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LARGE-SCALE PARALLEL UNSTRUCTURED MESH COMPUTATIONS FOR 3D

HIGH-LIFT ANALYSIS

DIMITRI J. MAVRIPLIS* AND S. PIRZADEH t

Abstract. A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift con-

figurations is described. The approach is based on the use of unstructured meshes in order to enable rapid

turnaround for complicated geometries that arise in high-lift configurations. Special attention is devoted to

creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million

vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is

solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid

algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a trans-

port take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a

production environment on existing parallel machines is demonstrated, as well as the scalability of the solver

on machines using up to 1450 processors.
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1. Introduction. The computation of three-dimensional high-lift flows constitutes one of the most

challenging steady-state aerodynamic analysis problems today. Three-dimensional high-lift flows are typically

characterized by complicated geometries, involving flaps, slats, and hinge fairings, in addition to very complex

flow physics which must be captured adequately in order to provide a useful predictive capability for the

design process.

Unstructured grid techniques offer the potential for greatly reducing the grid generation time associ-

ated with such problems. Furthermore, unstructured mesh approaches enable the use of adaptive meshing

techniques which hold great promise for increasing solution accuracy at minimal additional computational

cost. However, unstructured mesh solvers require significantly higher computational resources than their

structured grid counterparts, thus limiting their applicability for large three-dimensional calculations.

Due to the inherent complexities of high-lift flows (both geometrical and flow physical), the accurate

analysis of such flows requires highly resolved grids. Current estimates place the requirements for accurate

Reynolds-averaged Navier-Stokes high-lift analysis of a complete transport aircraft configuration in the range

of 10 7 to 10 8 grid points. This represents over an ordcr of magnitude larger problems than are currently

considered practical for unstructured mesh methods. Thc consideration of such problems gives rise to

significant challenges not only in the flow solution process, but also in the grid generation procedure, which

is usually performed locally on a workstation.

The rapid advances in parallel computer architectures, with their large aggregate memory capacity and
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CPU power, have reached the point were such calculations can be considered in a practical sense. This

is particularly true for unstructured mesh techniques, which have been shown to scale very favorably on

massively parallel machines using hundreds of processors [3, 8, 15].

The goal of this work is to demonstrate a complete "geometry to drag-polar" practical high-lift analysis

capability, based on unstructured mesh techniques, using up to 25 million grid points for a full aircraft config-

uration. The approach involves the generation of multi-million point unstructured meshes on a workstation,

the refincment of these grids by an order of magnitude on a supercomputer, and the solution of the flow on

these refined grids in a matter of hours on large parallel computers. Scaling of the solver on machines using

up to 1450 processors is demonstrated.

2. Tetrahedral Mesh Generation. The computational grids employed in this paper were generated

with the NASA Langley unstructured grid generation codes GridTool and VGRIDns. The subject geometry,

known as the Energy Efficient Transport (EET), consists of a fuselage, wing, leading-edge slats, and trailing-

edge flaps in a high-lift position and involves complexities such as sharp corners and small gaps between

multiple components.

The geometry, defined in the IGES format, is first converted into a number of contiguous patches

with the grid-utility interface GridTool. The union of all patches, including the outer boundaries, forms a

"solid" surface which is used by VGRIDns for triangulation. The grid characteristics such as spacings, grid

stretching, rate of growth, etc. are also prescribed by the user with GridTool to complete the grid input file.

The processes of geometry preparation and grid parameter setup with GridTool constitutes 50-90 % of the

total grid generation time depending on the complexity of the geometry definition.

The grid generation technique used in VGRIDns is based on the Advancing-Front method (AFM) [11]

and the Advancing-Layers method (ALM) [23], and produces fully tetrahedral meshes. The generation of

"viscous" grids, containing thin layers of tetrahedral cells, is divided into three main steps: (1) generation of

a triangular surface grid by the ALM and/or AFM, (2) generation of thin tetrahedral cells in the boundary

layer by the ALM, and (3) generation of a regular (inviscid) tetrahedral grid outside the boundary layer by

the AFM. Although the entire process is completed in separate stages with this approach, it is performed

in a single run with automatic transitions from onc stage to another. Generation of "inviscid" grids is

accomplished in a similar fashion by simply skipping the second step.

Both the Advancing-front and the Advancing-Layers methods are based on the marching techniques.

Grids are generated with these methods by forming tetrahedral cells originating from triangulated boundaries

and marching into the computational domain. Unlike the conventional AFM, which introduces cells in

the field in a totally unstructured manner, the ALM generates layers of thin tetrahedral cells in a more

orderly fashion while maintaining many advantageous features of the AFM. The new strategy reduces the

grid generation robustness difficulties which usually arise from floating-point operations of small numbers

associated with extremely small viscous grid spacings.

During the AFM and ALM marching processes, information regarding the grid point distributions is

provided by a "transparent" Cartesian background grid overlaying the entire domain [21]. Included in

the background grid are a number of "point" and "line" sources prescribed by the user. First, the grid

characteristics are smoothly diffused from the sources onto the background grid nodes by solving an clliptic

equation. The problem is similar to that of the heat transfer in a conducting medium. The smoothed

parameters are then interpolated from the background grid (and sources) during the unstructured grid

generation.



Twomainoperationsarcinvolvedin theALM: 1)computationof surfacevectorsalongwhichthegrid

pointsaredistributedand2)constructionof a patternof compatibletetrahedralcellconnectivitieswithin

thethin layers.Thesurfacevectorsarecalculatedusinga robustiterativealgorithmbasedonan "equal-

angle"criterionfollowedbyaLaplaciansmoothingoperation.Theconnectivitiesamongthetetrahedralcells

arepredeterminedbyanefficient,all-integeralgorithmwhicheliminatestheneedfora seriesof computer-

intensive,floating-pointcalculationsasusedin theconventionalAFM.

Thin layersof tetrahedralcellsareformedby insertingnewpointsalongthesurfacevectorsandcon-

nectingthepointsaccordingto thepredeterminedconnectivitypattern.Thedistributionof pointsalong

surfacevectorsisdeterminedbythestretchingfunction

(2.1) dzi+l = dzl * [1. + a * (1. + b)i] i

where dzi is the normal spacing of the ith layer, dzl is the first layer spacing prescribed by the user, and the

factors a and b are constants determining the rate of stretching.

The grid layers continue marching in the field until a unit aspect ratio is reached, or some other limiting

criteria, based on the background grid information and/or proximity of the approaching fronts, prevent them

from further advancement. At this point, the process automatically switches from the advancing-layers to the

advancing-front mode to generate a regular grid outsidc the boundary layer. With a common background

grid controlling both methods, the transition from thin layers to the regular grid becomes gradual and

continuous. Also, the fact that thc number of layers vary from one location to another adds to the flexibility

of the method and the smoothness of the generated grids.

A salient feature of VGRIDns is its ability to generate multi-directional, anisotropically stretched grids

in which the surface trianglcs and tctrahedra in the field are elongated in user-prescribed directions [22].

With this capability, fewer points arc distributed in the directions of reduced flow gradients without loss of

grid resolution in other essential directions. Grid stretching with VGRIDns is achieved through prescribing

a stretching direction and two spacings (along and normal to the stretching direction) for each background

grid source. To minimize complications duc to the marching of highly stretched cells, a local transformation

is performed for each new cell being generated. The physical stretched) space is mapped into an
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FIc. 2.1. Illustration of Surface Grid for High-Lift Configuration with Span-Wise Stretching Along Slat Leading

Edges



FIG. 2.2. Illustration of Two-Dimensional Cross-

Section of Volume Grid at Spanttnse Station Along Wing

isotropic frame where equilateral grid elements are formed, and the generated grid is back transformed to

the physical space. Spanwise grid stretching for transport-type configurations results in at least a factor of

three reduction in the total number of grid points.

For the grids presented in this paper, the parameters dzl was set to 1.35E-06 wing chords, and the

values of a and b in equation (2.1) were set to 0.4 and 0.01, respectively. Anisotropic grid stretching was

mainly applied at the leading- and trailing-edges of the main wing and flaps in the spanwise direction. The

aspect ratios of the generated grid elements (triangles on the surface and tetrahedra in the volume) vary

from a maximum value of about 100:1 at the midspan leading-edges, where the concentration of points is

maximum, to 1:1 at the surface corners, fuselage, and in the field away from the geometry.

Several tetrahedral grids were generated for the present study. The grid used as the basis for the coarse

grid computations described subsequently contains 115,489 boundary nodes, 3,107,075 total grid nodes, and

18,216,138 tetrahedral ceils. Figure 2.1 shows the surface grid along with the triangulation on the symmetry

plane. As evident, the triangles are highly stretched at the leading edges in the spanwise direction. Also, the

thin "viscous" layers are shown on the symmetry plane around the geometry. The level of spatial resolution

is illustrated in Figure 2.2 were a cross-section of the volume grid is depicted, showing tetrahedral cells

around the multi-element airfi_il gtxmletry. Subdivision of this grid into 24.7 million points (as explained in

the following sections) results in a doubling of the spatial resolution in all three coordinate directions.

The grids were generated u._ing a Silicon Graphics Octane workstation with a 195 MHZ (R10000)pro-

cessor. The entire process, from CAD definition to the final post-processed volume grid, was completed in

about 60 cumulative labor hours. A.- mentioned earlier, a substantial percentage (in this case, more than 90

%) of the total grid generatio,, time wa.s spent on the geometry preparation. The surface and volume grids

(fine mesh) were generated in about 2.5 CPU hours using the workstation.

3. Prismatic Element Merging. The advancing-layers phase of the initial grid generation procedure

produces regularly shaped thin tetrahedral elements in the boundary layer regions near the geometry surface,

which can easily be merged into well shaped prismatic elements.

There are several reasons why the use of prismatic elements rather than tetrahedral elements in these

regions is advantageous. First, for the vertex-based discretization employed herein, prismatic elements result

in fewer interconnecting edges than tetrahcdral elements, for the same set of unknowns. This has the effect of



reducingthememoryandcomputationaloverheads,sincetheresidualassemblyin thesolverisbasedonan

edgedata-structure.Becauseprismaticelementscontainalmosthalfasmanyedgesastetrahedralelements,

andupto twothirdsofthegridelementsareoftenmergedintoprisms,thesavingscanbesubstantial.
Second,theuseof prismaticelementsprovidesa distinctdccouplingin thediscretizationbetweenthe

normalandtangentialdirectionsin theboundarylayerregions,whichis essentialfor thesuccessof the
directionalline-implicitmultigridalgorithmdescribedbelow.Forhighlystretchedtetrahedralelements,

the strongnormalconnections(edges)andthestrongdiagonalconnectionscannotbesolvedimplicitly
simultaneously,leadingto a reducedeffectivenessofthealgorithm[13].

Anyaccuracybenefitsof usingprismaticelementsovertetrahedralelementsinboundarylayerregions
havenotbeenprovenconclusively.Ontheotherhand,it isgenerallyacknowledgedthat prismaticelement

discretizationsareat aminimumnolessaccuratethanthecorrespondingtetrahedralelementdiscretizations

[2].

The output of the VGRIDns grid generation program identifies each point generated in the viscous

advancing-layers region with the surface grid point (surfacc normal) from which it originated. With this

information, an algorithm can be devised for merging successive triplets of tetrahedra into prismatic elements,

as depicted in Figure 3.1. Because the height of the advancing layers is non-uniform across the geometry

surface, special care must be taken to ensure a consistent grid when merging the new prismatic elements

with the remaining tetrahedral elements. Grid inconsistencies can arise in the form of a hanging diagonal

on a prismatic face which borders on two tetrahedral ncighbors as shown in Figure 3.2. Such situations

are handled by considering the total number of hanging diagonals on a given prismatic element. Prisms

containing three hanging diagonals (one on each quadrilateral face) are re-subdivided into three tetrahedra.

Prisms containing two compatible hanging diagonals are divided into one tetrahedron and one pyramid. In

cases where this is not possible (i.e. two incompatible hanging edges), or when there is only one hanging

diagonal, an additional vertex is inserted at the middle of the prismatic element which is then subdivided

into 1 pyramid and 6 tetrahedra (for two hanging edges) or 2 pyramids and 4 tetrahedra (for one hanging

edge). In practice, only a very small number of additional vertices are required.
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FXG. 3.1. Illustration of Merging of Three Suitable

Tetrahedra into a Single Prismatic Element

j........

FIG. 3.2. Illustration of Insertion of New Vertex and

Subdivision of Prismatic Element with one non-compatible

Face Diagonal

4. Global Grid Refinement. The generation of and flow solution on large unstructured grids (i.e. >

10 7 grid points) is not practical on current high-end workstations. The memory and CPU-time rcquirements

associated with grids of this size dictate the use of large parallel super-computers. While unstructured

mesh flow solvcrs have been shown to parallelize effectively on such machines, success in grid gcncration

parallelization has not been as forthcoming. In spite of several research efforts in this area [10], parallelization

of the grid generation process remains hindered by the complicated logic, the attention devoted to special



cases,andtheneedto easilyandrapidlyaccessgeometricalinformationandpre-processingtools,which
mostoftenresideonworkstations.

Thestrategydevelopedin this workconsistsof generatingrelativelycoarseunstructuredgridsona

workstationandrefiningthesegridsonalarge-memorysupercomputer.Theadjectiverelatively needs to be

stressed here, since these initial grids usually contain several million vertices (up to 20 million tetrahedra),

and already represent the limit of what can be achieved on a high-end workstation.

Once the initial tetrahedral grid has been generated, it is merged into a mixed prismatic-tetrahedral

mesh, as described previously. This hybrid mesh is then shipped to a supercomputer, such as an SGI

ORIGIN 2000, where it is globally refined, by subdividing each grid element (tetrahedra and prisms) into

8 smaller self-similar elements [12]. This results in a factor of 8 increase in grid size. As an example, the

generation of a 24.7 million point grid through global refinement of the 3.1 million point grid described

earlier required about 30 minutes of CPU time on a single processor of the SGI ORIGIN 2000.

Ultimately, the mesh refinement operation should bc implemented in parallel. However, for expediency

at this stage, mesh refinement is performed sequentially on a single processor of the SGI ORIGIN 2000.

However, the access to a large central memory provided by the cc-NUMA shared memory architecture of the

SGI ORIGIN 2000 is a key enabling feature for the refinement of large unstructured grids. An additional

benefit of this approach is that the resulting large grid is then available directly on the parallel machine

for the flow computations, obviating the need to transfer large amounts of data across the network. This

approach naturally extends to adaptive meshing strategies, which are planned for future work.

One drawback of the current approach is that newly generated surface points do not lie exactly on the

original surface description of the model geometry, but rather along a linear interpolation between previously

existing coarse grid surface points. For a single level of refinement, this drawback is not expected to have

a noticeable effect of the results. An interface for re-projecting new surface points onto the original surface

geometry is currently under consideration.

5. Base Solver. The Reynolds averaged Navier-Stokes equations are discretized by a finite-volume

technique on meshes of mixed element types which may include tetrahedra, pyramids, prisms, and hexahedra.

All elements of the grid are handled by a single unifying edge-based data-structure in the flow solver [17].

The governing equations are discretized using a central difference finite-volume technique with added

artificial dissipation. The thin-layer form of the Navier-Stokes equations is employed in all cases, and the

viscous terms are discrctized to second-order accuracy by finite-difference approximation [17]. For multigrid

calculations, a first-order discretization is employed for the convective terms on the coarse grid levels.

The basic time-stepping scheme is a three-stage explicit multistage scheme with stage coefficients opti-

mized for high frequency damping properties [31], and a CFL number of 1.8. Convergence is accelerated by

a local block Jacobi preconditioner, which involves inverting a 5 × 5 matrix for each vertex at each stage

[25, 18, 19, 20]. A low-Mach number preconditioner [33, 29, 28] is also implemented. This is imperative for

high-lift flows which may contain large regions of low Mach number flow particularly on the lower surfaces

of the wing. The low-Mach number preconditioner is implemented by modifying the dissipation terms in

the residual as described in reference [13], and then taking the corresponding linearization of these modified

terms into account in the Jacobi preconditioner, a process sometimes referred to as preconditioning 2 [13, 30].

The single equation turbulence model of Spalart and Allmaras [27] is utilized to account for turbulence

effects. This equation is discretized and solved in a manner completely analogous to the flow equations, with

the exception that the convective terms are only discretized to first-order accuracy.



6. Directional Implicit Multigrid Algorithm. An agglomeration multigrid algorithm [17, 9, 26]

is used to further enhance convergence to steady-state. In this approach, coarse levels are constructed by

fusing together neighboring fine grid control volumes to form a smaller number of larger and more complex

control volumes on the coarse grid. While agglomeration multigrid delivers very fast convergence rates for

inviscid flow problems, the convergence obtained for viscous flow problems remains much slower, even when

employing preconditioning techniques as described in the previous section. This slowdown is mainly due to

the large degree of grid anisotropy in the viscous regions. Directional smoothing and coarsening techniques

[13, 14] can be used to overcome this aspect-ratio induced stiffness.

Directional smoothing is achieved by constructing lines in the unstructured mesh along the direction of

strong coupling (i.e. normal to the boundary layer) and solving the implicit system along these lines using

a tridiagonal line solver. A weighted graph algorithm is used to construct the lines on each grid level, using

edge weights based on the stencil coefficients for a scalar convection equation. This algorithm produces lines

of variable length. In regions where the mesh becomes isotropic, the length of the lines reduces to zero (one

vertex, zero edges), and the preconditioned explicit scheme described in the previous section is recovered. An

example of the set of lines constructed from the two-dimensional unstructured grid in Figure 6.1 is depicted

in Figure 6.2.
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FIG. 6.1. Unstructured Grid for three-element air-

foil; Number of Points = 61,10_, Wall Resolution = 10 -6

chords

FIG. 6.2. Directional Implicit Lines Constructed on

Grid of Figure 6.1 by Weighted Graph Algorithm

In the agglomeration multigrid algorithm, coarse level grids are constructed by fusing together or ag-

glomerating neighboring control volumes to form a coarser set of larger but more complex control volumes.

A multigrid cycle consists of performing a time-step on the fine grid of the sequence, transferring the flow

solution and residuals to the coarser level, performing a time-step on the coarser level, and then interpolating

the corrections back from the coarse level to update the fine grid solution. The process is applied recursively

to the coarser grids of the sequence.

In previous work, a directional agglomeration strategy has been shown to speed convergence for problems

involving highly stretched meshes [14, 15]. However, coarsening factors are presently limited to a ratio

of 4:1 between fine and coarse levels, when employing a directional coarsening algorithm. This leads to

additional memory overheads for the storage of these levels. In the interest of reducing overall memory



requirements,inordertoenablethesolutionoflargergridsizes,thedirectionalcoarseningstrategyhasbeen

temporarilyabandonedin favorofthesimplerisotropiccoarseningstrategy,whichproducescoarseningratios

of theorderof 8:1[17].Whileoverallmemoryrequirementsarereduceddueto themorerapidcoarsening

rates,observedconvergenceratesaresomewhatslowerthanthosereportedpreviouslyusingthedirectional
coarseningstrategy[14,15].

7. Parallel Implementation. Theunstructuredmultigridsolveris parallelizedby partitioningthe
domainusinga standardgraphpartitioner[6,7]andcommunicatingbetweenthe variousgrid partitions

runningon individualprocessorsusingthe MPImessage-passinglibrary [5]. Distributcd-memoryexplicit

message-passingparallelimplementationsof unstructuredmeshsolvershavebeendiscussedextensivelyin
the literature[16,1,32].In thissectionwefocusonthenon-standardaspectsof thepresentimplementation

whichareparticularto thedirectional-implicitagglomerationmultigridalgorithm.

In themultigridalgorithm,theverticesoneachgridlevelmustbepartitionedacrosstheprocessorsof

themachine.Sincethemeshlevelsof theagglomerationmultigridalgorithmarefully nested,a partition
of thefinegrid couldbcusedto infera partitionof all coarsergrid levels.Whilethis wouldminimize

thecommunicationin theinter-gridtransferroutines,it affordslittle controloverthequalityofthecoarse

gridpartitions.Sincetheamountofintra-gridcomputationoneachlevelismuchmoreimportantthanthe

inter-gridcomputationbetweencachlevel,it isessentialto optimizethc partitionsoneachgridlevelrather
thanbetweengrid levels.Therefore,eachgridlevelispartitionedindependently.Thisresultsin unrelated

coarseandfinegridpartitions.In orderto minimizeinter-gridcommunication,thecoarselcvelpartitions

arcrcnumberedsuchthattheyareassignedto thesameprocessorasthefinegridpartitionwithwhichthey
sharethemostoverlap.

Created Internal Edges

. Communication Path

FIG. 7.1. Illustration of Creation of Internal Edges and Ghost Points at

Inter-processor Boundaries

For each partitioned level, the edges of the mesh which straddle two adjacent processors are assigned to onc

of the processors, and a "ghost vertex" is constructed in this processor, which corresponds to the vertex

originally accessed by the edge in the adjacent processor (c.f. Figure 7.1). During a residual evaluation, the

fluxes are computed along edges and accumulated to the vertices. The flux contributions accumulated at the

ghost vertices must then be added to the flux contributions at their corresponding physical vertex locations

in order to obtain the complete residual at these points. This phase incurs interprocessor communication.

In an explicit (or point implicit) scheme, the updates at all points can then be computed without any

interprocessor communication once the residuals at all points have been calculated. The newly updated



values are then communicated to the ghost points, and the process is repeated.

The use of line-solvers can lead to additional complications for distributed-memory parallel implemen-

tations. Since the classical tridiagonal line-solve is an inherently sequential operation, any line which is split

between multiple processors will result in processors remaining idle while the off-processor portion of their

line is computed on a neighboring processor. However, the particular topology of the line sets in the un-

structured grid permit a partitioning the mesh in such a manner that lines are completely contained within

an individual processor, with minimal penalty (in terms of processor imbalance or additional numbers of cut

edges). This can be achieved by using a weighted-graph-based mesh partitioner such as the CHACO [6] or

MeTiS [7] partitioners. Weighted graph partitioning strategies attempt to generate balanced partitions of

sets of weighted vertices, and to minimize the sum of weighted edges which are intersected by the partition

boundaries.
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FIG. 7.2. Illustration of Line Edge Contraction and Creation o] Weighted Graph for Mesh Partitioning; V and E Values

Denote Vertex and Edge Weights Respectively

In order to avoid partitioning across implicit lines, the original unwcighted graph (set of verticcs and

edges) which defines the unstructured mesh is contracted along the implicit lines to produce a weighted

graph. Unity wcights arc assigned to the original graph, and any two vertices which are joined by an edge

which is part of an implicit line arc then merged together to form a new vertex. Merging vertices also produce

merged edges as shown in Figurr 7.2, and the weights associated with the merged vertices and edges arc

taken as the sum of the weights of the constituent vertices or edges. The contracted wcightcd graph is then

partitioncd using onc of th(" partitioner dcscribed in references [6, 7] , and the resulting partitioned graph

is then de-contracted, i.e. all constituent vcrtices of a merged vcrtex are assigned the partition number of

that vcrtcx. Since the implicit linc,_ reduce to a single point in the contracted graph, they can nevcr bc

broken by the partitionin_ pr(_('(._._. Th(, wcighting assigned to the contracted graph ensures load balancing

and communication optimizati_Jn of th(" final uncontracted graph in the partitioning process.

As an example, the tw_dim('n._ional mesh in Figure 6.1, which contains the implicit lines depicted

in Figure 6.2, has bccn part it i_Jnr([ botil in its original unweighted uncontracted form, and by the graph

contraction method dcscribc_l abov(,. Figure 7.3 depicts thc results of both approaches for a 32-way partition.

The unweightcd partition contain_ .1760 cut edges (2.6% of total), of which 1041 arc line edges (also 2.6% of

total), while the weighted partition contains no intersected line edges and a total of 5883 cut edges (3.2% of

total), i.e. a 23% increase over the total number of cut edges in the non-weighted partition.
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FIG. 7.3. Compar_on of Unweighted (above) and Weighted (below) 32-Way Parf_tion o] Two-Dimensional Mesh

Due to the large size of the grids considered in this work, all preprocessing operations must be performed

on a large parallel supercomputer. This includes the global grid refinement procedure, the agglomeration

procedure, the partitioning of the various coarse and fine multigrid levels, and the determination of the

inter-processor communication schedules. This is mostly due to the large memory requirements of these

procedures, (which run between 50% and 75% of the memory requirements of the flow solver, i.e. 1 Kbyte

per grid point), rather than the CPU time requirements, which are small compared to those of the flow solver.

At present, these procedures are executed sequentially on a single processor of an S(;I ORIGIN 2000, but

using large portions of the memory of the entire machine. For example, the various preprocessing operations

for a 24.7 million point grid required between 10 to 20 (;bytes of memory and between 45 minutes to 90

minutes for each of the operations mentioned above. The sequential execution of large jobs of this nature

is made possible by the shared memory architecture of the S(;I ORIGIN 2000, and cannot be performed on

purely distributed memory machines such as the Cray T3E. The complete parallclization of these procedures

for distributed-memory machines is planned for the near future.

The above run times also apply to the CHACO partitioner. The exception was the MeTiS partitioner,

which managed to partition the 24.7 million point grid in approximately 10 minutes, about 4 times faster

than the CHACO partitioner. On the other hand, the CHACO partitioner provided better load-balancing

in the final partitions, albeit with a slightly larger number of cut edges, particularly for the coarse grid levels

of the multigrid sequence. The differences were still small enough that a detailed study of the effect of the

two partitioners on parallel efficiency was not considered essential.

8. ScalabiUty Study. The scalability of the directional implicit multigrid algorithm is examined on

an SGI Origin 2000 and a CRAY T3E machine. The S(;I Origin 2000 machine contains 128 MIPS R10000

195 MHz processors with 286 Mbytes of memory per processor, for an aggregate memory capacity of 36.6

(;bytes. The CRAY T3E contains 512 DEC Alpha 300 MHz processors with 128 Mbytes of memory per

processor, for an aggregate memory capacity of 65 (;bytes.

The test case involves a grid of 1.98 million points over an ONERA M6 wing at a Mach number of

0.1, an incidence of 2.0 degrees, and a Reynolds number of 3 million and is reproduce from reference [15] .

Figures 8.1 and 8.2 show the relative specdups achieved on the two target hardware platforms for this case.

For the purposes of these figures, perfect speedups were assumed on the lowest number of processors for

which each case was run, and all other speedups arc computed relative to this value. In all cases, timings

10



were measured for the single grid (non-multigrid) algorithm, the multigrid algorithm using a V-cycle, and

the multigrid algorithm using a W-cycle.

The figures reveal good scalability on both machines up to the maximum number of processors. The

better scalability of the single grid versus the multigrid algorithms is indicative of the increased volume of

communication generated by the coarse grid-level time-stepping in the multigrid algorithm. Although the

multigrid W-cycle algorithm displays slightly inferior scalability than the V-cycle or single grid algorithm,

it provides the most rapid convergence and is thus used exclusively for all subsequent calculations.
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F[G. 8.1. Observed Speedups for ONERA M6 Wing FIG. 8.2. Observed Speedups for ONERA M6 Wing

Case (1.98 million grid points) on SGI Origin P000 Case (1.98 million grid points) on CRAY T3E

9. Results. The high-lift flow over a complete aircraft configuration has been computed for an entire

range of incidences on two grids of different resolution. The geometry consists of a twin-engine transport

known as the energy efficient transport (EET) configuration, which has been tested both as a full span and

semi-span model in the NASA Langley 14 × 22ft subsonic wind-tunnel [4]. The geometry studied in this

work contains no pylon or nacelle. The wing has an aspect ratio of 10, a leading edge sweep of 28.8 degrees,

and consists of a super-critical airfoil section with a slat and double slotted flap. The case studied in this

work consists of a take-off configuration, with a slat deflection of -50 degrees, a vane deflection of 15 degrees,

and a flap deflection of 30 degrees, with respect to the main airfoil. The freestream Mach number is 0.2, and

the Reynolds number is 1.6 million based on the wing reference chord, and the experimental flow incidence

varies over a range of-4 degrees up to 24 degrees.

Experimental results are available in the form of force and moment coefficients as a function of angle of

attack, and chordwise pressure distributions at three spanwise locations. At the time of writing, only the

pressure distributions at 10 degrees incidence were accessible for comparison. While reference [4] describes

the experiments on a semi-span model with pylon and nacelle, the full-span "nacelle-off" results used for

comparison in this paper have not been previously published.
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FIG. 9.1. Illustration of Mixed Prismatic- Tetrahedral Elements near Fuse-

lage Nose Region for 3.1 million Point Grid

The computations are all performed at zero yaw angle, and therefore only include one half of the

symmetric aircraft geometry, delimited by a symmetry plane. The coarse grid for this case contained 3.1

million vertices and 18.2 million tetrahedra. This grid was generated directly on an Silicon Graphics Octane

workstation which required about 60 cumulative labor hours for geometry and grid generation parameter

setup, and 2.5 hours for the actual surface and volume grid generation. This tetrahcdral grid was then merged

into a mixed-element grid of 3.9 million prisms, 6.6 million tetrahedra, and 46,899 pyramids. The fine grid

was obtained by uniform refinement of this mixed prismatic-tetrahedral grid, resulting in a grid of 24.7 million

vertices, with 53 million tetrahedra, 31 million prisms, and 281,000 pyramids. The refinement operation was

performed sequentially on a single processor of an SGI ORIGIN 2000, and required approximately 10 Gbytes

of memory and 30 minutes of CPU time. Figure 9.1 illustrates the mixed prism-tetrahedral nature of the

3.1 million point grid in the vicinity of the nose of the fuselage on the symmetry plane. An illustration of

the computed solution at 10 degrees incidence on the 3.1 million point grid is given in Figure 9.2 as a set of

surface pressure contours on the wing and flaps.

The preconditioned line-implicit agglomeration multigrid algorithm was employed to converge the solu-

tion to a steady-state. The isotropic agglomeration routine was used in order to reduce memory overheads of

the flow solver, and scalar dissipation was employed in the discretization. Five multigrid levels were employed

in the 3.1 million point case, with the coarsest level containing only 1,651 vertices. The convergence history

on this grid for a flow incidence of 10 degrees is depicted in Figure 9.3. A residual reduction of four orders

of magnitude is observed in 600 muttigrid cycles. However, the lift coefficient remains within 0.1 _ of its

final value after only 180 multigrid cycles, so that an engineering results could be obtained with confidence

in about 300 cycles.

For the 24.7 million point grid case, convergence was hindered by the behavior of the low-Mach number

preconditioncr. Figure 9.4 depicts a comparison between the convergence history obtained using six multigrid

levels with and without the low Mach number preconditioner, as well as using five multigrid levels without

the low Mach number preconditioner. In the preconditioned case, convergence stalls after roughly 2.5 orders

of magnitude decrease in the density residuals, whereas the non-preconditioned case converges four orders of

magnitude in 500 cycles. In fact, the convergence history for the non-preconditioned case is nearly identical

12



to that obtained on the coarser grid, as shown in Figure 9.3, which provides a good illustration of the grid-

independent convergence properties of the multigrid algorithm. The addition of a sixth multigrid level in the

24.7 million point grid case (which contains only 718 points, versus 2208 points on the fifth level) has almost

no effect on the overall convergence, therefore five multigrid levels were used in most of the computations.

/ " / jr f.j. _ _ •

J i

FIe. 9.2. illustration of Computed Pressure Contours on Wing, Slat and Flap Corner Areas on 3.1 million point

Mesh; Mach -- 0.2, incidence = 10 degrees, Re = 1.6 million

While the preconditioned case on the fine grid failed to converge the residuals monotonically, the lift coef-

ficient actually approaches its final value faster than in the non-preconditioned case, achieving a deviation

smaller than 0.1% of its final value in just 110 multigrid cycles, as opposed to 260 cycles for the non-

preconditioned case. It is speculated that the convergence problems of the preconditioned case may relate to

the limiter required by such techniques in regions of stagnating flow, and may therefore by of a local nature.

However, because of the uncertainty generated by the lack of residual convergence in the preconditioned

cases, the complete lift curve has been computed both with and without preconditioning for the 24.7 million

point grid. This also affords the opportunity to study the effect of the preconditioner on the final solution at

various angles of attack. Low-Mach number preconditioning affects solution accuracy through a modification

of the eigenvalues used to scale the artificial dissipation.
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Figures 9.6 through 9.8 provides a comparison of the computed surface pressures on the coarse and fine

grids with experimental values at the three spanwise locations illustrated in Figure 9.5 for an incidence of 10

degrees. For the fine grid, the preconditioned and non-preconditioned results are almost indistinguishable,

hence only one set of fine grid results is plotted. The differences between the coarse and fine grid values are

rather small, with the fine grid computations providing slightly higher suction peaks at the main and flap

leading edges. Both computational results compare favorably with experimental values at all three stations.

A comparison between computed and experimental lift coefficients as a function of angle of attack is

given in Figure 9.9 for both grids. As expected, the fine grid produces slightly higher lift coefficients than

the coarse grid. The effect of preconditioning on the fine grid lift values is very small. The experimental

lift values are over-predicted by both fine and coarse grid results. However the slope of the lift curve is

reproduced very accurately by both computations. The maximum lift point, which experimentally occurs

at 16 degrees incidence, is well predicted by the coarse grid. The fine grid over-predicts the maximum lift

incidence by 1 degree, giving a value of 17 degrees. In both cases the value of Clmax is over-predicted. These

characteristics are similar to those observed in two-dimensional calculations on highly-resolved grids [24].

After stall, the computations fail to converge adequately, producing large variations in the lift coefficients.

The average, as well as the minimum and maximum of these computed lift coefficients are plotted in the figure.

It is interesting to note that post-stall computed values averaged in this manner follow the experimental values

fairly closely, although the range of computed min-max values is rather large.
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FIc.9.5.Definition of Three Spanwise Stations for

Comparison of Computed and Experimental Pressure Dis-

tributions
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The fact that the coarse grid computations provide a closer prediction of the Clmax point in this case must

be considered fortuitous and probably cannot be generalized to other cases.

Figure 9.10 provides a comparison of computed and experimental drag coefficients versus angle of attack,

while the corresponding drag polar plots are given in Figure 9.11. The drag values appear to be reasonably

well predicted, with the fine grid values agreeing most closely with the experimental values. The shape

of the curves is well predicted on both grids up to stall, as are the absolute values of drag. In this case,

the low Mach number preconditioning has a non-negligible effect on the drag values, providing even closer

agreement with experiment for the fine grid case than the un-preconditioned case. In fact the agreement

with experiment is very close. For example, at 10 degrees incidence, the fine grid preconditioned value is

0.1810. while the experimental value is 0.1800, with only 10 counts difference between the two values. More

experience with large-scale unstructured grid computations will be required to determined whether this level
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of agreement can be relied upon, or is simply fortuitous.

A two-dimensional cut of the computed Mach contours on the fine grid is depicted in Figure 9.12.

Qualitatively, these solutions appear to approach the type of resolution typically used in common two-

dimensional calculations. However, isolated flow features such as the slat wake are not captured adequately,

since there has been no effort to anisotropically increase grid resolution in these areas.

Fic. 9.12. Computed Mach Contours on Two-Dimensional Plane Defined

by Spanwise Station A for 16 degrees Incidence Case on Fine (24.7 million

point) Grid

The 3.1 million point grid cases were run on an SGI ORIGIN 2000 machine, and a Cray T3E-600

machine. The scalability of this case on these machines is similar to that illustrated in Figures 8.1 and

8.2. This case requires a total of 7 Gbytes of memory and 80 minutes on 128 processors (250 MHz) of the

ORIGIN 2000, or 62 minutes on 256 processors of the Cray T3F__600 for a 500 multigrid cycle run.

The 24.7 million point case was run mostly on the Cray T3F,-600 machine using 512 processors. This

case requires 52 Gbytes of memory, and 4.5 hours for 500 multigrid cycles, which includes 30 minutes of I/O

time to read the grid file (9 Gbytes), and write the solution file (2 Gbytes). A total of 18 different cases

have been computed on this fine grid. Although these are large calculations, they are entirely feasible on

existing production machines, such as the NASA Goddard T3E, or the NAS 256-processor SGI ORIGIN

2000. Furthermore, in a production mode, the solution times could be further reduced (by up to a factor of

2) by using solutions at previously computed angles of attack as the starting point for additional incidence

cases and using fewer multigrid cycles.
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FIC. 9.13. Observed Speedups for 2,_.7 million point Grid Case on 1520

Processor CRAY T3E-1200e

During the course of this work, a unique opportunity was afforded to perform benchmark runs on a

large Cray T3E-1200e machine. The Cray T3E-1200e contains 600 MHz DEC Alpha processors as well as

an upgraded communication chip, as compared to the previously mentioned T3E-600 (300MHz processors).

This particular machine contained 1520 processors each with a minimum of 256 Mbytes per processor. Figure

9.13 depicts the speedups obtained by the single grid, and the five level and six level multigrid runs on the

24.7 million point grid running on 256,512, 1024 and 1450 processors. The single grid computations achieve

almost prefect scalability up to 1450 processors, while the speedups achieved by the multigrid runs are only

slightly below the ideal values. The six level multigrid case could not be run on the maximum number

of processors, since the partitioning of the coarsest level resulted in empty processors with no grid points.

While this does not represent a fundamental problem, the software was not designed for such situations.

In any case, the five level multigrid runs are the most efficient overall, since there is little difference in the

convergence rate between the five and six level multigrid runs, as shown in Figure 9.4. The single grid results

are included simply for comparison with the multigrid algorithm, and are not used for actual computations

since convergence is extremely slow.

The computation times are depicted in Table 1. On 512 processors, the 5 level multigrid case requires

19.7 seconds per cycle, as compared to 28.1 seconds per cycle on the 512 processor Cray T3E-600, which

corresponds to an increase in speed of over 40% simply due to the faster individual processors. On 1450

processors, the same case required 7.54 seconds per cycle, or 63 minutes of computation for a 500 multigrid

cycle run. A complete run required 92 minutes, which includes 29 minutes of I/O time. No attempt at

optimizing I/O was made, and it is felt that substantial reductions in the I/O could be achieved by changes

in both hardware and software configuration.

Since the 24.7 million point grid was run on 256 processors of this machine, simple scaling arguments

show that such a machine would be capable of solving over 100 million grid points in several hours. However,

for computations of this size, the bottleneck of sequential preprocessing must first be addressed.
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24.7 Million Pt Case

(5 Multigrid Levels)

Platform No. of Procs Time/Cyc Gflop/s

T3E-600

T3E-1200e

T3E-1200c

T3E-1200c

T3E-1200e

512

256

512

1024

1450

28.1

38.3

19.7

10.1

7.54

22.0

16.1

31.4

61.0

82.0

TABLE 9.1

Timings and Estimated Computational Rates for P_. 7

million point Gr_d Case on Various Cray T3E Configura-

tions; Computational Rates are obtained by linear scaling

according to wall clock time with smaller problems run on

the Cray C90 using the hardware per/ormance monitor for

Mffop ratings

10. Conclusions and Further Work. A complete approach for simulating high-lift flows using highly

resolved unstructured grids has been presented. Unstructured grid generation for complex high-lift geome-

tries can be accomplished in a matter of days, and the flow solution can be achieved in several hours on

existing production supercomputers. Good agreement between computed and experimental pressure coeffi-

cients and force coefficients as a function of angle of attack has been shown for a full aircraft configuration.

Good drag prediction has been obtained, while the lift values and Clm_x location arc slightly ovcr-predicted.

Good scalability of these computations has been demonstrated using up to 1450 processors, although the

solution of substantially largcr problems will require the resolution of bottlenecks in prcprocessing, I/O timc

and network file transfcr.

Additional work is required to enhance the robustness of the low-Mach number preconditioner particu-

larly for fine grids. Accurate resolution of isolated flow features, such as slat wakes will require more research

into novel grid generation techniques in order to increase resolution in these regions, and/or increased use of

adaptive meshing techniques.
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