X

)
→Wp

(
φ∗(X), X

)
, and φ(K)(X)→ φ∗(X) as n→∞.

Works are proving the convergence rates of the empirical optimal transport objectives [5, 49, 6, 54].
The convergence rate of the OTM has rarely been studied except for a recent paper [25]. We believe
Theorem 3 is the first step in this direction.

4 Numerical experiments

4.1 Estimation of optimal transport map

Suppose that we observe i.i.d. samples X = (x1, . . . ,xn)
⊺ from pX = Nd(µX ,ΣX) and Y =

(y1, . . . ,yn)
⊺ from pY = Nd(µY ,ΣY ), respectively. We set n = 10, 000, d = {10, 20, 50},

µX = −2, µY = 2, ΣX = 0.8|i−j|, and ΣY = 0.5|i−j|, for i, j = 1, . . . , d.

We apply PPMM to estimate the OTM between pX and pY from {xi}ni=1 and {yi}ni=1. In comparison,
we also consider the following two projection-based competitors: (1) the random projection method
(RANDOM) as proposed in [39, 40]; (2) the sliced method as proposed in [7, 42]. The number of
slices L is set to be 10, 20, and 50. We assess the convergence of each method by the estimated

Wasserstein distance of order 2 after each iteration, i.e. Ŵ2

(
φ(k)(X),X

)
, where φ(k)(·) is the

estimator of OTM after kth iteration. For all three methods, we set the maximum number of iterations
to be 200. Notice that, the Wasserstein distance between pX and pY admits a closed form,

W 2
2 (pX , pY ) = ||µX − µY ||22 + trace

(
ΣX +ΣY − 2(Σ

1/2
X ΣY Σ

1/2
X )1/2

)
, (2)

which serves as the ground-truth. The results are presented in Figure 3.

Figure 3: The black dashed line is the true value of the
Wasserstein distance as in (2). The colored lines represent
the sample mean of the estimated Wasserstein distances over
100 replications, and the vertical bars represent the standard
deviations.

In all three scenarios, PPMM (red
line) converges to the ground truth
within a small number of iterations.
The fluctuations of the convergence
curves observed in Figure 3 are caused
by the non-equal sample means. This
can be adjusted by applying a first-
order dimension reduction method
(e.g., SIR). We do not pursue this ap-
proach as the fluctuations do not cover
the main pattern in Figure 3. When
d = 10, RANDOM and SLICED con-
verge to the ground truth but in a much
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slower manner. When d = 20 and 50, neither RANDOM nor SLICED manages to converge within
200 iterations. We also find a large number of slices L does not necessarily lead to a better estimation
for the SLICED method. As we can see, PPMM is the only one among three that is adaptive to
large-scale OTM estimation problems.

In Table 1 below, we compare the computational cost of three methods by reporting the CPU time per
iteration over 100 replication.2 As we expected, the RANDOM method has the lowest CPU time per
iteration due to it does not select projection direction. We notice that the CPU time per iteration of
the SLICED method is proportional to the number of slices L. Last but not least, the CPU time per
iteration of PPMM is slightly larger than RANDOM but much smaller than SLICED.

Table 1: The mean CPU time (sec) per iteration, with standard deviations presented in parentheses

PPMM RANDOM SLICED(10) SLICED(20) SLICED(50)

d = 10 0.019 (0.008) 0.011 (0.008) 0.111 (0.019) 0.213 (0.024) 0.529 (0.031)
d = 20 0.027 (0.011) 0.014 (0.008) 0.125 (0.027) 0.247 (0.033) 0.605 (0.058)
d = 50 0.059 (0.036) 0.015 (0.008) 0.171 (0.037) 0.338 (0.049) 0.863 (0.117)

In the Table 2 below, we report the mean convergence time over 100 replications for PPMM,
RANDOM, SLICED, the refined auction algorithm (AUCTIONBF)[3], the revised simplex algorithm
(REVSIM) [34] and the shortlist method (SHORTSIM) [20].3 Table 2 shows that the PPMM is the
most computationally efficient method thanks to its cheap per iteration cost and fast convergence.

Table 2: The mean convergence time (sec) for estimating the Wasserstein distance, with standard
deviations presented in parentheses. The symbol “-” is inserted when the algorithm fails to converge.

PPMM RANDOM SLICED(10) AUCTIONBF REVSIM SHORTSIM

d = 10 0.6 (0.1) 4.8 (1.7) 23.0 (2.6) 99.7 (10.4) 40.2 (4.0) 42.5 (3.2)
d = 20 2.1 (0.3) 24.4 (3.2) 230.2 (28.4) 109.4 (12.5) 42.6 (5.3) 50.2 (6.6)
d = 50 5.5 (0.4) - - 125.5 (13.3) 46.5 (5.6) 56.5 (7.1)

4.2 Application to generative models

Figure 4: Illustration for the generative model using manifold
learning and optimal transport

A critical issue in generative models is
the so-called mode collapse, i.e., the
generated “fake” sample fails to cap-
ture some modes present in the train-
ing data [22, 45]. To address this is-
sue, recent studies [51, 22, 28] incor-
porated generative models with the op-
timal transportation theory. As illus-
trated in Figure 4, one can decompose
the problem of generating fake sam-
ples into two major steps: (1) manifold learning and (2) probability transformation. The step (1) aims
to discover the manifold structure of the training data by mapping the training data from the original

space X ⊂ R
d to a latent space Z ⊂ R

d∗

with d∗ ≪ d. Notice that the probability distribution
of the transformed data in Z may not be convex, leading to the problem of mode collapse. The
step (2) then addresses the mode collapse issue through transporting the distribution in Z to the

uniform distribution U([0, 1]d
∗

). Then, the generative model takes a random input from U([0, 1]d
∗

)
and sequentially applies the inverse transformations in step (2) and step (1) to generate the output. In
practice, one may implement the step (1) and (2) using variational autoencoders (VAE) and OTM,
respectively. As we can see, the estimation of OTM plays an essential role in this framework.

In this subsection, we apply PPMM as well as RANDOM and SLICED to generative models to study
two datasets: MINST and Google doodle dataset. For the SLICED method, we set the number of
slices to be 10, 20, and 50. For all three methods, we set the number of iterations is set to be 10d∗.
We use the squared Euclidean distance as the cost for the VAE model.

2The experiments are implemented by an Intel 2.6 GHz processor.
3AUCTIONBF, REVSIM and SHORTSIM are implemented by the R package “transport” [46].

7



Table 3: The FID for the generated samples (lower the better), with standard deviations presented in
parentheses

PPMM RANDOM SLICED(10) SLICED(20) SLICED(50)

MNIST 0.17 (0.01) 4.62 (0.02) 2.98 (0.01) 3.04 (0.01) 3.12 (0.01)
Doodle (face) 0.59 (0.09) 8.78 (0.04) 5.69 (0.01) 6.01 (0.01) 5.52 (0.01)
Doodle (cat) 0.24 (0.03) 8.93 (0.03) 5.99 (0.01) 5.26 (0.01) 5.33 (0.01)
Doodle (bird) 0.36 (0.03) 7.81 (0.03) 5.44 (0.01) 5.50 (0.01) 4.98 (0.01)

Figure 5: Left: random samples generated by PPMM. Right:
linear interpolation between random pairs of images.

MNIST. We first study the MNIST
dataset, which contains 60,000 train-
ing images and 10,000 testing images
of hand written digits. We pull each
28 × 28 image to a 784-dimensional
vector and rescale the grayscale val-
ues from [0, 255] to [0, 1]. Following
the method in [51], we apply VAE to
encode the data into a latent space Z
of dimensionality d∗ = 8. Then, the
OTM from the distribution in Z to
U([0, 1]8) is estimated by PPMM as
well as RANDOM and SLICED.

First, we visually examine the fake sample generated with PPMM. In the left-hand panel of Figure 5,
we display some random images generated by PPMM. The right-hand panel of Figure 5 shows that
PPMM can predict the continuous shift from one digit to another. To be specific, let a, b ∈ R

784 be
the sample of two digits (e.g. 3 and 9) in the testing set. Let T : X → Z be the map induced by

VAE and φ̂ the OTM estimated by PPMM. Then, φ̂(T (·)) maps the sample distribution to U([0, 1]8).

We linearly interpolate between φ̂(T (a)) and φ̂(T (b)) with equal-size steps. Then we transform the
interpolated points back to the sample distribution to generate the middle columns in the right panel
of Figure 5.

We use the “Fréchet Inception Distance” (FID) [23] to quantify the similarity between the generated
fake sample and the training sample. Specifically, we first generate 1,000 random inputs from
U([0, 1]8). We then apply PPMM, RANDOM, and SLICED to this input sample, yields the fake
samples in the latent space Z . Finally, we calculate the FID between the encoded training sample
in the latent space and the generated fake samples, respectively. A small value of FID indicates the
generated fake sample is similar to the training sample and vice versa. The sample mean and sample
standard deviation (in parentheses) of FID over 50 replications are presented in Table 3. Table 3
indicates PPMM significantly outperforms the other two methods in terms of estimating the OTM.

Google doodle dataset. The Google Doodle dataset4 contains over 50 million drawings created
by users with a mouse under 20 secs. We analyze a pre-processed version of this dataset from the
quick draw Github account5. In the dataset we use, the drawings are centered and rendered into
28 × 28 grayscale images. We pull each 28 × 28 image to a 784-dimensional vector and rescale
the grayscale values from [0, 255] to [0, 1]. In this experiment, we study the drawings from three
different categories: smile face, cat, and bird. These three categories contain 161,666, 123,202, and
133,572 drawings, respectively. Within each category, we randomly split the data into a training set
and a validation set of equal sample sizes.

We apply VAE to the training set with a stopping criterion selected by the validation set. The
dimension of the latent space is set to be 16. Let a, b ∈ R

784 be two vectors in the validation

set, T : X → Z be the map induced by VAE and φ̂ be the OTM estimated by PPMM. Note that

φ̂(T (·)) maps the sample distribution to U([0, 1]16). We then linearly interpolate between φ̂(T (a))

and φ̂(T (b)) with equal-size steps. The results are presented in Figure 6.

4https://quickdraw.withgoogle.com/data
5https://github.com/googlecreativelab/quickdraw-dataset
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Figure 6: Linear interpolation between random pairs of images from the dataset of smile face (left),
cat (center), and bird (right).

Then, we quantify the similarity between the generated fake samples and the truth by calculating the
FID in the latent space. The sample mean and sample standard deviation (in parentheses) of FID over
50 replications are presented in Table 3. Again, the results in Table 3 justify the superior performance
of PPMM over existing projection-based methods.

5 Extensions

Figure 7: Experiment for heterogeneous
data with non-equal sample sizes. The
black dashed line is the oracle calculated by
SHORTSIM

First, the PPMM can be extended to address the peniten-
tial heterogeneous in the dataset by assigning non-equal
weights to the points in source and target samples. This
is equivalent to calculate weighted variance-covariance
matrices in Step 2 of Algorithm 1. Second, the PPMM
method can be modified to allow the sizes of the source
and target samples to be different. In such a scenario,
we can replace the look-up table in the Step (b) of Algo-
rithm 2 with an approximate lookup table. Recall that
the one-dimensional lookup table is just sorting, the one-
dimensional approximate look-up table can be achieved
by combining sorting and linear interpolation. We validate
the above extensions with a simulated experiment similar
to the one in Section 4.1 except that we draw 5, 000 and
1, 000 points from pX and pY , respectively. We set d = 10 and assign weights to the observations
randomly. The estimation results are presented in Figure 7. In addition, the average convergence time
is: PPMM(0.3s), RANDOM (1.4s), SLICED10 (14s) and SHORTSIM (74s).

Figure 8: Number of iterations to converge

Theorem 3 suggests that, for the PPMM algorithm, the
number of iterations until converge, i.e., K, is on the order
of dimensionality d. Here we use a simulated example
to assess whether this order is attainable. We follow a
similar setting as in Section 4.1 except that we increase d
from 10 to 100 with a step size of 10. Besides, we set the
termination criteria to be a hard threshold, i.e., 10−5. In
Figure 8, we report the sample mean (solid line) and stan-
dard deviation (vertical bars) of K over 100 replications
with respect to the increased d. One can observe a clear
linear pattern.
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