
Journal of Artificial Intelligence Research 49 (2014) 527-568 Submitted 10/13; published 03/14

Large-Scale Optimization for Evaluation Functions with
Minimax Search

Kunihito Hoki hoki@cs.uec.ac.jp
Department of Communication Engineering and Informatics
The University of Electro-Communications

Tomoyuki Kaneko kaneko@acm.org

Department of Graphics and Computer Sciences

The University of Tokyo

Abstract

This paper presents a new method, Minimax Tree Optimization (MMTO), to learn
a heuristic evaluation function of a practical alpha-beta search program. The evaluation
function may be a linear or non-linear combination of weighted features, and the weights
are the parameters to be optimized. To control the search results so that the move de-
cisions agree with the game records of human experts, a well-modeled objective function
to be minimized is designed. Moreover, a numerical iterative method is used to find local
minima of the objective function, and more than forty million parameters are adjusted by
using a small number of hyper parameters. This method was applied to shogi, a major
variant of chess in which the evaluation function must handle a larger state space than
in chess. Experimental results show that the large-scale optimization of the evaluation
function improves the playing strength of shogi programs, and the new method performs
significantly better than other methods. Implementation of the new method in our shogi
program Bonanza made substantial contributions to the program’s first-place finish in the
2013 World Computer Shogi Championship. Additionally, we present preliminary evidence
of broader applicability of our method to other two-player games such as chess.

1. Introduction

Heuristic search is a powerful method in artificial intelligence. In 1997, the chess-playing
computer Deep Blue defeated the world chess champion Garry Kasparov (Campbell, Hoane,
& Hsu, 2002). The computer decided its moves after making a large number of searches
of the minimax game tree and using heuristic evaluation functions. In this framework of
artificial intelligence, the heuristic evaluation functions, as well as the search methods, are
crucial for making strong computer players. Thus, researchers working on various games
have made substantial efforts in a quest to create effective evaluation functions by us-
ing machine learning techniques (Fürnkranz, 2001). However, fully automated learning of
the heuristic evaluation functions remains a challenging goal in chess variants. For exam-
ple, developers have reported that the majority of the features and weights in Deep Blue
were created/tuned by hand (Campbell et al., 2002). It is said that recent top-level chess
programs tune some of their parameters automatically, although we have yet to find any
publication describing the methods they use. Moreover, reinforcement learning has been
applied to chess (Baxter, Tridgell, & Weaver, 2000; Veness, Silver, Uther, & Blair, 2009).

c©2014 AI Access Foundation. All rights reserved.



Hoki & Kaneko

However, to the best of the authors’ knowledge, the evaluation functions learned by the
methods reported in the literature are still weaker than the best hand-crafted functions in
terms of chess-playing strength.

In this paper, we revisit the idea behind earlier research on learning chess evaluation
functions (Marsland, 1985; Hsu, Anantharaman, Campbell, & Nowatzyk, 1990; Tesauro,
2001) and reformulate the task as an optimization problem using an alternative learning
method, called Minimax Tree Optimization (MMTO). The objective here is to optimize
a full set of parameters in the evaluation function so that the search results match the
desired move decisions, e.g., the recorded moves of grandmaster games. The evaluation
functions are learned through iteration of two procedures: (1) a shallow heuristic search for
all training positions using the current parameters and (2) a parameter update guided by an
approximation of the gradient of the objective function. To achieve scalability and stability,
we introduce a new combination of optimization techniques: a simplified loss function, grid-
adjacent update, equality constraint, and l1-regularization. One of the resulting merits is
that MMTO can ensure the existence of a local minimum within a convenient range of
parameters.

This study demonstrates the performance of MMTO in shogi, a variant of chess where
evaluation functions need to handle a wider variety of features and positions than in Western
chess. Implementation of MMTO in our shogi program Bonanza (described in Section 4.6)
made substantial contribution to the program’s first-place finish in the 2013 World Com-
puter Shogi Championship. The rules of shogi, as well as a survey of approaches in artificial
intelligence, are described in the literature (Iida, Sakuta, & Rollason, 2002). Basic tech-
niques, such as a minimax search guided by heuristic evaluation functions, are as effective
in shogi as in chess. However, the “drop rule” that allows a player to reuse captured pieces
significantly changes a few properties: (1) the number of legal moves, as well as average
game length, is greater than in chess, (2) endgame databases are not available, (3) and
the material balance is less important than in chess, especially in the endgame. Thus, the
performance of a shogi program is more dependent on the quality of its evaluation function.

Through experiments, we first show that the full set of parameters in the evaluation
functions can be optimized with respect to the rate of agreement with the training set.
After that, we examine the performance of various learned evaluation functions in terms of
their rates of agreement with the test positions and win rates against references. Scalability
is demonstrated up to about forty million parameters, which is far too many to tune by
hand. The features we used are piece values and extended versions of piece-square tables
that are commonly used to learn evaluation functions in chess (Tesauro, 2001; Baxter et al.,
2000; Veness et al., 2009). We also briefly examine the performance of MMTO in chess to
catch a glimpse of the applicability of MMTO to other games.

The rest of this paper is organized as follows. The next section reviews related research.
The third section presents the MMTO method. The fourth section shows our experimental
results, where forty million of parameters are adjusted for better performance, and compares
the performance of our method with that of existing methods. The last section presents
our concluding remarks. This paper incorporates and extends our previous work (Hoki &
Kaneko, 2012; Kaneko & Hoki, 2012).

528



Large-Scale Optimization for Evaluation Functions with Minimax Search

2. Related Work

This section reviews related research on learning evaluation functions. First, we describe
supervised learning methods that use the desired moves. Second, we discuss other learning
methods, including regression and reinforcement learning. Third, we briefly discuss the diffi-
culty of supervised learning in terms of numerical optimization. Although machine learning
of other components besides evaluation functions in game programs would be an interesting
research topic (Björnsson & Marsland, 2002; Tsuruoka, Yokoyama, & Chikayama, 2002;
Coulom, 2007; Silver & Tesauro, 2009), this review only focuses on research that has been
done on learning evaluation functions.

2.1 Learning from Desired Moves in Chess

Grandmaster games are a popular source of information for learning chess. Let us say
that we have a set of positions P and the desired moves for each position in P. Typically,
such positions and moves are sampled from grandmaster games. A chess program has an
evaluation function e(p,www), where p is a game position and the feature weight vector www
contains the parameters to be adjusted.

Let us assume that the evaluation function e(p,www) is partially differentiable with respect
to wi for any i. Here, wi is the i-th component of www. For example, the function could be
a linear combination of weighted features, i.e., e(p,www) =

∑
iwifi(p), where fi(p) is the i-th

feature value of position p. The aim of learning is to find a better weight vector www for
strengthening the play of the program. The hypothesis behind this kind of learning is that
the more the computer play agrees with the desired moves, the better it plays.

Let us begin with a simple intuitive goal: make the results of a one-ply search agree
with the desired moves. For simplicity, let us assume that the maximizing player moves first
at the root position p. In a one-ply search, the move with the highest evaluation value is
selected. Thus, www should be adjusted so that the desired move has the highest evaluation of
all the moves. This goal can formally be written as a mathematical minimization problem
with an objective function:

JPH(www) =
∑
p∈P

∑
m∈M′p

H (e(p.m,www)− e(p.dp,www)) . (1)

Here, p.m is the position after move m in position p, dp is the desired move in position p,M′p
is the set of all legal moves in p excluding dp, and H(x) is the Heaviside step function, i.e.,
H(x) equals 1 if x ≥ 0, and 0 otherwise. Because this objective function counts the number
of moves that have an evaluation value greater than or equal to that of the desired move,
a better www can be found by minimizing Eq. (1). Although several studies have attempted
machine learning on the basis of this framework (Nitsche, 1982; van der Meulen, 1989;
Anantharaman, 1997), their numerical procedures were complicated, and the adjustment of
a large-scale vector www seemed to present practical difficulties.

Marsland (1985) presented a notable extension wherein a continuous function is used
so that conventional optimization techniques can be exploited. Here, a continuous function
of difference is substituted for the non-continuous step function in Eq. (1). An interesting

529



Hoki & Kaneko

modified function is

JP2 (www) =
∑
p∈P

∑
m∈M′p

[max {0, e(p.m,www)− e(p.dp,www)}]2 . (2)

The meaning of the function value is different from that in Eq. (1); i.e., the function does
not count the number of moves that have an evaluation value greater than or equal to that
of the desired move. However, the gradient vector ∇wwwJ

P
2 (www) helps to reduce the function

value numerically. Marsland also introduced inequality constraints in order to keep the
evaluation in the right range. However, the literature does not provide any experimental
results on practical chess programs.

A second notable extension was proposed early in the development of chess machines
Deep Thought (Nowatzyk, 2000; Hsu et al., 1990). Here, the positions being compared are
not p.m, but rather πp.mwww , that is, one of the leaves of the principal variations (PVs), possibly
several plies from p.m. This extension carries out a least-square fitting of the evaluation
values. Therefore, it does not have the max function that JP2 (www) does. Instead, it biases

the value of e(π
p.dp
www ,www) before it is used in each least-square fitting, if the evaluation value

of the desired move dp, e(π
p.dp
www ,www) is lower than that of another move m, e(πp.mwww ,www).

A third notable extension is the comparison training proposed by Tesauro (2001).
Tesauro modified the objective function to

JPct(www) =
∑
p∈P

∑
m∈M′p

Tct(e(π
p.dp
www ,www)− e(πp.mwww ,www)),

Tct(x) = [σ(R(x))− 1]2 , (3)

where σ is the standard sigmoid function, and R is a heuristic rescaling factor for positive
differences, i.e., R(x) = x when x ≤ 0, and R(x) = cx for a constant c > 1 otherwise. Note
that R(x) is still a continuous function. The important property of this modified objective
function is that the value and the derivative are zero in the limit as the difference x goes
to positive infinity, and they are respectively one and zero in the limit as the difference
x goes to negative infinity. Therefore, Tct(x) in Eq. (3) is a continuous approximation of
H(−x) in Eq. (1). Note that this property is not explicitly stated by Tesauro, but it is
notably distinct from the other work. The number of feature weights adjusted with his
method was less than two hundred. Tesauro also mentioned an application for small-bit
integers, which was used to adjust some of the weights in Deep Blue. However, he neither
clarified its procedure nor mentioned whether the weights were automatically adjusted in
that experiment.

Table 1 summarizes the related work. Each of the existing methods possesses at least
one of three important properties for optimization, i.e., continuity, minimax searches, and
assured local minimum. However, none of them have all three properties. Also, some
of the existing methods (Nowatzyk, 2000; Hsu et al., 1990; Tesauro, 2001) do not try to
decrease the functions through iteration as much as possible. We will revisit these issues in
Section 2.3. On the other hand, our method, MMTO, has scalability in high-dimensional
learning. Moreover, we empirically show that a decrease in the objective function value
leads to an increase in playing strength. The existing methods have not been shown to have
this property.

530



Large-Scale Optimization for Evaluation Functions with Minimax Search

Method Continuity Search Assured local minimum

(Nitsche, 1982) No No No

(Marsland, 1985) Yes No No

(van der Meulen, 1989) No No No

(Hsu et al., 1990) Yes∗ Yes No

(Anantharaman, 1997) No Yes Yes
Comparison training Yes∗ Yes No

MMTO Yes∗ Yes Yes

Table 1: Summary of learning methods using the desired moves in training positions to
adjust the feature weights in the evaluation functions. The first column is the name
of the method or piece of literature. The second column describes the continuity
of the objective functions with respect to the feature weights. Yes∗ means that
continuity depends on the kind of search method used. The third column indicates
whether the objective functions use minimax searches with depths more than 1,
instead of comparisons of legal moves at the root position. The fourth column
shows whether the hyper parameters of the objective functions can assure a local
minimum can be found.

2.2 Other Methods of Learning Evaluation Functions

Many researchers have utilized information sources other than the desired moves. For
example, some studies on Othello dating from the 1990s compare the desired moves with
other moves (Fawcett, 1993). However, the most practical and famous machine learning
method that has yielded strong programs is based on regression of the desired value by
using 1.5 million features (Buro, 1995, 2002). In Othello, different evaluation functions are
used for game stages determined on the basis of the number of discs in play. Thus, the
desired values of the training positions are obtained through a complete endgame search
as well as a heuristic search with evaluation functions learned in later game stages. This
method has also been successfully applied to card games (Buro, Long, Furtak, & Sturtevant,
2009), but not to chess variants. To the best of the authors’ knowledge, learning based on
regression with win/loss-labeled data has not yielded decent evaluation functions in chess
variants. Except for not using the desired moves, Buro’s method has properties that are
similar to those listed in Table 1; his objective function has continuity as well as an assured
local minimum, and his method is scalable. Gomboc, Buro, and Marsland (2005) proposed
to learn from game records annotated by human experts; however, the feature weights that
were adjusted in their experiments were only a small part of the full evaluation functions.

Reinforcement learning (Sutton & Barto, 1998), especially temporal difference learning,
of which a famous success is Backgammon (Tesauro, 2002), is considered to be promising
way to avoid the difficulty in finding the desired values for regression. This approach has
been applied to chess and has been shown to improve the strength of programs (Baxter
et al., 2000; Levinson & Weber, 2001; Veness et al., 2009). The KnightCap program
achieved a rating of about 2, 150 points at the Free Internet Chess Server (FICS1) and

1. Free Internet Chess Server, http://www.freechess.org, last access: 2013

531

http://www.freechess.org


Hoki & Kaneko

Non-con nuousNon-differen able Narrow troughSingle minimum

Easy Difficult

(a) (b) (c) (d) (e)

Smooth

Figure 1: Example illustrating the difficulties facing any minimization procedure.

2, 575 points at its highest peak at the Internet Chess Club (ICC) (Baxter et al., 2000).
Another program achieved 2, 338 points at its highest peak at ICC (Veness et al., 2009).
However, strong human players have ratings of more than 3, 000 points at ICC, and this
difference means these programs have not reached the top level of chess programs; that
is, evaluation functions tuned by reinforcement learning have not yet reached the level
of the best-handcrafted evaluation functions in chess. Moreover, the number of feature
weights to be adjusted is on the order of thousands. In checkers, evaluation functions
trained by temporal difference learning are reportedly comparable to the best handcrafted
efforts (Schaeffer, Hlynka, & Jussila, 2001). It has also been reported that a player stronger
than expert human checker players was created by using neural networks trained with
an evolutionary strategy (Chellapilla & Fogel, 1999). Here, no features beyond the piece
differentials were given to the neural network a priori.

Many machine learning techniques (Baxter et al., 2000; Veness et al., 2009) have been
applied to shogi. However, despite efforts by many programmers and researchers, the ad-
justment of the full weight vector in the evaluation function remains a challenging goal.
The studies published so far have adjusted only piece values or a small part of the feature
weights in the evaluation functions (Beal & Smith, 2001; Ugajin & Kotani, 2010).

2.3 Learning and Numerical Optimization

Some learning methods reviewed in Section 2.1 have objective functions to decrease; the
learning process can be extended into a numerical optimization using these functions. The
performance of numerical optimization is sensitive to the surface of the objective function.
Figure 1 shows the properties of particular sorts of functions and their difficulties regarding
numerical minimization. The easiest one among them is the convex function (a); if a local
minimum exists, then it is a global minimum. Function (b) has multiple local minima; how-
ever, it can still be thought of as an easy problem, because various minimization algorithms
using gradients and Hessian matrices are effective on it. It would be desirable to design a
learning method using, say, linear or logistic regression, which uses one of these two types
of objective function (Buro, 2002).

In contrast, non-differentiable functions such as (c) and (e) are often more difficult to
minimize than differentiable ones. This is because a quadratic model, such as the Hessian
approximation of the conjugated gradient method (Bertsekas & Bertsekas, 2008), is not
always appropriate for these functions. Function (d) is also a difficult target, because an
important local minimum is hidden inside a deep narrow trough, and it is quite difficult to
find it by using numerical iteration methods. The most difficult example is minimization of

532



Large-Scale Optimization for Evaluation Functions with Minimax Search

the non-continuous function (e); even primitive iterative methods such as gradient decent
are not capable of finding its minimum. The extreme case would be a function for which
an analytical formula for the gradient is unavailable. In that case, a learning method would
not be able to use partial derivatives, and the minima would have to be obtained using
derivative-free methods, e.g., sampling methods (Björnsson & Marsland, 2002; Coulom,
2012).

Theorems in Appendix A show that the minimax value is continuous but not always
partially differentiable. Thus, the existing methods that incorporate a minimax search
(Hsu et al., 1990; Tesauro, 2001) and MMTO listed in Table 1 are type (c). Moreover,
certain forward pruning techniques may cause discontinuities. Therefore, even these learning
methods can be type (e). To overcome this difficulty, MMTO has a well-modeled objective
function and updates the feature weights in a careful manner.

3. Minimax Tree Optimization

Minimax Tree Optimization (MMTO) is an extension of comparison training to reach the
first intuitive goal embodied in Eq. (1). The purpose of this extension is to overcome the
practical difficulties and stabilize the mathematical optimization procedure with a large-
scale feature weight vector www. Given a set of training positions P and the desired move dp
for each position p, MMTO optimizes the weight vector www so that the minimax search with
www better agrees with the desired moves.

The weight vector www is improved through iteration of sub-procedures (see Figure 2).
For each iteration t, the first step consists of tree searches to identify one of the leaves of
PVs πwww(t) for all legal moves in the training positions P. Because PV leaf πwww(t) depends

on the feature weights www(t) in an evaluation function, a new PV will be obtained when
www(t) is updated (We discuss this issue in Section 3.5). The second step is the calculation
of the approximate partial derivatives, which depends on both PV and the weight vector.
The last step is the update of the weight vector. For numerical stability, the difference
|www(t + 1) −www(t)| must be kept small so that it will not be distorted by drastic changes in
the partial derivatives. Section 3.4 shows that a grid-adjacent update ensures this.

3.1 Objective Function to be Minimized

The objective function is

JPMmto(www) = J(P,www) + JC(www) + JR(www), (4)

where the first term J(P,www) on the right side is the main part. The other terms JC and
JR are constraint and regularization terms, respectively, which are defined in Section 3.2.

The first term is

J(P,www) =
∑
p∈P

∑
m∈M′p

T (s(p.dp,www)− s(p.m,www)) , (5)

where s(p,www) is the minimax value identified by the tree search for position p. T (x) is
1/(1 + exp(ax)), which is a horizontally mirrored sigmoid function. The slope of T (x) is
controlled by a constant parameter a > 0. In the large a limit, T (x) becomes the Heaviside

533



Hoki & Kaneko

�

�

�



1. Perform a game-tree search to identify PV leaves πp.mwww(t) for all child positions

p.m of position p in training set P, where www(t) is the weight vector at the
t-th iteration and www(0) is the initial guess.

2. Calculate a partial-derivative approximation of the well-modeled objective
function defined in Section 3.1 by using both πp.mwww(t) and www(t). The objective

function employs a differentiable approximation of H(x) (see Section 3.1),
as well as a constraint and regularization term (see Section 3.2).

3. Obtain a new weight vectorwww(t+1) fromwww(t) by using a grid-adjacent update
guided by the partial derivatives computed in step 2 (see Section 3.4). Go
back to step 1, or terminate the optimization when the objective function
value converges (see Section 4).

Figure 2: Minimax Tree Optimization: Iteration of searches and update using partial
derivatives

step function H(x). Thus, the main differences from the first intuitive objective function
JPH(www) in Eq. (1) are the use of T (x) for a smooth approximation of H(x) and the use of
the search result s(p,www) instead of the raw evaluation e(p,www). The difference from JP2 (www) in
Eq. (2) and JPct(www) in Eq. (3) is that J(P,www) is simpler and closer to the first intuitive one
in Eq. (1). Moreover, none of the existing studies incorporate JC(www) or JR(www) in Eq (4).

The minimax value s(p,www) equals the raw evaluation value e(πpwww,www), where e(p,www) is the
evaluation of position p and πpwww is one of the PV leaves identified by the tree search rooted
at p with a weight vector www. In most cases, the derivatives of s(p,www) equal the derivatives
of e(πpwww,www). For these reasons, the PV leaves are identified in step 1 in Figure 2.

3.2 Constraint and Regularization Terms

In the computer programs of chess variants, the evaluation values are typically represented
by integers. Signed 16-bit integers are especially preferred because the corresponding trans-
position tables will be memory efficient. Thus, we will restrict the range of the absolute
value of the evaluation function e(p,www). Moreover, because the search results do not change
when one uses a scaled weight vector αwww with a constant factor α > 0, this restriction
stabilizes the numerical optimization procedure if the value of α is uncertain.

For this restriction, we introduce a constraint term JC(www) = λ0g(www′) in Eq. (4), where
www′ is a subset of www, g(www′) = 0 is an equality constraint, and λ0 is a Lagrange multiplier.
In addition to the constraint term, we also introduce a regularization term JR(www) (see
the last term in Eq. (4)). We use l1-regularization JR(www) = λ1|www′′|, where λ1 > 0 is a
constant variable, andwww′′ is a subset ofwww. l1-regularization is widely used to deal with high-
dimensional parameters, whereas l2-regularization is used to avoid over-fitting (Tibshirani,
1996).

534



Large-Scale Optimization for Evaluation Functions with Minimax Search

The constraint and regularization terms ensure that a local minimum of JPMmto(www) exists
in a finite range of www. On the other hand, depending on P and the distribution of dp, this
property is not always true for J(P,www) itself, for JP2 (www) in Eq. (2), or for JPct(www) in Eq. (3).

The constraint and l1-regularization terms have similar functionalities; i.e., both restrict
the range of the absolute value of the evaluation function e(p,www). However, their distinc-
tions are important in practice because l1-regularization makes the weight vector www′′ sparse
whereas the constraint term does not. Thus, the regularization term is suitable for minor
features that are rarely seen, whereas the constraint term is suitable for major features
that appear often in the training set. Moreover, both terms are useful for controlling the
strength of the restriction. Because major feature values usually change more often than
minor feature values, the magnitudes of the partial derivatives with respect to major feature
weights are usually greater than those with respect to minor feature weights. We can adjust
the strength of l1-regularization term so that it is weaker than the constraint term.

For example, our experiments used the constraint term for the piece values because their
feature values, i.e., the number of pieces owned by black/white, change in most single games
of shogi. The many other weights were penalized by l1-regularization. Each weight was
controlled by either the constraint or l1-regularization term, i.e., www = (www′,www′′). Because the
partial derivatives with respect to the major and minor feature weights differed by several
orders of magnitude, it was difficult to stabilize the optimization procedure by means of a
single hyper parameter λ1.

3.3 Partial Derivative Approximation

In each iteration, feature weights are updated on the basis of the partial derivatives of the
objective function JPMmto(www) defined by Eq. (4). The partial derivative, if it exists, is

∂

∂wi
JPMmto(www) =

∂

∂wi
J(P,www) +

∂

∂wi
JC(www) +

∂

∂wi
JR(www). (6)

The last term ∂
∂wi

JR(www) on the right side is treated in an intuitive manner; sgn(wi)λ1 for
wi ∈ www′′, and 0 otherwise. Function sgn(x) is 1 for x > 0, 0 for x = 0, and −1 for x < 0.
The partial derivative of the constraint term ∂

∂wi
JC(www) is 0 for wi /∈ www′. The case of wi ∈ www′

is discussed in Section 3.5.
The partial derivative of J(P,www) does not always exist, because the minimax value

s(p,www) is not always differentiable. Instead, we can use an approximation,

∂

∂wi
J(P,www) =

∂

∂wi

∑
p∈P

∑
m∈M′p

T (s(p.dp,www)− s(p.m,www)) (7)

≈ ∂

∂wi

∑
p∈P

∑
m∈M′p

T
(

e(π
p.dp
www ,www)− e(πp.mwww ,www)

)
(8)

=
∑
p∈P

∑
m∈M′p

T ′(e(π
p.dp
www ,www)− e(πp.mwww ,www)) · ∂

∂wi

(
e(π

p.dp
www ,www)− e(πp.mwww ,www)

)
,

where T ′(x) = d
dxT (x). The approximation of Eq. (7) by Eq. (8) makes the computation

tractable, because we identify the PV leaves in step 1 in Figure 2. As stated in Appendix A,

535



Hoki & Kaneko

minimax value s(p,www) found by the αβ search is continuous, and therefore, the function
J(P,www) is also continuous. Moreover, the approximate value is equivalent to the partial
derivative when a unique PV exists for each position. Appendix A also discusses the con-
ditions under which ∂

∂wi
s(p,www) exists. Note that we have found that the errors caused by

this approximation are sufficiently small for the shogi application (Kaneko & Hoki, 2012).
Previous studies (Baxter et al., 2000; Tesauro, 2001) use this approximation as well.

3.4 Grid-Adjacent Update

For numerical stability, the grid-adjacent update in step 3 (see Figure 2) is used to get
www(t+1) from www(t). Consider a simple n-dimensional grid in which the distance between two
adjacent points is h. Suppose that h is an integer, e.g., h = 1. In the grid-adjacent update,
the feature vector www(t) is always one of the points of the grid, and the i-th component
wi(t+ 1) is adjacent to wi(t):

wi(t+ 1) = wi(t)− h sgn(
∂JPMmto(www(t))

∂wi
).

Thus, |wi(t+1)−wi(t)| = |∆wi| = h or 0 for all i. This update should decrease the objective
function JPMmto(www) because ∆www · ∇wwwJ

P
Mmto(www) ≤ 0 and the errors in the approximation (see

Eq. (8)) are negligible. Moreover, h must be small enough so that the update does not
change the PV, i.e., πpwww(t) = πpwww(t+1) for the majority of positions p searched in step 1.

Although MMTO focuses on optimization of weight vectors represented by integers, it
should be noted that the gradient descent update is not suitable even when one uses floating-
point feature weights. Our preliminary experiments indicate that the partial derivatives of
J(P,www) with respect to major and minor feature weights differ by more than seven orders
of magnitude. Thus, an update vector ∆www that is proportional to the gradient vector may
not be appropriate for updating the minor feature weights with a small step. Thus, the step
size of each component in a weight vector should be fixed as in the grid-adjacent update,
or it might be able to be controlled in other ways (see, e.g., Duchi, Hazan, & Singer, 2011).

3.5 Combination of Techniques and Practical Issues

MMTO is a combination of the above-described techniques. This subsection discusses the
practical issues of this combination and its alternatives; some relate to external constraints
on learning (e.g., how many weeks we can wait for results), and some depend on the prop-
erties of the domain to which MMTO is applied.

3.5.1 Lagrange Multiplier in Grid-Adjacent Update

For numerical stability, MMTO explores a restricted parameter space where the constraint
is satisfied, i.e., JC(www) = 0. To do this, the Lagrange multiplier λ0 in JC(www) is set to the

median of the partial derivatives {∂J(P,www)
∂wi

|wi ∈ www′} in order to maintain the constraint
g(www′) = 0 in each iteration. As a result, ∆w′i is h for n feature weights, −h for n feature
weights, and 0 in one feature weight, where the number of feature weights in www′ is 2n+ 1.
On the other hand, λ1 in the regularization term JR(www) is constant in all iterations.

536



Large-Scale Optimization for Evaluation Functions with Minimax Search

3.5.2 Search Depth

The game tree searches in step 1 in Figure 2 are the most time-consuming step in MMTO.
Tesauro (2001) has shown that the use of a quiescence search yields better evaluation
functions. Thus, it is expected that deeper searches in MMTO will yield better evaluation
functions. On the other hand, we must handle a large amount of training positions, and the
search time tends to grow exponentially when we increase the search depth. Therefore, most
of our experiments use a 1-ply standard search together with a quiescence search. Here, the
quiescence search is called at every frontier node of the standard search. We observed that
evaluation functions learned with shallow searches are still effective for playing games with
deep searches (see Section 4.4). Similar results were reported by Tesauro.

3.5.3 Reuse of PV for Efficiency of Learning

Because step 1 in Figure 2 is the most time-consuming part, it is worth considering omitting
it by assuming πpwww(t) = πpwww(t−1) with a certain frequency. In our experiments, steps 2 and 3
were repeated 32 times without running step 1. We counted the number of iterations in the
run of step 1. That is, each iteration ran a single step 1 and 32 pairs of steps 2 and 3. The
number 32 would be domain dependent and should be set small enough so that the update
does not change the PV for most positions.

3.5.4 Pruning of Trees

Pruning techniques can dramatically reduce the number of searched nodes and hence speed
up learning. Fortunately, αβ pruning does not introduce any discontinuities in the objective
function. On the other hand, other pruning methods, including futility pruning (Schaeffer,
1986), may introduce discontinuities (see Appendix A.4). Therefore, the robustness of the
whole learning procedure should be examined when such pruning techniques are used. As
far as the authors’ experience goes, the objective function with futility pruning seems to be
continuous (see Section 4.5).

3.5.5 Convergence and Performance Measurement

The termination criteria is usually difficult to determine in iterative computations. In the
case of learning the shogi evaluation function, the convergence of the objective function in
MMTO seems to be a significant criteria, because the rate of agreement with the test set
and the Elo rating of the learned evaluation function also converge when it converges. Note
that the rate of agreement should be measured on a separate test set from the training set
in order to detect overfitting (see Section 4.3).

3.5.6 Duplication in Positions and Alternative Moves

Game records usually have duplications in the positions and desired moves in the opening
phase. Although the ideal distributions of these positions and desired moves are unknown,
we decided to remove the duplications from the training and test sets for simplicity. That
is, we use each pair of 〈position,move〉 at most once in each iteration. These duplications
are detected by Zobrist hashing (1990). Note that two or more different moves may be
suggested for the same position in the training and test sets, and the objective function

537



Hoki & Kaneko

becomes smaller if the tree search rooted at the position matches one of these moves. As
a result, conflicting goals such as “move a should be better than move b and vice versa”
are independently augmented to the objective function and cancel each other when both
moves can be played in the same position. In our experience, this adaptation seems to work
reasonably well in shogi, but the best solution may depend on the target game.

4. Experiments

We evaluated the effectiveness of MMTO in experiments in which the number of feature
weights in the evaluation function was varied from thirteen to about forty million. We
found that MMTO works better than comparison training and its intuitive modifications
in terms of the rate of agreement, speed of convergence, and game-playing strength. We
also observed that the constraint term JC(www) and regularization term JR(www) help to in-
crease the performance of the evaluation functions in terms of the rate of agreement with
the test set. To see numerical convergence, we investigated the surfaces of the objective
function in MMTO with a limited number of feature weights and experimentally found that
MMTO finds local minima in a reasonable range of feature weights. Finally, we carried out
preliminary experiments on chess as well as experiments on data quality dependence.

4.1 Setup: Evaluation Functions, Features, and Game Records

Most of the experiments described in this section used Bonanza, whose source code is
available online (Hoki & Muramatsu, 2012). The performance of Bonanza in major tour-
naments is discussed in Section 4.6. Bonanza uses techniques such as MMTO, PVS (Pearl,
1980; Marsland & Campbell, 1982; Reinefeld, 1983), a capture search at frontier nodes as
a quiescence search, transposition tables (Zobrist, 1990; Russell & Norvig, 2002), static ex-
change evaluation (Reul, 2010), killer and history heuristics (Akl & Newborn, 1977; Schaef-
fer, 1989), null move pruning (Adelson-Velskiy, Arlazarov, & Donskoy, 1975; Heinz, 1999),
futility pruning (Schaeffer, 1986; Heinz, 1998), and late move reductions (Romstad, 2010).
It also uses an opening-book database from which we randomly chose the opening lines
of self-play experiments. The game records in the training and test sets were exclusively
chosen from games played in famous tournaments2. There were 48, 566 game records in
total. More than 30, 000 of the games were played by professional players using standard
time controls, i.e., from one to ten hours for a side with a “byoyomi” period (once the time

2. The abbreviated tournament name, number of games we used, and date range of the games are: Juni,
12827, 1946–2010; Kisei, 3286, 1962–2010; Ryuo, 3279, 1987–2010; Osho, 2286, 1950–2010; Oui, 2017,
1959–2010; Ouza, 1849, 1952–2010; NHK-cup, 1745, 1951–2010; Ginga, 1735, 1991–2010; Kio, 1620,
1973–2010; Shinjino, 1332, 1969–2010; Zen-nihon-proshogi, 1160, 1982–2001; Hayazashi-shogi-senshuken,
945, 1972–2003; Judan, 764, 1962–1987; Meisho, 752, 1973–1989; Joryu-meijin, 608, 1974–2010; Meijin,
551, 1935–2010; All-star-kachinuki, 545, 1978–2003; Rating-senshuken, 476, 1987–2007; Asahi-open,
429, 2001–2007; Heisei-saikyo, 412, 1992–2007; Teno, 351, 1984–1992; Joryu-osho, 351, 1979–2010;
Kurashiki-touka, 314, 1993–2010; Nihon-series, 304, 1981–2010; 3-dan-league, 283, 1963–2009; Ladies-
open, 255, 1987–2007; Joryu-oui, 253, 1990–2010; Shoureikai, 217, 1941–2008; Gakusei-osho, 212, 1972–
2006; Hayazashi-shinei, 206, 1982–2002; Gakusei-ouza, 191, 2001–2006; Asahi-amashogi, 187, 1980–2009;
Wakajishi, 183, 1953–1991; Kudan, 182, 1947–1961; Gakusei-meijin, 177, 1972–2006; Shogi-Renmei-cup,
172, 1967–1984; Tatsujin, 160, 1993–2010; Kinsho-cup, 156, 2002–2005; Amateur-meijin, 146, 1948–2009;
Kashima-cup, 119, 1996–2006; Grand-champion, 111, 1981–2008; Saikyosya-kettei, 101, 1954–1973; Mis-
cellaneous, 5317, 1607–2010.

538



Large-Scale Optimization for Evaluation Functions with Minimax Search

evaluation function dimension

eA
13∑
i=1

[
fA
i (p)− fA

i (p̃)
]
wA
i 13

eB
∑
k,j

[
fB
kj(p)− fB

kj(p̃)
]
wB
kj 60, 876

eC
∑
k,k′,l

[
fC
kk′l(p)− fC

kk′l(p̃)
]
wC
kk′l 2, 425, 950

eD
∑

k,j≤j′

[
fD
kjj′(p)− fD

kjj′(p̃)
]
wD
kjj′ 44, 222, 454

Table 2: Dimensions of evaluation functions. Each evaluation function is a linear combi-
nation of weighted features. eA evaluates the material balance, and the others
evaluate a variety of positional scores by using extended piece-square tables.

had expired, a player had to move within sixty seconds). Some tournaments employed rapid
time controls such as 30 seconds per move and had top-level amateur players as participants.

Table 2 shows the four basic evaluation functions, where eA is for material balance and
the others are for positional scores. Our experiments used the sum of these functions, i.e.,
eA, eAB = eA + eB, eABC = eAB + eC, and eABCD = eABC + eD. All evaluation functions are
anti-symmetric with respect to the exchange of black and white: e(p,www) = − e(p̃,www). Here,
p̃ is a complete reversal of the black and white sides at position p; that is, black plays for
white and white plays for black3. After this reversal, the pieces owned by black and white in
p are regarded as white and black pieces in p̃, respectively. Also, all evaluation functions are
symmetric with respect to right-and-left mirroring of a position: e(p,www) = e(p̂,www), where p̂
is the mirror image of p along file e.

The function eA(p,wwwA) was used to evaluate the material balance. There are 13 types
of pieces in shogi (Iida et al., 2002). Each feature fA

i (p) represents the number of the i-th
type owned by black in position p, and wA

i is the relative value of the i-th type of piece.
The partial derivative of the evaluation function with respect to wA

i is ∂ eA(p,wwwA)/∂wA
i =

fA
i (p)− fA

i (p̃).

The function eB(p,wwwB) is a linear combination of weighted two-piece-square features.
These are natural extensions of one-piece-square features that were employed in recent
machine learning studies of chess evaluations (Baxter et al., 2000; Tesauro, 2001; Veness
et al., 2009). These two-piece-square features were used to evaluate all conditions of the
king and another piece. Each feature fB

kj(p) is an indicator function that returns one if
both of the conditions k and j exist in position p. Otherwise, it returns zero. Condition
k represents the location of the black king (there are 81 squares), and j represents the
type, owner (black or white), and location of the other piece. There were 1, 476 different
conditions for j after some of the minor conditions were merged. Thus, the total number of
the king–piece conditions was 81 · 1, 476 = 119, 556 before the mirror symmetric conditions
were merged.

3. Following shogi notation, black and white refer to the players who plays first and second, respectively.

539



Hoki & Kaneko

Similarly, the functions eC(p,wwwC) and eD(p,wwwD) were used to evaluate the king–king–
piece features and king–piece–piece features, respectively. The indicator function fC

kk′l(p)
represents the location of the two kings (k, k′) and the condition (type and location) of a
black piece l. The indicator function fD

kjj′(p) represents the location of black king k and
the conditions of the other two black or white pieces (j, j′).

Game tree searches are required to identify PV leaf positions for MMTO and to obtain
best moves to measure the rate of agreement. For these purposes, a nominal depth 1
search was used together with the quiescence search. To normalize the objective function
values, the objective function values were divided by the total number of move pairs, ZP =∑

p∈P |M′p|. The constraint function was set to

g(wwwA) =

(
13∑
i=1

wA
i

)
− 6, 500. (9)

Also, in accordance with the magnitude of the constraint, a in the horizontally mirrored
sigmoid function T (x) = 1/(1 + exp(ax)) was set to 0.0273 so that T (x) would vary signifi-
cantly if x changed by a hundred. The regularization term was JR(www) = 0.00625 · (|wwwB| +
|wwwC| + |wwwD|). An intuitive explanation of the penalty strength is that the absolute value
of wi can be increased to 160 if doing so improves the relationship between the evaluation
values of a desired move and another legal move. The sums in eB, eC, and eD were computed
using 32-bit integers, and they were divided by 25 in order to fit the evaluation value into
a 16-bit integer. Step h in the grid-adjacent update was set to the smallest integer value 1.

4.2 Learning the Piece Values

First, the feature weights www = wwwA of the evaluation function eA were adjusted by MMTO
or by comparison training, starting from the same initial value wA

i = 500 for all i. Tesauro
(2001) used floating-point feature weights and the conventional gradient descent method.
That is, the weight vector www was updated by

www(t) = www(t)− r∇wwwJ
P
ct(www), (10)

where r is a constant training rate hand-tuned to 0.5. The components in www used in the tree
search were rounded to the nearest integer values. The rescaling factor R in Eq. (3) was set

to 0.0025 in accordance with the range of the difference | e(π
p.dp
www ,www)− e(πp.mwww ,www)| from 50 to

5, 000. Because this experiment had only 13 piece values to be adjusted in wwwA, only 1, 000
game records were used to compose the training set P. The set had 101,898 desired moves
and ZP = 7, 936, 180 move pairs after removing duplications and handicapped games.

One problem observed in the comparison training was slow learning: as shown in Fig-
ure 3, phase I of the iterative procedure (from iteration 1 to 10) is mainly for adjusting
the pawn value, because the partial differential value of Eq. (3) for pawns is the largest
in this phase. After a good pawn value is found, phase II (from iteration 10 to 100) is
mainly for adjusting the promoted rook and promoted bishop values. These values should
be the highest and second highest for reasonable game play. The long period of time taken
by phase II indicates that JctP(www) in Eq. (3) scales poorly. This is a general problem in
gradient descent methods with multiple degrees of freedom (Nocedal & Wright, 2006), and

540



Large-Scale Optimization for Evaluation Functions with Minimax Search

2500

2000

1500

1000

500

0

P
ie

ce
 w

ei
g

h
t

1
2 3 4 5 6

10
2 3 4 5 6

100
2 3 4 5 6

1000
Iteration

pro_rook

pro_bishop

gold

rook
bishop

pro_pawn

pro_lance

silver

pro_knight

pro_silver

knight

lance

pawn

Phase I Phase II Phase III

Figure 3: Results of comparison training of the piece weights in shogi. The horizontal axis
plots the number of iterations on a logarithmic scale.

to cope with it, the learning rate r cannot be greater than 0.5 in accordance with the largest
partial derivative in these experiments.

The second problem was about convergence: in phase III (after iteration 100) of Figure 3,
all piece values keep increasing without changing the ratio of piece values, even though the
relative ratios of the piece values have room for improvement. This problem is inherent
to the objective function of comparison training, because Eq. (3) has no explicit term
to avoid it. In an extreme case where the training data satisfy the inequality condition

e(π
p.dp
www ,www) ≥ e(πp.mwww ,www) for all moves m in any position p, all piece values diverge to infinity

when the value JctP(www) is minimized. In fact, it was found that the training data in this
experiment satisfied the condition for 94% of the pairs of the best and another legal move.
Moreover, in the other extreme case, where the training does not satisfy the inequality
condition for any move m in any position p in Eq. (3), all piece values shrink to zero.

MMTO deals with these problems by making grid-adjacent updates and keeping the
magnitudes constant through its constraint term JC(www). The weighted vector wwwA converged
in 40 iterations (see Figure 4); the value of the promoted rook was 945 and that of the
pawn was 122. Note that the number of iterations was counted as the number of step (1)s
throughout the experiments.

4.3 Scalability in Learning Practical Evaluation Functions

After learning the piece values, we adjusted the weight vectors for positional scores. This
time, a large number of training records were used to cope with high-dimensional weight
vectors. The main training set P had 4, 467, 116 desired moves and ZP = 368, 313, 024

541



Hoki & Kaneko

800

600

400

200

P
ie

ce
 w

ei
g

h
t

1
2 3 4 5 6 7 8

10
2 3 4 5 6 7 8

100
Iteration

pro_rook

pro_bishop

rook

bishop
gold

pro_knight

silver

pro_pawn

pro_lance

pro_silver

knight

lance
pawn

Figure 4: Results of MMTO for the piece weights.

move pairs after removing duplications and handicap games from the 47, 566 game records.
The test set had 103, 105 desired moves after removing duplications and handicap games
from another 1, 000 game records. The feature weights for eAB were adjusted with MMTO
and comparison training and its intuitive modifications. The same initial feature weights
(wwwA(0),wwwB(0)) were used in all three methods; wwwA(0) was optimized by MMTO from the
previous experiment, and wwwB(0) = 0. After that, to show scalability, the feature weights for
eABC and eABCD were optimized by MMTO in this order. To adjust the feature weights for
eABC, the optimized feature weights of eAB were used for the initial feature weights wwwA(0)
and wwwB(0), and 0 was used for wwwC(0). Similarly, in eABCD, the optimized feature weights
in eABC were used for the initial feature weights wwwA(0), wwwB(0), and wwwC(0), and 0 was used
for wwwD(0).

Comparison training with eABC and eABCD was not tested because learning eAB yielded
only small improvements. The rate r in Eq. (10) was hand tuned to 0.031. As an example
of the intuitive modifications to stabilize the iterative procedure, a constant-step update
was also tested for learning eAB. In this case, the training rate r′(t) was substituted for r
and

r′(t) = rc/|∇www(t)J
P
ct(www(t))|,

where this constant-step modification conservatively updated www by using a constant step rc

that was hand tuned to 1, 000. Each value of r and rc was the best of five trials. Another
intuitive modification was the reuse of PV, as explained in Section 3.5, where the same PVs
were used 32 times and the rate r in Eq. (10) was 0.01. The rescaling factor R in Eq. (3)
was set to 0.0025, because this value was satisfactory in the previous experiment shown in
Figure 3. Although the three methods are different, their iterations consumed almost the
same amount of time. This is because the most time-consuming step of these experiments
was the game tree search to identify the PV leaf positions.

The rate of agreement with the test set is shown in Figure 5. Here, agreement means that
the legal move that obtained the highest value in the tree search is the desired move. The

542



Large-Scale Optimization for Evaluation Functions with Minimax Search

35

30

25

20

15

A
g

re
em

en
t 

(%
)

1
2 3 4 5 6 7 8

10
2 3 4 5 6 7 8

100
2

Iteration

 MMTO (e
ABCD)

 MMTO (e
ABC)

 MMTO (e
AB)

 CT (e
AB, reuse of PV)

 CT (e
AB, constant step)

 CT  (e
AB)

-140

-120

-100

-80

-60

-40

-20

0

P
o

si
ti

o
n

al
 w

ei
g

h
t

200150100500

Iteration

b2_c2_h6

b2_c2_b4

d2_b2_f3

b2_c2_b3

b2_b1_c2

d2_f3_c4

d2_f3_b3

b2_c2_a3

b2_c2_a2

b2_d1_c2

Figure 5: (Left panel) Improvement in rate of agreement with the test set for MMTO
and comparison training (CT). (Right panel) Improvement in feature weights for
positional features in eD. Feature weight b2 c2 b4 indicates the black king is at
b2 and two gold generals are at c2 and b4. Similarly, feature weights b2 c2 h6,
b2 c2 b3, b2 c2 a3, b2 b1 c2, b2 c2 a2, and b2 d1 c2 indicate two gold generals
with the king at b2. Feature weight d2 b2 f3 indicates the black king is at d2

and the opponent’s two gold generals are at b2 and f3. Similarly, feature weights
d2 f3 b3 and d2 f3 c4 indicate the opponent’s two gold generals with the king at
d2. Here, each value has been divided by 25.

rate is calculated by excluding positions in which there is only one legal move, or positions
in which there is an easy checkmate sequence that can be identified in the shallow-depth
search. Tied values are not counted, either.

The performances of MMTO, comparison training, and its variations were compared in
the case of learning eAB. We can see from the figure that the agreement rates of comparison
training and constant-step modification are unstable and substantially lower than that of
MMTO. We can also see that the reuse-of-PV modification increases stability because it
reduces the step length from 0.031 to 0.01 and reduces the computation time of learning by
almost 32 times because it reduces the number of time-consuming PV updates.

MMTO with the full evaluation function eABCD had the highest rate (37%). The large-
scale optimization of the weight vector wD increased the level of agreement in 200 iterations.

543



Hoki & Kaneko

140

120

100

P
a
w

n
 v

a
lu

e

1

2 3 4 5 6

10

2 3 4 5 6

100

2

Iteration

 without constraint

 with constraint

Figure 6: Effect of the constraint term in MMTO (eAB).

This computation took about a week using an Intel X5690 workstation. The agreement ratio
with the test set converged in 100 iterations. However, the feature weights did not converge.

Figure 6 shows how the constraint JC(www) in Eq. (9) improves the stability of MMTO in
response to pawn-value changes during the eAB learning. We can see that the value keeps
on increasing when JC(www) is turned off and that it converges in 100 iterations with the
constraint turned on. One of the feature weights overflowed in the comparison training of
eABC, and this is another reason why the results of eABC are not shown for comparison
training. As the regularization term JR(www) has little effect on the learning of eAB, the
improvement in the agreement rates of MMTO is mainly due to the use of the constraint
JC(www) and grid-adjacent updates.

The regularization term JR(www) is important for optimizing larger weight vectors. Fig-
ure 7 shows how JR(www) in Eq. (4) improves the weight vector in the enlarged evaluation
function eABCD. Without a regularization term, the objective function value and the rate
of agreement with the training set increase with the number of iterations. However, there
is also a linear increment in the absolute value of the weight vectors, and it distorts the
rate of agreement with the test set after the 50-th iteration. After the 200-th iteration,
only 0.2% of the components in www are zero. On the other hand, 96.3% of the components
in www are zero with the regularization term. These results indicate that MMTO without the
regularization suffers from overfitting of the training set when a large-scale weight vector
is used. A similar effect of regularization also occurs when MMTO is used in the eABC

learning, though the effect is smaller than that of eABCD.

4.4 Improvements in Strength

To analyze the relationship between the agreement rate and the strength, we had the pro-
grams learned by MMTO and by comparison training (Figure 5) play games against a
reference shogi program many times. The reference program was a version of GPS Shogi
released in 2008 (Kaneko, 2009). It is an open source program and was a finalist in past
world computer shogi championships. It has a completely different evaluation function in
which the majority of the parameters have been hand tuned. This version of GPS Shogi
serves as a reference program on a popular game server for shogi programs4. The matches
were as follows: the reference program (4 · 105 nodes/move) vs. all four learned programs,

4. http://wdoor.c.u-tokyo.ac.jp/shogi/, last access: 2013 (in Japanese).

544

http://wdoor.c.u-tokyo.ac.jp/shogi/


Large-Scale Optimization for Evaluation Functions with Minimax Search

10
9

10
10

10
11

| ω
B
|+

| ω
C
|+

| ω
D

|

1
2 3 4 5 6

10
2 3 4 5 6

100
2

Iteration

60

55

50

45

40

35

A
g

re
em

en
t 

(%
)

0.06

0.05

0.04

0.03

0.02O
b

je
ct

iv
e 

fu
n

ct
io

n

with training set
with test set

 with l1-regularization

 without l1-regularization

Figure 7: Effect of the regularization term in MMTO (eABCD).

the reference program (2·105 nodes/move) vs. the two learned programs with the evaluation
function eA and eAB, and the reference program (8 · 105 nodes/move) vs. the two learned
programs with the evaluation functions eABC and eABCD. 500 games were played in each
match. The weight vectors obtained after 1, 2, 4, 8, 16, 32, 48, 64, 80, 96, 112, 128, and 144
iterations were tested for each learning configuration. Thus, a total of 8 · 13 · 500 = 52, 000
games were played. The learned programs searched 4 · 105 nodes per move. All programs
ran on a single thread and searched similar numbers of nodes in a second.

We measured the playing strength in terms of the Elo rating, which is a popular way
to represent relative strength in two-player games. The winning probability between two
players is estimated as 1/(1 + 10d/400), where d is the difference between their ratings. For
example, if the rating of player A is higher than that of player B by 150, the winning
percentage of player A is about 70%. Here, the ratings were determined by using maximum
likelihood estimation on all the games.

Figure 8 shows the Elo rating of each player. We can see that MMTO with eAB sig-
nificantly outperformed comparison training with the same initial feature weights. When
MMTO used eAB, the winning percentage against the reference (400k/move) stably in-
creased from 11.2% (1, 800 Elo points) to 59.4% (2, 210 Elo points). In contrast, comparison

545



Hoki & Kaneko

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 1  10  100

E
lo

 R
at

in
g

Iteration

MMTO (ABCD)
MMTO (ABC)

MMTO (AB)
Comparison training (AB)

Reference (800k)
Reference (400k)
Reference (200k)

Figure 8: Improvements in strength (Elo rating) achieved by MMTO and comparison train-
ing.

Opponent Depth 2 Depth 3 Depth 4 Depth 5 Depth 6 Depth 7 Depth 8
Player 1 94± 2% 89± 3% 82± 3% 85± 3% 78± 3% 81± 3% 78± 3%
Player 2 77± 3% 75± 3% 77± 3% 82± 3% 81± 3% 85± 3% 84± 3%

Table 3: Winning percentages of program learned with game tree search having various
depths. Opponent player 1 is the same program but the search depth is reduced
by 1, and opponent player 2 is also the same program but it uses the weight vector
before the learning.

training won at most 19.5% (1, 910 Elo points) of its games. The results shown in Figs. 5
and 8 indicate that MMTO outperforms comparison training.

The large number of features also contributed to the playing strength of the programs
learned by MMTO. Although eABC showed a small improvement in terms of the agreement
rate and Elo rating, eABCD consistently yielded significant improvements in these two cri-
teria. Thus, we concluded that MMTO scales well to forty million features. Note that the
computational cost of eABCD was reasonably small for practical game play. This is because
the number of features that appear in a position is only 2, 800 or less even when the total
number of features is about forty million. Also, the summations in Table 2 can be main-
tained in an incremental manner when the program makes or unmakes a move. This sort
of feature design is similar to that of a famous Othello program (Buro, 2002). As a result,
Bonanza using eABCD searched about 3 · 106 nodes/sec on an Intel Xeon X5680 with 12
threads. The speed itself is slower than that of many chess programs, but about average
for strong shogi programs. In addition, we found that Bonanza using eABCD trained by
MMTO played better than or was comparable to any of the top shogi programs in actual
tournaments. The details are discussed in Section 4.6.

Two additional fixed-depth self-play experiments were conducted to see if evaluation
functions trained by using shallow searches (depth 1 with quiescence search) are effective on
deep searches. Table 3 shows the winning percentages of the learned program with various

546



Large-Scale Optimization for Evaluation Functions with Minimax Search

search depths of game play. The learned program had the eABCD evaluation function yielded
after the 200-th iteration (Figure 5). The winning percentages against the same program
(player 1) with the search depth reduced by 1 were around 80%. Thus, we see that the
deeper the learned program searched, the stronger the program was. Tesauro (2001) also
reported similar results by using comparison training. In addition, the winning percentage
was about 80% against a program (player 2) that searched to the same depth but used eABC

after the 200-th iteration. Thus, the use of eABCD trained by 200 iterations was effective
even when the program searched deeper. Here, the winning percentages were computed for
a thousand games (Seventy-six games or less ending in draws or exceeding 300 moves were
not counted). Fifty megabytes of memory were assigned to the transposition table of each
program. The uncertainties indicated as ±3 was estimated by conducting a two-sided test
at a significance level of 5% on the one-thousand games.

4.5 Numerical Stability and Convergence

We investigated the continuity and partial differentiability of the objective function and
convergence of the feature weights in an empirical manner. While forward pruning tech-
niques in game tree searches can speed up MMTO in practical applications, such methods
do not always maintain continuous search values, as is shown in Appendix A.4. Moreover,
the objective function contains a large number of search values. This means it is difficult
to estimate its properties in a theoretical manner.

To make the empirical investigation manageable, we used only the smallest evaluation
function eA that deals with thirteen shogi piece values. Moreover, we reduced the number
of game records to 1, 000; the game records had 98, 224 desired moves and ZP = 7, 900, 993
move pairs after removing duplications and handicapped games.

4.5.1 Surface of the Objective Function

We investigated the function surface of the main part of the objective function J(P,wwwA)
of MMTO in Eq. (4) by generating contour maps from millions of sampling vectors www.
Note that a contour line (isovalue surface) is a curve along which the functions take the
same value. The contour lines have certain properties: the gradient of the function is
perpendicular to the lines, and the magnitude of the gradient is large when two lines are
close together. In addition, a closed-loop contour line indicates the location of the local
minimum or maximum.

Two of the thirteen piece values in the weight vector wwwA were sampled in order to draw
the contour maps of two-dimensional functions at an interval of 5 for each piece value.
The remaining eleven pieces were assigned reasonable values; 118 (pawn), 273 (lance), 318
(knight), 477 (silver general), 562 (gold general), 620 (bishop), 734 (rook), 485 (promoted
pawn), 387 (promoted lance), 445 (promoted knight), 343 (promoted silver), 781 (promoted
bishop), and 957 (promoted rook). The constraint term JC(wwwA) was ignored so that wwwA

could be freely changed and the regularization term JR(www) was turned off for piece values.
A nominal depth 1 search, together with the quiescence search, was used.

We analyzed two pairs: 〈gold, bishop〉, and 〈pawn, promoted lance〉. Figure 9 shows
an enlargement of the contour map of J(P, wgold, wbishop). The contour interval is 5 · 10−4.
The map was computed with the ranges of [200, 1100] for the bishop and [100, 930] for

547



Hoki & Kaneko

0.164

0.162

0.160

0.158

O
b

je
ct

iv
e 

fu
n

ct
io

n

800700600500400

Bishop weight

900800700600500

Gold general weight

(1) (5) (2)

(4)(3)

(9) (5) (6)

(8) (7)

800

700

600

500

400

G
o

ld
 g

en
er

al
 w

ei
g

h
t

900800700600500400

Bishop weight

(1) bishop=silver (2) bishop=rook

(4) bishop=dragon(3) bishop=pro_bishop

(6) gold=pro_bishop

(5) gold=bishop

(7) gold=pro_rook

(8) gold=rook

(9) gold=silver

x
x

Figure 9: (Upper panel) Enlarged contour map of J(P, wgold, wbishop). The dashed lines
indicate the critical boundaries at which the two-dimensional function is not
partially differentiable. The two minima are indicated by x. (Bottom panel)
Cross sections of the contour map. The left one shows the intersection of the
map with the line wgold = 560, and the other shows that of wbishop = 620.

the gold general. Note that the function simply increases and there are no interesting
structures outside of the enlarged map. Figure 10 shows an enlargement of the contour
map of J(P, wpawn, wpro lance). The contour interval is 1 · 10−3. The map was computed
with the ranges of [10, 500] for a pawn and [200, 700] for a promoted lance.

We can see from these maps that there are local minima within reasonable ranges
and no sudden changes in the function values. Although the function depends on a large
number of empirical search values, s(p,www), it is approximately continuous and amenable to
optimization on the basis of gradients approximated by MMTO.

On the other hand, the maps illustrate three difficulties. The first difficulty is the clear
edges of the contour lines. They indicate that the function is not partially differentiable at
the points on these edges. The dashed lines in these maps are critical boundaries at which
the profit and loss ratio of material exchanges inverts itself. For example, a silver is usually

548



Large-Scale Optimization for Evaluation Functions with Minimax Search

400

300

200

100

P
aw

n
 w

ei
g

h
t

700600500400300200

Promoted lance weight

X

(7) lance promotion=pawn

(1) pro_lance=lance (2) pro_lance=knight (3) pro_lance=silver

(5) pawn=knight

(4) pawn=silver

(6) pawn=lance

X

0.20
0.19
0.18
0.17
0.16

500400300200100

Pawn weight

(7) (6) (5)

(4)

0.1584
0.1583
0.1582
0.1581
0.1580
0.1579

O
b

je
ct

iv
e 

fu
n

ct
io

n

700600500400300200

Promoted lance weight

(1)

(2) (7) (3)

Figure 10: (Upper panel) Enlarged contour map of J(P, wpawn, wpro lance). The dashed
lines indicate critical boundaries at which the two-dimensional function is not
partially differentiable. The two minima are indicated by x. (Bottom panel)
Cross sections of the contour map. The left one shows the intersection of the
map with the line of wpawn = 125, and the other shows that of wpro lance = 450.

less valuable than a bishop, but capturing a silver becomes more profitable than capturing a
bishop when the bishop value is smaller than 477. This boundary is labeled “bishop=silver”
in Figure 9. As discussed in Appendix A, the function is not always partially differentiable at
these critical boundaries, where multiple moves share the same best value. Note that there
can be more boundaries in theory, e.g., a “bishop=promoted knight” boundary. Whether a
boundary is visible or not depends on the training set and evaluation features. In addition,
the boundaries become winding curves when a non-linear evaluation function is used instead
of a linear weighted sum.

The second difficulty, the scaling problem, is illustrated in Figure 10. In this map, we
can see that the scales of the two piece values differ by two orders of magnitude. That
is, a pawn-value variation of five hundred changes the function value by 0.04, whereas a
promoted-lance-value variation of five hundred changes the function value by only 4 · 10−4.
Because of the difference in scaling, the surface along a promoted lance is almost flat. This
property explains why the pawn value is optimized earlier than those of the other pieces in
comparison training, as shown in Figure 3. This property of ill-scaling is disadvantageous
when it comes to optimizing the promoted-lance value using a naive gradient decent method.

549



Hoki & Kaneko

Methods based on second-order partial derivatives or approximations of the Hessian matrix
can resolve this problem; however, they behave poorly at non-partially differentiable points
on many boundaries. These two difficulties point to why the grid-adjacent update in MMTO
is effective.

The third difficulty is that there are multiple local minima in the two maps. This
means the results of MMTO depend on the initial values and there is a chance of ending
up with a local rather than global minimum. We will investigate this problem in the next
subsection 4.5.2.

4.5.2 Empirical Convergence and Local-Minima Properties

In the previous subsection, we examined two-dimensional cross sections of the function
J(P,wwwA). In this subsection, we loosen the restriction from two to thirteen dimensions,
which is sufficiently large to express all piece values in shogi. The aim of this experiment
is to catch a glimpse of the global map and numerical convergences for arbitrary initial
guesses about the values of all of the pieces.

For this purpose, a Monte Carlo sampling of the initial guess, wwwA(0), was carried out to
enumerate the local minima and analyze the optimized vectors. We ran 444 MMTO with
randomized initial values. Here, a uniformly distributed integer in the range of [0, 32767]
was assigned to each vector component, and the resulting vector was scaled to satisfy the
equality condition g(wwwA) = 0.

Figure 11 shows the cosine similarity and objective-function value of a hundred of the 444
runs. Here, the cosine similarity of a weight vector is measured relative to the best vector
whose objective function is the smallest among those of 444 vectors after 100 iterations.
In the majority of the runs, we can see that function values and weight vectors converged
numerically in 50 iterations. Here, we regard the iteration procedure to have converged
when the function values and similarities oscillate and show neither steady increase nor
decrease from the 50-th to 100-th iteration. Although convergence is almost assured for
MMTO with thirteen piece values, it would be difficult to achieve if more feature weights
were to be optimized. For example, Figure 5 shows there was no convergence after two-
thousand iterations using eABCD. Because 200 iterations took about a week on an Intel
X5690 workstation, we could not afford to investigate the convergence of eABCD with the
current hardware. However, 200 iterations nonetheless achieved a significant improvement
in strength, as shown in Figure 8.

We can also see that these trials of MMTO ended up with multiple local minima.
Although a multiplicity of minima is generally undesirable in an optimization, there were
other, more favorable properties. The first property is that each run of MMTO changed
the weight-vector components by a sufficient amount. That is, the cosine similarity of the
444 optimized vectors was localized in the range of [0.925, 1], while that of the random
initial vectors were widely spread (see the top panel of Figure 12). The second property is
that there was a weak correlation between the cosine similarities of the initial and optimized
vectors. This means that starting from a better initial vector in terms of the cosine similarity
should be beneficial (see the top panel of Figure 12). However, starting from a better initial
vector in terms of the objective function value is not beneficial (see the middle panel of
Figure 12). The third is that the distribution of local minima formed structures (see the

550



Large-Scale Optimization for Evaluation Functions with Minimax Search

0.30

0.25

0.20

O
b

je
ct

iv
e 

fu
n

ct
io

n

1
2 3 4 5 6 7 8 9

10
2 3 4 5 6 7 8 9

100

Iteration

0.170

0.165

0.160

O
b

je
ct

iv
e 

fu
n

ct
io

n

8060

Iteration

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

C
o

si
n

e 
si

m
il

ar
it

y
 o

f 
w

ei
g

h
t 

v
ec

to
r

0.98

0.97

0.96

0.95

S
im

il
ar

it
y

Figure 11: A hundred runs of MMTO for a weight vector wwwA consisting of thirteen piece
values. The initial vectors were set using pseudo-random numbers. The inset
is an enlargement showing the appearance of the numerical convergences. The
top panel shows the cosine similarities relative to the best weight vector. The
bottom panel shows the values of the objective function.

bottom panel of Figure 12). That is, the lower the local minimum is, the more similar it
becomes to the best vector. Moreover, the number of local minima decreases as the weight
vector gets farther away from the best.

We also investigated the dependence of the performance on the nominal search depth
of step (1) shown in Figure 2. Similar results in terms of convergence and the distribution
of local minima were obtained using a deeper search with a nominal depth of 2. Because
MMTO with a depth of 2 consumes more time than MMTO with a depth of 1, the number

551



Hoki & Kaneko

0.180

0.175

0.170

0.165

0.160

O
p

ti
m

iz
ed

 o
b

je
ct

iv
e 

fu
n

ct
io

n

1.000.980.960.94

Cosine similarity of optimized vector

0.35

0.30

0.25

0.20In
it

ia
l 

o
b

je
ct

iv
e 

fu
n

ct
io

n

1.0

0.9

0.8

0.7

0.6C
o

si
n

e 
si

m
il

ar
it

y
 o

f 
in

it
ia

l 
v

ec
to

r

corr = -0.55

corr = -0.06

corr = 0.27

Figure 12: Scatter plots for 444 trials of thirteen-dimensional weight vectors. The vector
expresses thirteen piece values. The cosine similarity of the vector is measured
relative to the best vector. The initial vector consists of uniform pseudo-random
numbers, and the optimized one is the 100-th vector of the MMTO iterations
starting from the initial one. The inset shows the correlation coefficient of each
scatter plot.

of random initial vectors was reduced to 78, and the number of iterations was reduced
to sixty for the sake of speed. In the majority of runs, the function values and weight
vectors converged in 50 iterations. Figure 13 shows the strength (Elo rating) and objective-

552



Large-Scale Optimization for Evaluation Functions with Minimax Search

-150

-100

-50

0

50

100
E

lo
 r

at
in

g

0.1800.1750.1700.1650.1600.1550.150

Objective function

 depth 1 (corr = -0.60)

 depth 2 (corr = -0.86)

Figure 13: Scatter plots for thirteen-dimensional weight vectors. The 444 vectors indicated
by crosses were learned with the nominal depth 1 search of step (1), and the 78
vectors indicated by squares were learned with a depth 2 search.

function value of the 78 runs with depth 2 (squares) and 444 runs with depth 1 (crosses).
Here, the Elo ratings were identified by using maximum likelihood estimation on 894, 244
random-pairing games (5 · 104 nodes/move). The Elo rating with depth 1 was −17 on
average and that with depth 2 was 41 on average. Also, the correlation coefficient between
the Elo rating and objective function value with depth 2 was −0.86 and that with depth
1 was −0.60. Moreover, we compared the performance of two best vectors that gave the
smallest objective function values. Here, we computed the winning probability between the
best results of depth 1 and 2. Each player was allowed to use one second for each move,
and one core of an Intel Xeon X5680 and fifty megabytes of memory were assigned to the
transposition table. After excluding two drawn games and two games exceeding a thousand
moves, we obtained a 43.6% winning rate against the program using the best results of
depth 2. These results indicate that MMTO is better with depth 2 than with depth 1.

4.6 Performance of MMTO under Tournament Conditions

MMTO was invented by the developer of Bonanza and made it one of the best programs
in shogi. Moreover, the ideas behind earlier versions of MMTO published in Japanese
(Hoki, 2006) have been adopted by many developers and have dramatically changed shogi
programs.

One of the authors started developing Bonanza in 2004, published program files on
the web in 2005, and published source codes on the web in 2009 (Hoki, 2013). This paper
gives detailed descriptions of the evaluation-function learning, whereas the literature (Hoki
& Muramatsu, 2012) gives detailed descriptions of the game-tree pruning of Bonanza. In
addition to the learning method MMTO, Bonanza uses the evaluation function eABCD

shown in Table 2. The earlier versions until 2009 used a subset of eABCD with a modified

553



Hoki & Kaneko

2006 May 2007 May 2008 May 2009 May

1 Bonanza∗∗ YSS Gekisashi GPS Shogi∗∗

2 YSS Tanase Shogi∗ Tanase Shogi∗ Otsuki Shogi∗

3 KCC Shogi Gekisashi Bonanza∗∗ Monju∗∗∗

4 TACOS Bonanza∗∗ YSS KCC Shogi∗

5 Gekisashi Bingo Shogi Bingo Shogi Bonanza∗∗∗

2010 May 2011 May 2012 May 2013 May

1 Gekisashi∗ Bonkras∗∗ GPS Shogi∗∗ Bonanza∗∗∗

2 Shueso∗ Bonanza∗∗∗ Puella α∗∗ ponanza∗∗

3 GPS Shogi∗∗ Shueso∗ Tsutsukana∗ GPS Shogi∗∗

4 Bonkras∗∗ Gekisashi∗ ponanza∗∗ Gekisashi∗

5 Bonanza Feliz∗∗∗ ponanza∗∗ Shueso∗ NineDayFever∗∗

Table 4: Program names and results of the recent World Computer Shogi Championship.
∗∗∗MMTO, ∗∗an earlier version or a variant of MMTO, or ∗a learning method
influenced by MMTO is used.

l2-regularization (Hoki, 2006). Subsequent versions fully evaluate eABCD learned with l1-
regularization.

Table 4 shows the results of the World Computer Shogi Championships. Since 2006,
the performance of Bonanza has been examined in several computer shogi tournaments,
where each participant connects to a server program and plays shogi under a time control
of 25 minutes a side. Bonanza received the first prize twice, second prize once, and third
prize once. Moreover, players entitled Bonanza Feliz and Monju used the same evalua-
tion functions as obtained by MMTO. Thus, we claim that when Bonanza uses MMTO, it
plays better than or is comparable to any of the top programs in shogi, including commer-
cial ones. This method clearly plays at the level of handcrafted shogi programs. Moreover,
descriptions of the learning shogi evaluation functions and the earlier version of MMTO
were published by Hoki (2006) in Japanese and were quickly recognized as significant ad-
vances. In fact, no shogi program with conventional handcrafted evaluation functions has
broken into the top five in during the last five years of tournaments. One interesting case is
the results of GPS Shogi (Kaneko, 2009), the winner of the 2009 and 2012 tournaments,
and source codes are available online (Tanaka and Kaneko, 2013). From 2003 to 2008, this
program uses a handcrafted evaluation function but in 2009 it used a variant of MMTO
and its results dramatically improved. The variants of MMTO used in each program differ
in accordance with the content and policy of each program. For example, Tanase Shogi,
the runner-up program in 2008, used a learning method based on MMTO and handcrafted
evaluation functions. Bonkras, ponanza, Puella α, and NineDayFever also used vari-
ants of MMTO. These excellent results make it clear that MMTO outperforms conventional
programs that use handcrafted evaluation functions and has played extremely well in recent
shogi tournaments.

554



Large-Scale Optimization for Evaluation Functions with Minimax Search

It should be noted that some versions of Bonanza add a small amount of randomness
to the grid-adjacent updates. However, we omitted any discussion of using randomness in
this paper because it is not clear whether the added randomness improved the quality of the
evaluation function or not. The source codes of various versions of Bonanza are available
online (Hoki, 2013) and the source code of MMTO are in two files, learn1.c and learn2.c.

4.7 Preliminary Experiments on Chess

So far, we have discussed the performance of MMTO in shogi. We expect that MMTO
would be effective in other two-player perfect information games provided that certain
conditions are met: (1) a sufficient number of game records are available, (2) minimax
searches guided by heuristic evaluations are effective, and (3) the analytic partial derivatives
of the evaluation function with respect to the variables are available. For example, MMTO
would not yield interesting results were it to be applied to a game that has been solved by
other means (e.g., van den Herik, Uiterwijk, & van Rijswijck, 2002). Also, it would not yield
interesting results in the game of Go because Monte-Carlo tree searches are more effective
than minimax searches guided by a heuristic evaluation function (Kocsis & Szepesvari, 2006;
Gelly & Silver, 2011; Browne, Powley, Whitehouse, Lucas, Cowling, Rohlfshagen, Tavener,
Perez, Samothrakis, & Colton, 2012; Gelly, Kocsis, Schoenauer Sebag, Silver, Szepesvári, &
Tẽytaud, 2012). Moreover, a simpler learning method (e.g., a regression method in Othello,
Buro, 2002) would be preferable to MMTO, if it is sufficiently effective.

We conducted preliminary experiments on chess to catch a glimpse of the applicability
of MMTO to other games. Note that there already are evaluation functions in chess that
can outplay grandmasters, whereas there are none in shogi. Thus, it might be difficult to
improve well-crafted chess evaluation functions. For this experiment, we chose an open-
source program (Crafty) as a fair implementation of a chess program (Hyatt, 2013).
The original evaluation function had been tightly tuned and is not a simple multivariable
function. Thus, for the sake of simplicity, we did not modify it in any way except to add
a new linear combination of weighted two-pieces-square features. The features were used
to evaluate all conditions of the king and another piece, such as in eB in Section 4.1. The
mirror symmetric property described in Section 4.1 was not applied and features in which
a pawn exists at the eighth rank were not counted. As a results, the total number of added
weights wwwB’ was 39, 312. Because a chess position possesses only thirty or fewer two-pieces-
square features, the additional computational time due to the above modification became
almost negligible with the help of a pawn hash table and the lazy evaluation technique that
had come with the original.

The training and test sets were composed by using game records at the Free Internet
Chess Server (FICS). These games were played using the standard time control of the server
by two players with ratings of 2, 600 or more. The training set P had 1, 267, 032 desired
moves and ZP = 33, 619, 904 move pairs after removing duplications from the 13, 440 game
records, whereas the test set P had 101, 982 desired moves and ZP = 2, 755, 217 move pairs
after removing duplications from the 1, 000 game records.

Figure 14 shows the rate of agreement with the test set and the number of correct answers
of chess problems through iteration. Here, α in the sigmoid function was set to 0.00341, the
equality constraint was not used, and the regularization term was JR(wwwB’) = 0.156|wwwB’|.

555



Hoki & Kaneko

35.2

34.8

34.4A
g

re
em

en
t 

(%
)

1
2 3 4 5 6 7 8 9

10
2 3 4 5 6 7 8 9

100

Iteration

1280

1270

1260

1250

1240

N
u

m
b

er o
f co

rrect an
sw

ers

 Agreement
 Number of correct answers

Figure 14: Improvement in rate of agreement with the test set (solid line) and the number of
correct answers of 2, 180 problems (dashed line) in chess. The two-piece-square
weights wwwB’ were adjusted using MMTO.

Rating 1010–1279 1280–1489 1490–1769 1770–2049 2050–
Win 33± 3% 35± 3% 39± 4% 43± 4% 42± 4%

Table 5: Dependence of the strength (winning percentages) of learned programs on the
quality (ratings of players) of the training set. The uncertainty indicated as ±3
was estimated by conducting a two-sided test at a significance level of 5% on 1, 000
games.

A total of 2, 180 chess problems from the Encyclopedia of Chess Middlegames (the second
section of the 879 problems), Win at Chess (300 problems), and Winning Chess Sacrifices
(1, 001 problems) were used (Krogius, Livsic, Parma, & Taimanov, 1980; Reinfeld, 2001,
1969). The learned program searched 5 · 104 nodes per problem and eight megabytes of
memory were assigned to the transposition table. We see that the agreement rate as well as
the number of correct answers tends to improve as the number of iterations grows, though
the differences are moderate. It means that MMTO found room for improvement in a
well-implemented chess program. These results indicate that MMTO can be a useful way
to learn heuristic evaluation functions in chess, especially when one can design evaluation
features suitable for learning.

4.8 Data Quality Dependence

To assess the importance of the quality of the game records, we conducted additional ex-
periments using game records of players with various levels of experience in shogi. Here,
eABCD was learned by using the results of eABC in Figure 5 as the initial value. The results
are summarized in Table 5. Each training set was composed from the records of 47, 566
rapid time control (30 seconds per move) games played by amateurs on a popular Internet
shogi site, Shogi Club 245. The first line in the table shows the ratings of the amateur
players. The second line shows the winning percentages of the learned evaluation function

5. Shogi Club 24, http://www.shogidojo.com, last access: 2013.

556

http://www.shogidojo.com


Large-Scale Optimization for Evaluation Functions with Minimax Search

against the evaluation function trained with grandmaster-game records. Here, each evalu-
ation function was learned in 200 iterations. The winning percentages were computed by
averaging the results of a thousand games (About 15 drawn games and games exceeding
300 moves were not counted). Each player was allowed to use one second on one core of
an Intel Xeon X5680 for each move, and fifty megabytes of memory were assigned to the
transposition table. Table 5 shows the significance of the quality of the training set; the use
of game records of stronger players made the program stronger.

5. Conclusion

We presented a method, Minimax Tree Optimization (MMTO), that uses game records to
adjust a full set of feature weights of the evaluation function in a two-player game. The
learning of MMTO has been designed so that the search results match the desired moves,
e.g., the recorded moves of grandmaster games. MMTO consists of two procedures: (1)
a shallow heuristic search for all training positions using the current feature weights and
(2) an update guided by an approximation of the gradient of the objective function. A
new combination of a simple smooth approximation of the step function and grid-adjacent
updates with standard techniques, i.e., gradient guided optimization, constraints, and reg-
ularization, contributed to the scalability and stability of MMTO and led to it showing
substantial improvements over existing methods.

The performance of MMTO was demonstrated in experiments on shogi, a variant of chess
that has a larger number of legal moves. MMTO clearly outperformed the existing methods.
In addition, the experimental results on the rate of agreement and playing strength indicate
that MMTO can adjust forty million parameters. Possible future work would be automated
adjustment of the step length and a theoretical convergence analysis.

Acknowledgments

We are grateful to Dr. Masakazu Muramatsu for his support of this work.

Appendix A. Notes on the Continuity and Partial Differentiability of the
Minimax Value

We saw in Section 4.5 that the objective function of MMTO has a piecewise smooth surface.
In this Appendix, we theoretically discuss the continuity and partial differentiability of the
minimax value vp(www) with respect to www ∈ RN , where www is the vector of parameters in the
evaluation function e(p,www) and p is the position. The continuity of the minimax value
ensures the continuity of the main part of objective function of MMTO defined in Eq. (5).
The partial differentiability analysis gives conditions under which the approximation inside
MMTO described in Section 3.3 is valid. We first analyze a single minimax tree, assuming
that the tree is known and fixed. Then, we extend our discussion to game-tree-search
methods that possibly explore different trees for different www.

Definition 1. The evaluation function e(·, ·) is a (P,RN ) 7→ R function, where P is the set
of all positions in a target game, R is the set of real numbers, and RN is an N -dimensional

557



Hoki & Kaneko

Euclidean space. The evaluation function e(p,www) is continuous with respect to the param-
eters www for any position p ∈ P and for any www ∈ RN . Moreover, the evaluation function
e(p,www) is partially differentiable with respect to any component of www at any www ∈ RN .

The continuity and partial differentiability of the evaluation function are feasible as-
sumptions. Note that an evaluation based on an ordinary piece-square table has these
properties, and all recent machine learning of evaluation functions have them (Baxter et al.,
2000; Veness et al., 2009; Buro, 2002).

Definition 2. The theoretical game graph G is a finite, directed acyclic, connected graph
representing all possible transitions of states in the target game, where a node (resp. edge)
represents a position (resp. move). The set of nodes in G corresponds to P; V (G) = P. A
minimax graph T is a finite connected sub-graph of G. By convention, we use the term
minimax tree for the minimax graph even when it is not a tree. We denote the set of minimax
trees in G by T. A node is called a maximizing (resp. minimizing) node if the corresponding
position is the maximizing (resp. minimizing) player to move. The destination of an edge is
a maximizing (resp. minimizing) node if and only if the source of the edge is a minimizing
(resp. maximizing) node. We can clearly assume any node n to be a single position p, and
we will denote the evaluation function as e(n,www).

Let Lr,T be the set of leaf nodes of the entire sub-tree Tr of T and Tr is rooted at node r.
We will omit tree T and use Lr if it is obvious. We denote the set of immediate successors
(or children) at node n in tree T by Cn,T or by Cn. Note that Cn = ∅ if n is a leaf. In the
standard notation, a node (or vertex) in a graph T is denoted by n ∈ V (T ). However, in
this Appendix, we will omit V (.) and write n ∈ T because it is obvious.

Definition 3. A minimax value vn,T (www) is a value associated with each node n in a minimax
tree T ∈ T and it is defined recursively by a tree structure and by a static evaluation function
e(n,www), as follows:

vn,T (www) =


e(n,www) if n is a leaf,
maxc∈Cn,T vc(www) if n is a non-leaf maximizing node,

minc∈Cn,T vc(www) if n is a non-leaf minimizing node.
(11)

We will omit tree T and use vn(www) if it is obvious. For two minimax values a and b of a
maximizing (resp. minimizing) node, we say a is better than b if a > b (resp. b < a).

A.1 Continuity of Minimax Value

The continuity of the minimax value follows from the continuity of the evaluation function.

Theorem 4. The minimax value vn,T (www) is continuous with respect to www for any minimax
tree T ∈ T and for any www ∈ RN . That is, limwww→www0 vn,T (www) = vn,T (www0), or equivalently, for
any www0 ∈ RN and for any ε > 0, there exists δ > 0 such that |www −www0| < δ logically implies
|vn,T (www)− vn,T (www0)| < ε.

The following assertion about the ordinary properties of the basic functions max and
min and is common sense in analysis. It is rather difficult, however, to find a suitable
reference containing it. We therefore give a proof that will be useful in the subsequent
discussion.

558



Large-Scale Optimization for Evaluation Functions with Minimax Search

Proposition 5. Let k be a natural number and each f1(xxx), ..., fk(xxx) be a continuous function
RN 7→ R. Then, maxi(fi(xxx)) is a continuous function on RN . Similarly, mini(fi(xxx)) is a
continuous function on RN .

Proof. Because each fi(xxx) is continuous, for any xxx0 ∈ RN and for any ε > 0, there exists
δi > 0 such that |xxx− xxx0| < δi implies |fi(xxx)− fi(xxx0)| < ε. Hence, if we choose δ = mini δi,
then |xxx− xxx0| < δ implies |fi(xxx)− fi(xxx0)| < ε for any i = 1, . . . , k; that is,

fi(xxx
0)− ε < fi(xxx) < fi(xxx

0) + ε, for any i = 1, . . . , k.

Note that ai < bi for any i = 1, . . . , k obviously implies maxi ai < maxi bi. Thus, from the
above inequalities we obtain

max
i
fi(xxx

0)− ε < max
i
fi(xxx) < max

i
fi(xxx

0) + ε, that is, |max
i
fi(xxx)−max

i
fi(xxx

0)| < ε.

This implies the continuity of maxi fi(xxx). The proof is similar for mini fi(xxx).

Let r be the root of a given tree T . Now, we prove Theorem 4 on the basis of
mathematical induction from the leaf nodes Lr,T to root r. That is, at any leaf node
n ∈ Lr,T , the minimax value is continuous because of the continuity of the evaluation
function; vn,T (www) = e(n,www). For an internal node n, we assume that continuity holds for
any child c in Cn,T . This induction hypothesis and Proposition 5 ensure the continuity of
vn,T (www).

A.2 Stability of Principal Variations

In the above subsection, we showed the continuity of minimax values through the continuity
of min and max functions. Here, we show that the best moves and principal variations are
stable when the changes in the leaves are small enough. We analyze the stability in order
to discuss partial differentiability.

Definition 6. The symbol C+
n,T (www), hereafter called the best children, denotes the set of

such children at node n in tree T that have the same minimax value as that of n:

C+
n,T (www) = {c ∈ Cn,T |vc(www) = vn(www)}.

We denote the rest of the children as C−n,T (www); that is, Cn,T \ C+
n,T (www). Here, A \ B denotes

the set difference, i.e., {e|e ∈ A ∧ e /∈ B}.
A child is considered to be the best choice in its parent node if the minimax value of the

child is the same as that of the parent node. When no two children share the same value,
C+
n (www) contains only one child. Otherwise, the number of nodes in C+

n (www) can be greater
than one.

Definition 7. Let r be the root of a tree T ∈ T. The principal variation (abbreviated PV
for short) T ∗(www) of tree T is the sub-tree of T obtained as the closure of the best children
from the root:

T 0(www) = {r},
T i(www) = {c ∈ C+

n,T (www) | n ∈ T i−1(www)} for i > 0,

T ∗(www) =

∞⋃
i=0

T i(www).

559



Hoki & Kaneko

n0
2

}} �� !!
n1

2

�� !!

n2
2

��

n3
-1

��
n4

7 n5
2 n6

-1

Figure 15: Example of a minimax tree (graph) with a transposition at n5

Note that C+
n,T ∗(www) = C+

n,T (www) and C−n,T ∗(www) = ∅ for any n ∈ T ∗(www). Also, we denote leaves

in T ∗(www) by L∗(www), that is, T ∗(www) ∩ Lr,T .

Example 8. Figure 15 shows a small minimax tree T that has two best children at root n0;
the maximizing and minimizing nodes are denoted by boxes and circles, respectively. Here,
C+
n0

= {n1, n2} and C+
n1

= {n5}. The principal variation T ∗ of this tree is {n0, n1, n2, n5}.

Lemma 9. For any internal node n in any tree T ∈ T and for any www0 ∈ RN , there exists
a positive number δn such that for any www1 satisfying |www1 − www0| < δn, the set of the best
children at node n for www1 is a subset of the one for www0:

C+
n,T (www1) ⊆ C+

n,T (www0), for any www1 s.t. |www1 −www0| < δn.

Proof. When all child values are the same, i.e., C−n (www0) is empty, the assertion is trivial.
Otherwise, let ε0 be the minimum absolute difference between the best value and any of the
other values, i.e., ε0 = minc∈C−n (www0) |vn(www0) − vc(www0)| > 0. The continuity of the minimax

values ensures the existence of δn such that for any www1 satisfying |www1 −www0| < δn, we have
maxc∈Cn |vc(www1)− vc(www0)| < ε0/2 and also |vn(www1)− vn(www0)| < ε0/2. From the definition of
δn and triangle inequalities, any c ∈ C−n,T (www0) satisfies

ε0 ≤ |vc(www0)− vn(www0)|
≤ |vc(www0)− vc(www1)|+ |vc(www1)− vn(www0)|
≤ |vc(www0)− vc(www1)|+ |vc(www1)− vn(www1)|+ |vn(www1)− vn(www0)|

< |vc(www1)− vn(www1)|+ ε0

2
+
ε0

2
= |vc(www1)− vn(www1)|+ ε0.

Thus, |vc(www1)− vn(www1)| > ε0− ε0 = 0, namely, vc(www
1) 6= vn(www1). This implies by definition

(irrespective of whether n is a max or min node) that c 6∈ C+
n,T (www1).

Definition 10. The tree stability δT of a tree T is the minimum value of δn among all the
nodes n ∈ T , where δn is a positive number satisfying Lemma 9. Note that the minimum
value δT > 0 exists because T is finite.

Example 11. In reference to Figure 15, suppose that each leaf value changes by at most 0.1.
Then, it will be proven that |vn(www1)−vn(www0)| ≤ 0.1 for each internal node n of heights 1, 2,
and 3 in order: it is obvious for n4, n5, and n6, and it can be proven for n1, n2 and n3, and
finally for n0. We can see that neither n4 nor n6 can become a new best node as a result of
this change.

560



Large-Scale Optimization for Evaluation Functions with Minimax Search

h

•ε0

vc(www
1) (c /∈ C+

n )

vn(www0)
vn(www1)

vc(www
1)

(c ∈ C+
n )

//

OO

��

qq

pp

�� jj

uu
��

Figure 16: Sketch of vn(www1) at maximizing-node n, where www1 changes along the i-th com-
ponent w0

i + h from www0. Here, vn(www1) at n equals vc(www
1) at one of the old best

children c ∈ C+
n (www0).

A.3 Partial Differentiability

We show that the partial differentiability, as well as the partial derivative, of the minimax
value at a node in tree T depends only on its principal variations. We denote the right and
left partial derivatives of a function RN 7→ R at point xxx0 as

∂f

∂x+
i

(xxx0) = lim
h→+0

f(x0
1, . . . , x

0
i + h, . . . , x0

N )− f(x0
1, . . . , x

0
N )

h
, (12)

∂f

∂x−i
(xxx0) = lim

h→−0

f(x0
1, . . . , x

0
i + h, . . . , x0

N )− f(x0
1, . . . , x

0
N )

h
. (13)

Let us pay attention to the single parameter xi that changes by h under these limit op-
erations. Hereafter, the other parameters held constant will often be omitted as ∂f

∂x+ (x0),
where x is the one-dimensional parameter of interest. We use the symbol ∂ because of its
analogy to the partial derivative in order not to forget that the other parameters have been
omitted.

Theorem 12. For any node n in the principal variation T ∗(www) of tree T ∈ T and for any
www ∈ RN , there exists such a leaf la ∈ L∗(www) at which the partial derivative of the evaluation
function equals the right partial derivative of vn(www): ∂vn

∂w+
i

(www) = ∂
∂wi

e(la,www). Similarly, there

exists such a leaf lb ∈ L∗(www) at which the partial derivative of the evaluation function equals
the left partial derivative of vn(www), ∂vn

∂w−i
(www) = ∂

∂wi
e(lb,www).

The proof of the theorem, given at the end of this subsection, is based on the stability
of the best moves. We assume that www1 = (w0

1, . . . , w
0
i + h, . . . , w0

N ) and |www1 −www0| = |h| are
sufficiently small in Appendix A.3. Consequently, we have |h| < δT , and for any node n in
tree T and for any www0 ∈ RN ,

vn(www1) =


e(n,www1) (n:leaf)
maxc∈C+n,T (www0) vc(www

1) (n:maximizing node)

minc∈C+n,T (www0) vc(www
1) (n:minimizing node).

(14)

561



Hoki & Kaneko

Example 13. Figure 16 sketches an example of vn(www1) changing with h, where n is a max-
imizing node. There are three best children with value vn(www0) when h = 0. Each value
continuously (not always linearly) changes with h. While the best child depends on the sign
of h, it is always one of c ∈ C+

n (www0) when h is less than δT . This is because the minimax
values of the other children c ∈ C−n (www0) are sufficiently less (by at least ε0) than vn(www0) at
h = 0.

The next goal is to show that the right and left partial derivatives of vn(www) are given by
the right and left partial derivatives at one of the best children C+

n (www), respectively. The
following propositions describe the ordinary properties of the right and left limits and the
basic functions max and min. Similar arguments can be found in a comprehensive textbook
of calculus. We will give a detailed proof here, however, because it is rather difficult to find
the precisely same assertion in a textbook.

Proposition 14. Let k be a natural number and any of f1(x), ..., fk(x) be a continuous
function R 7→ R. Suppose that these functions have the same value at point x0, i.e.,
maxi fi(x

0) = mini fi(x
0), and all of them have a right partial derivative ∂fi

∂x+ (x0). Then,
the right partial derivative of the minimum or maximum of fi(x) at point x0 exists and is
equal to the minimum or maximum of the right partial derivatives of fi(x

0), respectively.

∂maxi fi
∂x+

(x0) = max
i

∂fi
∂x+

(x0),
∂mini fi
∂x+

(x0) = min
i

∂fi
∂x+

(x0).

Proof. Let o(h) be Landau’s symbol, and let us use it to denote residual terms converging

to 0 faster than h, i.e., limh→+0
o(h)
h = 0. Recall that fi(x

0) = f1(x0) for any i = 1, . . . , k.
For positive h, we have

max
i
fi(x

0 + h)−max
i
fi(x

0) = max
i

(
fi(x

0) + h
∂fi
∂x+

(x0) + o(h)

)
−max

i
fi(x

0)

= max
i

(
f1(x0) + h

∂fi
∂x+

(x0) + o(h)

)
− f1(x0)

= h

(
max

i

∂fi
∂x+

(x0)

)
+ o(h)

From Eq. (12), the function maxi fi(x) at point x0 has a right partial derivative maxi
∂fi
∂x+ (x0).

The same argument applies to the right partial derivative of mini fi(x).

Proposition 15. Suppose that functions have the same value at point x0 and all of these
functions have a left derivative ∂fi

∂x− (x0). Then, the left partial derivative of the minimum
or maximum of fi(x) at point x0 is equal to the maximum or minimum of the left partial
derivatives of fi(x

0):

∂maxi fi
∂x−

(x0) = min
i

∂fi
∂x−

(x0),
∂mini fi
∂x−

(x0) = max
i

∂fi
∂x−

(x0).

562



Large-Scale Optimization for Evaluation Functions with Minimax Search

Proof. Using similar algebra as in the proof of Proposition 14, we find for negative h,

max
i
fi(x

0 + h)−max
i
fi(x

0) = h

(
min
i

∂fi
∂x−

(x0)

)
+ o(h).

From Eq. (13), the function maxi fi(x) at point x0 has the left partial derivative mini
∂fi
∂x− (x0).

Note that min and max are switched in the algebra above because of the negativity of h.
The same argument applies to the left partial derivative of mini fi(x).

Lemma 16. Let g+
i (n,www) = ∂vn

∂w+
i

(www) (resp. g−i (n,www) = ∂vn
∂w−i

(www)) be the right (resp. left)

partial derivative of the minimax value vn(www). For any www ∈ RN and for any internal node
n in principal variation T ∗(www) of tree T ∈ T, there exist right and left partial derivatives
g+
i (n,www) and g−i (n,www) of vn(www) with respect to any i = 1, . . . , N . The right and left partial

derivatives are:

g+
i (n,www) =

 maxc∈C+
n,T ∗ (www) g

+
i (c,www) (n: maximizing node)

minc∈C+
n,T ∗ (www) g+

i (c,www) (n: minimizing node)

g−i (n,www) =

 minc∈C+
n,T ∗ (www) g−i (c,www) (n: maximizing node)

maxc∈C+
n,T ∗ (www) g

−
i (c,www) (n: minimizing node).

Proof. We prove these equalities on the basis of mathematical induction from the leaf nodes
Lr,T to the root r. For each leaf n in L∗(www), by the definition of the evaluation function, the
minimax value vn(www) is clearly continuous and partially differentiable with respect to any
component in www ∈ RN . For any internal node n, we assume, as an induction hypothesis,
that the right partial derivative g+

i (c,www) and left partial derivative g−i (c,www) exist for any
child c ∈ Cn,T . Recall that C+

n (www1) ⊆ C+
n (www0) for any |h| < δT and Eq. (14). From the

induction hypothesis with Proposition 14, we have

∂maxc∈C+n (www) vc

∂w+
i

(www) = max
c∈C+n (www)

∂vc

∂w+
i

(www),
∂minc∈C+n (www) vc

∂w+
i

(www) = min
c∈C+n (www)

∂vc

∂w+
i

(www).

Similarly, from Proposition 15, we have

∂maxc∈C+n (www) vc

∂w−i
(www) = min

c∈C+n (www)

∂vc

∂w−i
(www),

∂minc∈C+n (www) vc

∂w−i
(www) = max

c∈C+n (www)

∂vc

∂w−i
(www).

Now, we prove Theorem 12. For any leaf n ∈ L∗(www), it is obvious that g+
i (n,www) =

g−i (n,www) = ∂
∂wi

e(n,www). For any internal node n ∈ T ∗(www), Lemma 16 ensures that the left

and right partial derivatives g+
i (n,www) and g−i (n,www) are given by one of the best children.

Thus, for root r, there always exist leaves la and lb ∈ L∗(www) such that

g+
i (r,www) = ∂

∂wi
e(la,www), g−i (r,www) = ∂

∂wi
e(lb,www). (15)

563



Hoki & Kaneko

r g+(r,www0) = g−(r,www0) = 0
vr(www

0) = 0

ng+(n,www0) = 0
g−(n,www0) = 1

c
∂

∂wi
e(c,www0) = 0

e(c,www0) = 0

a
∂

∂wi
e(a,www0) = 1
e(a,www0) = 0 b

∂
∂wi

e(b,www0) = 0
e(b,www0) = 0

•

•

••

•�� ��

�� &&

Figure 17: Although the partial derivative of vr(www) exists atwww0, it is not equal to the partial
derivative at a PV leaf ∂

∂wi
e(a,www0).

Remark 17. By definition, if g+
i (n,www0) = g−i (n,www0), the partial derivative of vn(www) with

respect to wi exists at the point www0 and there is a leaf l ∈ L∗(www0) satisfying

∂

∂wi
vn(www0) =

∂

∂wi
e(l,www0). (16)

Remark 18. For any i = 1, . . . , N , the partial derivative of minimax value vn(www) with respect
to wi exists at www0 and equals ∂

∂wi
e(l,www0), if l is the unique element of L∗(www0).

Remark 19. There exists a tree Tr for which the minimax value vn(www) has a partial derivative
with respect to wi at www0, even when the leaves l in PV are not unique (|L∗(www0)| > 1) and
give different partial derivatives ∂

∂wi
e(l,www0). An example is sketched in Figure 17, where

the partial derivative is 1 for a and 0 for b and c.

A.4 Game-Tree Search and Pruning Techniques

Consider a game tree search S be a function that takes the root position r and the evaluation-
function parameters www as inputs, and yields a minimax tree T S

r (www) with minimax values
vn,Tr(www)(www) for all n ∈ T S

r (www). We call a game-tree search S static, provided that it yields

a constant tree with respect to www, i.e., V (T S
r (www)) = V (T S

r (www0)), for any root r. Then,
theorems 4 and 12 apply to the minimax value vr,T S

r
(www) yielded by such a static game-tree

search. For example, a fixed-depth minimax search or a minimax search considering limited
types of moves (e.g., capture and promotion) is a static game-tree search. A minimax search
with “stand pat” used in the quiescence search (Beal, 1990) is static, too. Note that “stand
pat” at node n is equivalent to a virtual move adding an evaluation function e(n,www) as a
candidate of the node value vn(www) in Eq. (11), even when n is not a leaf node.

When pruning techniques are incorporated, part of the tree is pruned and not explored.
Consider a static search S, that with a pruning S′, and tree T S′

r (www) ⊆ T S
r (www) yielded by

S′. We call a pruning conservative, provided that it yields the same minimax value at
any root r for any www ∈ RN : vr,T S

r
(www) = vr,T S′

r (www)(www). Theorem 4 applies to the minimax

value at the root r, vr,T S′
r (www)(www), yielded by such a static game-tree search with conservative

pruning. Standard αβ pruning (Knuth & Moore, 1975) is a conservative pruning. However,
many pruning techniques, e.g., static exchange evaluation (Reul, 2010), (extended) futility
pruning (Heinz, 1998), null move pruning (Adelson-Velskiy et al., 1975), and late move
reductions (Romstad, 2010), can prune a sub-tree without having to prove that the sub-

564



Large-Scale Optimization for Evaluation Functions with Minimax Search

tree is irrelevant to the minimax value at the root. Thus, these pruning techniques are
generally not conservative.

A.5 Summary

The minimax value of the root of the tree explored by a game-tree search with well-
configured pruning techniques is continuous. This result suggests the continuity of the
objective function of MMTO in Eq. (4), as was empirically observed in Section 4.5. As for
partial differentiability, Theorem 12 suggest that it is feasible to consider the leaves of the
principal variations in a search tree. When there is only one principal variation, as stated in
Remark 18, the use of the partial derivative at the unique leaf introduced in Section 3.3 is
correct. Otherwise, i.e., when there are multiple principal variations, the partial derivative
may not exist or be different from the partial derivative at one of the leaves, as stated in
Remark 19. Although the frequency of such cases depends on the target game and on the
evaluation features, it is almost negligible in the experiments discussed in our previous work
(Kaneko & Hoki, 2012).

References

Adelson-Velskiy, G. M., Arlazarov, V. L., & Donskoy, M. V. (1975). Some methods of
controlling the tree search in chess programs. Artificial Intelligence, 6 (4), 361 – 371.

Akl, S. G., & Newborn, M. M. (1977). The principal continuation and the killer heuristic.
In Proceedings of the 1977 Annual Conference, ACM ’77, pp. 466–473, New York, NY,
USA. ACM.

Anantharaman, T. (1997). Evaluation tuning for computer chess: Linear discriminant meth-
ods. ICCA Journal, 20 (4), 224–242.

Baxter, J., Tridgell, A., & Weaver, L. (2000). Learning to play chess using temporal-
differences. Machine Learning, 40 (3), 242–263.

Beal, D. F. (1990). A generalised quiescence search algorithm. Artificial Intelligence, 43,
85–98.

Beal, D. F., & Smith, M. C. (2001). Temporal difference learning applied to game playing
and the results of application to shogi. Theoretical Computer Science, 252 (1-2), 105–
119.

Bertsekas, D. P., & Bertsekas, D. P. (2008). Nonlinear Programming (2nd edition). Athena
Scientific.

Björnsson, Y., & Marsland, T. A. (2002). Learning control of search extensions. In Caulfield,
H. J., Chen, S.-H., Cheng, H.-D., Duro, R. J., Honavar, V., Kerre, E. E., Lu, M.,
Romay, M. G., Shih, T. K., Ventura, D., Wang, P. P., & Yang, Y. (Eds.), JCIS, pp.
446–449. JCIS / Association for Intelligent Machinery, Inc.

Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P., Rohlfshagen, P., Tavener,
S., Perez, D., Samothrakis, S., & Colton, S. (2012). A survey of monte carlo tree
search methods. Computational Intelligence and AI in Games, IEEE Transactions
on, 4 (1), 1–43.

565



Hoki & Kaneko

Buro, M. (2002). Improving heuristic mini-max search by supervised learning. Artificial
Intelligence, 134 (1–2), 85–99.

Buro, M., Long, J. R., Furtak, T., & Sturtevant, N. R. (2009). Improving state evaluation,
inference, and search in trick-based card games. In IJCAI, pp. 1407–1413.

Buro, M. (1995). Statistical feature combination for the evaluation of game positions.
Journal of Artificial Intelligence Research, 3, 373–382.

Campbell, M., Hoane, Jr., A. J., & Hsu, F.-h. (2002). Deep Blue. Artificial Intelligence,
134 (1–2), 57–83.

Chellapilla, K., & Fogel, D. (1999). Evolving neural networks to play checkers without
relying on expert knowledge. Neural Networks, IEEE Transactions on, 10 (6), 1382
–1391.

Coulom, R. (2007). Computing “Elo Ratings” of move patterns in the game of go. ICGA
Journal, 30 (4), 198–208.

Coulom, R. (2012). Clop: Confident local optimization for noisy black-box parameter tuning.
In Herik, H., & Plaat, A. (Eds.), Advances in Computer Games 13, No. 7168 in LNCS,
pp. 146–157. Springer-Verlag.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12, 2121–2159.

Fawcett, T. E. (1993). Feature Discovery for Problem Solving Systems. Ph.D. thesis, De-
partment of Computer Science, University of Massachusetts, Amherst.

Fürnkranz, J. (2001). Machine learning in games: a survey. In Machines that learn to play
games, pp. 11–59. Nova Science Publishers, Commack, NY, USA.

Gelly, S., Kocsis, L., Schoenauer M., Sebag, M., Silver, D., Szepesvári, C., & Tẽytaud, O.
(2012). The grand challenge of computer go: Monte carlo tree search and extensions.
Commun. ACM, 55 (3), 106–113.

Gelly, S., & Silver, D. (2011). Monte-carlo tree search and rapid action value estimation in
computer go. Artificial Intelligence, 175 (11), 1856–1875.

Gomboc, D., Buro, M., & Marsland, T. A. (2005). Tuning evaluation functions by maxi-
mizing concordance. Theoretical Computer Science, 349 (2), 202–229.

Heinz, E. A. (1998). Extended futility pruning. ICCA Journal, 21 (2), 75–83.

Heinz, E. A. (1999). Adaptive null-move pruning. ICCA Journal, 22 (3), 123–132.

Hoki, K. Bonanza – the computer shogi program.. http://www.geocities.jp/bonanza_

shogi/ Last access: 2013. In Japanese.

Hoki, K. (2006). Optimal control of minimax search results to learn positional evaluation. In
The 11th Game Programming Workshop (GPW2006), pp. 78–83, Kanagawa, Japan.
In Japanese.

Hoki, K., & Kaneko, T. (2012). The global landscape of objective functions for the op-
timization of shogi piece values with game-tree search. In van den Herik, H. J., &
Plaat, A. (Eds.), Advances in Computer Games 13, No. 7168 in LNCS, pp. 184–195.
Springer-Verlag.

566

http://www.geocities.jp/bonanza_shogi/
http://www.geocities.jp/bonanza_shogi/


Large-Scale Optimization for Evaluation Functions with Minimax Search

Hoki, K., & Muramatsu, M. (2012). Efficiency of three forward-pruning techniques in shogi:
Futility pruning, null-move pruning, and late move reduction (LMR). Entertainment
Computing, 3 (3), 51–57.

Hsu, F.-h., Anantharaman, T. S., Campbell, M. S., & Nowatzyk, A. (1990). Deep Thought.
In Marsland, T. A., & Schaeffer, J. (Eds.), Computers, Chess, and Cognition, pp.
55–78. Springer-Verlag.

Iida, H., Sakuta, M., & Rollason, J. (2002). Computer shogi. Artificial Intelligence, 134 (1–
2), 121–144.

Kaneko, T. (2009). Recent improvements on computer shogi and GPS-Shogi. IPSJ Maga-
zine, 50 (9), 878–886. In Japanese.

Kaneko, T., & Hoki, K. (2012). Analysis of evaluation-function learning by comparison of
sibling nodes. In van den Herik, H. J., & Plaat, A. (Eds.), Advances in Computer
Games 13, No. 7168 in LNCS, pp. 158–169. Springer-Verlag.

Knuth, D. E., & Moore, R. W. (1975). An analysis of alpha-beta pruning. Artificial
Intelligence, 6 (4), 293–326.

Kocsis, L., & Szepesvari, C. (2006). Bandit based monte-carlo planning. In Machine Learn-
ing: ECML 2006, Vol. 4212, pp. 282–293. Springer.

Krogius, N., Livsic, A., Parma, B., & Taimanov, M. (1980). Encyclopedia of Chess Mid-
dlegames: Combinations. Chess Informant.

Levinson, R., & Weber, R. (2001). Chess neighborhoods, function combination, and rein-
forcement learning. In Marsland, T. A., & Frank, I. (Eds.), Computer and Games,
No. 2063 in LNCS, pp. 133–150. Springer-Verlag.

Marsland, T. A. (1985). Evaluation function factors. ICCA Journal, 8 (2), 47–57.

Marsland, T. A., & Campbell, M. (1982). Parallel search of strongly ordered game trees.
ACM Computing Surveys, 14 (4), 533–551.

Nitsche, T. (1982). A learning chess program. In Advances in Computer Chess 3, pp.
113–120. Pergamon Press.

Nocedal, J., & Wright, S. (2006). Numerical Optimization. Springer-Verlag.

Nowatzyk, A. (2000). http://tim-mann.org/DT_eval_tune.txt.

Pearl, J. (1980). Scout: A simple game-searching algorithm with proven optimal properties.
In In Proceedings of the First Annual National Conference on Artificial Intelligence,
pp. 143–145.

Reinefeld, A. (1983). An improvement to the scout tree search algorithm. ICCA Journal,
6 (4), 4–14.

Reinfeld, F. (1969). 1001 Winning Chess Sacrifices and Combinations. Wilshire Book
Company.

Reinfeld, F. (2001). Win at Chess (Dover Books on Chess). Dover Publications.

Reul, F. (2010). Static exchange evaluation with αβ-approach. ICGA Journal, 33 (1), 3–17.

567

http://tim-mann.org/DT_eval_tune.txt


Hoki & Kaneko

Romstad, T. An Introduction to Late Move Reductions. http://www.glaurungchess.com/
lmr.html, Last access: 2010.

Russell, S. J., & Norvig, P. (2002). Artificial Intelligence: A Modern Approach (2nd Edition).
Prentice Hall.

Schaeffer, J. (1986). Experiments in search and knowledge. Ph.D. Thesis, Department of
Computing Science, University of Waterloo, Canada.

Schaeffer, J. (1989). The history heuristic and alpha-beta search enhancements in practice.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-11 (1), 1203–
1212.

Schaeffer, J., Hlynka, M., & Jussila, V. (2001). Temporal difference learning applied to
a high-performance game-playing program. In IJCAI’01: Proceedings of the 17th
international joint conference on Artificial intelligence, pp. 529–534, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Silver, D., & Tesauro, G. (2009). Monte-carlo simulation balancing. In ICML ’09: Proceed-
ings of the 26th Annual International Conference on Machine Learning, pp. 945–952.
ACM.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning). The MIT Press.

Tanaka, T., & Kaneko, T. GPS Shogi.. http://gps.tanaka.ecc.u-tokyo.ac.jp/

gpsshogi/ Last access: 2013. In Japanese.

Tesauro, G. (2001). Comparison training of chess evaluation functions. In Machines that
Learn to Play Games, pp. 117–130. Nova Science Publishers.

Tesauro, G. (2002). Programming backgammon using self-teaching neural nets. Artificial
Intelligence, 134 (1–2), 181–199.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Royal. Statist.
Soc B, 58 (1), 267–288.

Tsuruoka, Y., Yokoyama, D., & Chikayama, T. (2002). Game-tree search algorithm based
on realization probability. ICGA Journal, 25 (3), 145–152.

Ugajin, T., & Kotani, Y. (2010). Learning evaluation function based on tree strap in shogi.
In The 15th Game Programming Workshop, pp. 114–118. In Japanese.

van den Herik, H. J., Uiterwijk, J. W. H. M., & van Rijswijck, J. (2002). Games solved:
now and in the future. Artif. Intell., 134 (1-2), 277–311.

van der Meulen, M. (1989). Weight assessment in evaluation functions. In Beal, D. (Ed.),
Advances in. Computer Chess 5, pp. 81–89.

Veness, J., Silver, D., Uther, W., & Blair, A. (2009). Bootstrapping from game tree search.
In Advances in Neural Information Processing Systems 22, pp. 1937–1945.

Zobrist, A. L. (1990). A new hashing method with application for game playing. ICCA
Journal, 13 (2), 69–73.

568

http://www.glaurungchess.com/lmr.html
http://www.glaurungchess.com/lmr.html
http://gps.tanaka.ecc.u-tokyo.ac.jp/gpsshogi/
http://gps.tanaka.ecc.u-tokyo.ac.jp/gpsshogi/

	Introduction
	Related Work
	Learning from Desired Moves in Chess
	Other Methods of Learning Evaluation Functions
	Learning and Numerical Optimization

	Minimax Tree Optimization
	Objective Function to be Minimized
	Constraint and Regularization Terms
	Partial Derivative Approximation
	Grid-Adjacent Update
	Combination of Techniques and Practical Issues
	Lagrange Multiplier in Grid-Adjacent Update
	Search Depth
	Reuse of PV for Efficiency of Learning
	Pruning of Trees
	Convergence and Performance Measurement
	Duplication in Positions and Alternative Moves


	Experiments
	Setup: Evaluation Functions, Features, and Game Records
	Learning the Piece Values
	Scalability in Learning Practical Evaluation Functions
	Improvements in Strength
	Numerical Stability and Convergence
	Surface of the Objective Function
	Empirical Convergence and Local-Minima Properties

	Performance of MMTO under Tournament Conditions
	Preliminary Experiments on Chess
	Data Quality Dependence

	Conclusion
	Notes on the Continuity and Partial Differentiability of the Minimax Value
	Continuity of Minimax Value
	Stability of Principal Variations
	Partial Differentiability
	Game-Tree Search and Pruning Techniques
	Summary

	References

