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Abstract

The Borg MOEA is a self-adaptive multiobjective evolutionary algorithm ca-
pable of solving complex, many-objective environmental systems problems effi-
ciently and reliably. Water and environmental resources problems pose signif-
icant computational challenges due to their potential for large Pareto optimal
sets, the presence of disjoint Pareto-optimal regions that arise from discrete
choices, multi-modal suboptimal regions, and expensive objective function cal-
culations. This work develops two large-scale parallel implementations of the
Borg MOEA, the master-slave and multi-master Borg MOEA, and applies them
to a highly challenging risk-based water supply portfolio planning problem. The
performance and scalability of both implementations are compared on up to
16384 processors. The multi-master Borg MOEA is shown to scale efficiently
on tens of thousands of cores while dramatically improving the reliability of
attaining high-quality solutions. Our results dramatically expand the scale and
scope of complex environmental systems that can be addressed using many-
objective evolutionary optimization.

Keywords: Evolutionary algorithm, Borg MOEA, multiobjective
optimization, large-scale parallelization

1. Introduction

The role of evolutionary computation in water resources systems planning
and management as described in Maier et al. (In-Press) as well as the recent
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review by Nicklow et al. (2010) is to advance our field’s ability to address the
mathematical complexities inherent to real decision contexts (i.e., multiple ob-5

jectives, mixed real and discrete decisions, uncertainty, computational demand-
ing simulations, etc.). Real water resources applications present substantial
challenges given the evolving and highly uncertain impacts of climate change,
rapid urbanization, and growing resource contention. These challenges present
fundamental tradeoffs in water systems across time, space, and economic sectors10

(National Research Council, 2009, 2012). More formally from the optimization
perspective, understanding the optimal balance between these tradeoffs requires
evolutionary algorithms to approximate the Pareto set of solutions. These so-
lutions encompass those water resources alternatives where improvement in one
objective can only be improved by sacrificing performance in one or more other15

objectives (Cohon and Marks, 1975). The tradeoffs posed by managing water
resources systems under change was directly discussed as a leading research
challenge in the National Research Council’s (NRC) recent vision for the future
of global hydrology (National Research Council, 2012). The NRC highlights the
need for translational science innovations that combine simulation, optimization,20

and high-performance computing to innovate real decision making. Complimen-
tary to this vision, our core goals in this study are to advance: (1) a rigorous
diagnostic framework for benchmarking massively parallel multiobjective evo-
lutionary algorithms’ (MOEAs) ability to discover the tradeoffs for highly chal-
lenging water resources problems and (2) fundamentally expand the capability25

of evolutionary multiobjective search to support decision making in compu-
tationally intensive applications. To address these goals, this study presents
two parallel variants of the self-adaptive Borg MOEA (Hadka and Reed, 2013,
2012). Our parallelization study generalizes the Borg MOEAs auto-adaptive
search to a massively parallel context to better discover effective search strate-30

gies that work cooperatively to tailor exploration for severely challenging water
resources applications. Moreover, our parallel search diagnostics clarify the rel-
ative merits of the classical master-slave Borg MOEA versus a multi-master
hierarchical parallelization architecture (multi-master Borg MOEA) that allows
scalable search on emerging high-performance computing platforms. These in-35

novations have value for water resources systems planning as well as other fields
currently applying parallel evolutionary search. Alba et al. (2013) provide a
detailed review of parallel metaheuristics that highlights there is at present
a need for studies addressing auto-adaptivity in parallel search, that provide
careful theoretical assessment of the scalability of multiobjective algorithm ar-40

chitectures, provide tools for minimizing serial bottlenecks in the algorithms’
architectures, and contribute rigorous statistical diagnostics for multiple paral-
lelization strategies. The present study makes important contributions in each
of these areas.

Both parallel variants of the Borg MOEA are applied to a highly chal-45

lenging water resources management application: a risk-based water supply
portfolio planning problem focused on the Lower Rio Grande Valley (LRGV,
(Kasprzyk et al., 2009, 2012, 2013)). This problem is many-objective, non-
linear, contains a mix of discrete and real decision variables, is severely-constrained,
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and it has stochastic objectives with expensive function evaluation times. In50

the largest systematic benchmarking of serial MOEAs in the water resources
literature to date (Reed et al., 2013), the LRGV application’s complex disjoint
Pareto optimal regions caused ten state-of-the-art MOEAs (including the Borg
MOEA) to fail to solve this problem reliably. As noted by Tang et al. (2007),
problem difficulty is critical for distinguishing alternative MOEA parallelization55

strategies. In simple master-slave approaches where only the function evalua-
tions are parallelized, the internal search of the original serial algorithm is not
modified. Consequently, master-slave strategies simply provide the ability to
compute more function evaluations in a fixed wall clock period. Tang et al.
(2007) show that often perceived serial MOEA failures are simply the result of60

not having enough function evaluations given users’ limits on search time and
not the mathematical difficulty of the underlying water resources applications.
They demonstrated this effect for hydrologic model calibration and combinato-
rial groundwater monitoring design applications.

Alternatively, the LRGV test case selected in this study alternatively poses65

sufficient problem difficulty as will be shown in our results that the simple
master-slave BorgMOEA implementation is fully statistically inferior to the pro-
posed multi-master Borg MOEA parallelization that generalizes the algorithm’s
auto-adaptivity to modern leadership class supercomputing systems (i.e., thou-
sands of processors). It is worth noting that virtually all of the recent parallel70

evolutionary computation efforts in the water resources systems literature em-
ploy simple master-slave variants of existing popular algorithms that have signif-
icant serial bottlenecks in their base algorithmic architectures (e.g., water distri-
bution systems (Guidolin et al., 2012; Roshani and Filion, 2012; Zheng and Morad,
2012a,b); model calibration (Feyen et al., 2007; Tang et al., 2007; Vrugt et al.,75

2008; Zhang et al., 2013); and groundwater management (Kollat et al., 2011;
Matott et al., 2006b,a; Reed and Kollat, 2013; Tang et al., 2007)). Moreover, a
vast majority of these studies employed fewer than 500 processors and in the
few instances of careful reporting of parallel scalability, their efficiencies decline
severely with their maximum processor counts. Parallel efficiency refers to the80

ratio of actual speedup to theoretical speedup. For example, 100-percent ef-
ficiency when using 1000 processors requires a 1000-fold reduction in the wall
clock time of a search application. The strong declines in parallel efficiency in
the prior water resources literature are in fact theoretically expected given their
use of master-slave architectures and existing MOEAs that have significant se-85

rial bottlenecks in their algorithmic architectures (e.g., generational selection,
mating, mutation, and solution sorting). In master-slave architectures, an in-
creasing number of workers increases communication costs and processing time
at the master node, bounding the theoretical speedup attainable. Moreover,
as described by Amdahl’s law, the speedup of any program is limited by the90

serial portion of the program (Amdahl, 1967, 1988). Alternatively, this study
contributes a self-adaptive multi-master Borg MOEA whose algorithmic archi-
tecture minimizes serial bottlenecks and exploits a parallelization strategy that
reduces communication costs.

The master-slave and multi-master parallel variants of the Borg MOEA de-95
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veloped in this study make it possible to exploit leadership class computing
systems with thousands or tens of thousands of processors to significantly im-
prove convergence speed, solution quality, and reliability. As noted in the lead
vision paper Maier et al. (In-Press), it is important to view the value of paral-
lel metaheuristics in the broader continuum of advancing computing capabili-100

ties. Summary statistics for geographic and institutional access to increasingly
powerful computing architectures shows the continued exponential growth in
capability world-wide (Top 500 Supercomputer Sites, 2014). Moreover, these
statistics clearly show that the supercomputers of today are the broadly avail-
able work stations of tomorrow. This study advances the water resources field’s105

ability to exploit these trends in rapid and high-quality optimization.
Although this study focuses solely on parallelization, it should be noted that

future studies can combine the master-slave and multi-master Borg MOEA
advances with other efficiency enhancement strategies (e.g., response surface
modeling (Razavi et al., 2012), emulation (Castelletti et al., 2012), global-local110

hybrid search (Sayeed and Mahinthakumar, 2005), pre-conditioning (Fu et al.,
2013; Kollat and Reed, 2006), problem decomposition (Castelletti et al., 2012;
Fu et al., 2013), etc.). Readers interested in these alternative efficiency en-
hancement strategies can reference the more detailed reviews by Nicklow et al.
(2010); Maier et al. (In-Press). It is worth noting the relative concerns and con-115

sequences that users should consider when choosing parallelization and/or other
commonly employed efficiency enhancement strategies for MOEAs. Beyond a
simple focus on efficiency, an additional key question is whether or not a ef-
ficiency enhancement strategy precludes the exploration of important problem
formulation hypotheses (Kasprzyk et al., 2013). The scope of problem formula-120

tions is fundamentally tied to the optimization strategies employed, and these
interdependent choices are a significant potential source for negative decision bi-
ases if the system’s complexities and uncertainties are overly simplified. Besides
parallelization, response surface methods [see review for the water resources
field in Razavi et al. (2012)] and their specific use in evolutionary algorithms125

termed fitness approximation [see general review for the metaheuristics field in
Jin et al. (2002)] are the most popular strategies for reducing the computational
demands. Jin et al. (2002) strongly demonstrate that these approximate evalu-
ation techniques can actually severely degrade applications if not implemented
carefully.130

Response surfaces require offline or online training where the original com-
putationally expensive model is used to evaluate the objectives for a statistical
sampling of candidate decisions distributed throughout a problem’s space of
alternatives (Razavi et al., 2012). Response surface methods simply approxi-
mate the mapping from decisions to objectives. They do not provide insights135

into the spatial or temporal gradients of the states of the systems of interest
(e.g., hydraulic heads or concentrations). This is problematic for data assimi-
lation, uncertainty analysis, and state-based control optimization. Moreover in
the multiobjective optimization context, every objective requires its own sta-
tistical design of experiments and a unique response surface, which poses a140

computational barrier onto itself. The water resources applications reviewed by

4
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Razavi et al. (2012) highlights response surface methods have been limited in
the number of decision variables that can be optimized (typically < 10) because
training demands become severe. Even some of the most advanced work in this
area (Regis and Shoemaker, 2007) bridging parallel search and response surface145

methods still struggles to address larger numbers of decisions, especially if they
encompass a mix of real and integer decisions. Alternatively, dynamic emulation
(Castelletti et al., 2012) and decomposition techniques (Fu et al., 2013) that ex-
ploit simplified model or problem variants to inform subsequent search are more
flexible but still face fundamental challenges. To be successful they must capture150

the complex multivariate dependencies that can occur with increasing numbers
of conflicting objectives even for simple yes/no decisions (Shah et al., 2011).
Often emulation or decomposition approaches are strongly application specific
and limited in their generalizable value. Moreover, there is a general bias in
the published literature exploring MOEA efficiency enhancement schemes to155

date to consider typically two objective problem formulations [see discussions
in Maier et al. (In-Press); Nicklow et al. (2010)]. Given the growing capabili-
ties and interest in “many-objective”, there have been several studies that have
highlighted that traditional two objective formulations can strongly limit the
identification of alternatives to extreme regions of the decision space whose per-160

formance is often considered strongly inferior when decision-makers are able
to consider additional design relevant performance measures (Brill et al., 1990;
Franssen, 2005; Woodruff et al., 2013). The master-slave and multi-master Borg
MOEA variants introduced in this study seek to provide robust search across
multiple competing problem formulation hypotheses without necessarily requir-165

ing a simplification of the evaluation model while also minimizing the amount
of wall clock time required.

The remainder of this study is organized as follows. Section 2 overviews
the serial Borg MOEA. Section 3 presents the master-slave and multi-master
parallel extensions of the Borg MOEA. Section 4 describes the risk-based wa-170

ter supply portfolio planning problem used to benchmark the parallelization
schemes. Section 5 overviews the experimental setup and Section 6 presents
the results from this experiment. Conclusions and future work are presented in
Section 7.

2. The Serial Borg MOEA175

The Borg MOEA consists of three key components: (1) an ǫ-dominance
archive to maintain a diverse set of Pareto approximate solutions, (2) an ǫ-
progress restart mechanism triggered by search stagnation to avoid preconver-
gence to local optima, and (3) the use of multiple search operators that adapt
to a given problem’s landscape (Hadka and Reed, 2013). These components are180

adaptive in nature, allowing the Borg MOEA to adapt to local search conditions
encountered in challenging problems. Key details of the algorithm are summa-
rized below to facilitate readers in more fully understanding the auto-adaptive
nature of the master-slave and multi-master Borg MOEA variants contributed
in this study.185

5
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Population Archive

Recombination

(1)(k-1)

Evaluate

PCX+PM

UNDX+PM

SPX+PM

SBX+PM

DE+PM

UM

Archive

Contains

Feasible

Solutions?

No Yes

Figure 1: Flowchart of the Borg MOEA main loop adapted from
Hadka and Reed (2013). First, one of the recombination operators is selected
using the adaptive multi-operator procedure described in Section 2.1. For a
recombination operator requiring k parents, k − 1 parents are selected from
the population using tournament selection. The remaining parent is selected
randomly from the archive if the archive contains feasible solutions; otherwise
it is selected randomly from the population. The offspring resulting from this
operator are evaluated and then considered for inclusion in the population and
archive.

6
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2.1. Auto-Adaptive Multi-Operator Search

The Borg MOEA exploits the following six search operators:

1. Simulated Binary Crossover (SBX) (Deb and Agrawal, 1994)

2. Differential Evolution (DE) (Storn and Price, 1997)

3. Parent-Centric Crossover (PCX) (Deb et al., 2002)190

4. Simplex Crossover (SPX) (Tsutsui et al., 1999)

5. Unimodal Normal Distribution Crossover (UNDX) (Kita et al., 1999)

6. Uniform Mutation (UM) applied with probability 1/L

In addition, offspring produced by SBX, DE, PCX, SPX, and UNDX are
mutated using polynomial mutation (PM) (Deb and Agrawal, 1994). It should195

be noted that these operators provide a variety of offspring distributions. For
instance, SBX, PCX, and PM produce offspring near one of the parents. Such
small perturbations helps fine-tune existing designs. SPX and DE result in
larger perturbations, allowing the MOEA to translate across large landscapes
efficiently. UNDX produces offspring about the centroid of the parents, quickly200

converging to valleys in the landscape. UM is the most disruptive of the opera-
tors, which aids in adding diversity to the population to prevent preconvergence.

Another key difference between these operators is rotational-invariance. In
the ideal case, all decision variables are independent and can thus be optimized
independently. However, it is common in complex environmental systems to en-205

counter large amounts of interaction (epistasis) between decision variables. SBX
and PM are tailored for problems with independent decision variables. PCX,
SPX, UNDX, and DE are rotationally-invariant, and will often perform better
on non-separable, epistatic problems. The Borg MOEA uses all six operators,
but adapts the probability that each operator is applied based on the success of210

each operator from prior iterations.

2.2. ǫ-Progress Triggered Restarts

Since the ǫ-dominance archive is the set of all non-dominated solutions
produced by the MOEA, Hadka and Reed (2013) propose monitoring the ǫ-
dominance archive to detect search stagnation. If no new non-dominated solu-215

tions are accepted into the ǫ-dominance archive over a period of time, then the
MOEA has stagnated. For instance, the MOEA may be stuck at a local optima.
This mechanism of monitoring the ǫ-dominance archive for search stagnation is
called ǫ-progress. In the Borg MOEA, if the entire population is evolved and
the ǫ-dominance archive remains unchanged (no ǫ-progress), then a restart is220

triggered.
A restart involves several steps designed to help the algorithm escape local

optima and introduce additional diversity into the search population. First,
the population is emptied. Second, the population is resized relative to the
ǫ-dominance archive. Several studies theoretically and experimentally demon-225

strate that maintaining a population size relative to the Pareto approximate set,
as inferred by the ǫ-dominance archive size, helps avoid preconvergence (Horn,
1995; Mahfoud, 1995; Kollat and Reed, 2006; Hadka and Reed, 2013). Finally,

7



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

the population is filled with all solutions in the ǫ-dominance archive. Any re-
maining slots in the population are filled with randomly-selected ǫ-dominance230

archive members that undergo uniform mutation applied with probability 1/L.
This seeding reintroduces previously-discovered non-dominated solutions into
the search population but also introduces additional diversity through the mu-
tation operator.

In challenging real-world applications, the small perturbations introduced235

by a mutation probability of 1/L may not be sufficient to escape the local
optima. Small perturbations also do not help discover other disjoint Pareto
optimal regions. However, simply increasing the mutation probability is not
straightforward. Larger perturbations are disruptive, and can slow search by
introducing many sub-optimal solutions into the population. We propose in240

this study an adaptive restart strategy that identifies the smallest mutation
probability required to escape the local optima.

The BorgMOEA starts with a mutation probability of 1/L (Hadka and Reed,
2013). Whenever a restart occurs that fails to escape the local optima, the mu-
tation probability is increased. When a restart is successful, the mutation prob-
ability is decreased. The speed at which the probabilities change is controlled
by a parameter called the “mutation index”, mindex. This index starts with
value 0 and is incremented or decremented when restarts are unsuccessful or
successful, respectively. A restart is unsuccessful if there are two back-to-back
restarts with no changes to the ǫ-dominance archive (i.e., the ǫ-progress count
remains unchanged). The “maximum mutation index”, mmax, defines the max-
imum value of mindex. The minimum value is 0. Then, the uniform mutation
rate is calculated by

mutation rate =

[

1 +
(L− 1)mindex

mmax

]

/L

where L is the number of decision variables defined by the MOP. Hence, when
mindex is 0, the mutation rate is 1/L; whenmindex is equal tommax, the mutation
rate is 100%.245

2.3. Controllability of the Borg MOEA

We conclude this section by discussing briefly the results of Hadka and Reed
(2013) and Hadka and Reed (2012). It is commonly known that MOEAs are of-
ten strongly sensitive to their parameterizations (Purshouse and Fleming, 2003,
2007). Most contemporary MOEAs are flawed in this respect since their per-250

formance is tied to non-trivial parameterizations that are not consistent across
problem domains (or even problems within the same domain). Hadka and Reed
(2012) developed a rigorous statistical framework for assessing the sensitivity of
MOEAs to their parameterization. MOEAs with highly-sensitive parameters are
termed “uncontrollable”, as the decision-maker is required to constantly tweak255

parameters to improve performance. Controllability is a fundamental require-
ment for MOEAs to have operational value. Our studies have shown for a wide
variety of problems that traditional non-adaptive MOEAs often suffer from iso-
lated islands of effective parameters that would be very difficult if not impossible

8
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to discover in a real-world application context (Hadka et al., 2012; Reed et al.,260

2013; Woodruff et al., 2012). Moreover, the transition to massively parallel com-
puting systems requires users to confront machine access constraints, making it
of paramount importance that an MOEA lack sensitivity to its parameteriza-
tion.

Hadka and Reed (2012) used this sensitivity analysis framework to rigor-265

ously confirm that the auto-adaptive features of the Borg MOEA drastically
improves the algorithm’s controllability. Several of our studies using test func-
tions and real-world applications have confirmed that while the Borg MOEA
typically meets or exceeds other MOEAs in is efficiency, NFE is the key con-
trolling parameter (Hadka and Reed, 2012; Hadka et al., 2012; Woodruff et al.,270

2012; Reed et al., 2013). Furthermore, since NFE is its key controlling param-
eter, it is expected to benefit substantially from parallelization.

While the focus of this paper is on the parallelization of the Borg MOEA,
we would like to briefly discuss the impact of the recency and adaptive restart
enhancements to the original Borg MOEA introduced in this section. These275

enhancements were designed to improve the efficiency and reliability of the
Borg MOEA on severely-constrained problems like the risk-based water sup-
ply portfolio planning problem explored in this study. Our prior MOEA diag-
nostics studies on severely-constrained real-world problems (Hadka et al., 2012;
Woodruff et al., 2012; Reed et al., 2013) has shown that the improved constraint280

handling techniques described this section can substantially improve the overall
performance of the Borg MOEA. Additionally, the results presented in Section 6
exceed the comprehensive benchmarks for attainment, efficiency, and reliability
observed in our prior work on the same problem (Reed et al., 2013).

3. Parallelizing the Borg MOEA285

This section describes two parallel implementations of the Borg MOEA.
Both implementations are designed to remain faithful to the adaptive nature of
the serial Borg MOEA described in Section 2. The master-slave Borg MOEA
implementation in Section 3.1 is designed to scale to thousands of processors.
The multi-master implementation in Section 3.2 expands on the master-slave290

implementation to scale on emerging Petascale high-performance computing
architectures.

3.1. Master-Slave Implementation

The master-slave model for MOEAs is a straightforward extension of a serial
MOEA to perform objective function evaluations in parallel (Cantú-Paz, 2000;295

Coello Coello et al., 2007). Modern parallel systems are typically comprised of
many multi-core processors, each consisting of two or more processing cores
(e.g., a quad-core processor). Throughout this paper, we refer to these individ-
ual processing cores as “processors”. As shown in Figure 2, on a system with
P processors, one of the processors is labeled the “master” and the remaining300

P − 1 processors are labeled “slaves”. Internally, the master node runs the se-
rial MOEA as-is; the only alteration is that objective function evaluations are

9
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Figure 2: Diagram of the master-slave implementation of the Borg MOEA. The
master node maintains the ǫ-dominance archive and runs the main loop of the
serial Borg MOEA. The decision variables are transmitted to the slave nodes,
and the evaluated objective function values and constraints are returned to the
master node.

dispatched to one of the available slave nodes. The master sends the decision
variable vector to an available slave node, the slave node evaluates the prob-
lem with the given decision variables, and when finished sends the evaluated305

objective values and constraints (if any) back to the master node.
Most MOEAs in use today are generational, meaning that the full popula-

tion is replaced in a full loop through the selection, mating, and mutation op-
erators. In a single generation, the population is evolved to produce offspring,
the offspring are evaluated, and the offspring are added back into the popu-310

lation (possibly replacing existing members in the population). Parallelizing
a generational MOEA using the master-slave approach is fairly straightforward
(Cantú-Paz, 2000; Coello Coello et al., 2007). For the sake of simplicity, assume
that the number of offspring is equal to the number of slave nodes, P −1. Then,
when the algorithm reaches the point where it needs to evaluate the offspring,315

each member of the offspring is sent to its own slave node for evaluation. Once
all slave nodes return the evaluated objective values, the algorithm resumes its
serial loop. The need to completely evaluate all offspring before continuing to
the next generation gives rise to the term “synchronous MOEA”.

For completeness, we can remove our assumption that the number of off-320

spring equals the number of slave nodes, P − 1, by sending multiple offspring at
a time to a single slave node. For instance, given 16 total processors, 15 would
be slave nodes. For an offspring population size of 100, we can batch 6 or 7
offspring to be evaluated by a single slave node. When the offspring size does
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not divide evenly by the number of slave nodes, then some nodes must process325

an additional offspring. As a result, some nodes have more work than the oth-
ers, and will require more time to complete their evaluations. This potentially
lowers efficiency as some of the slave nodes will sit idle while others continue
processing. This problem also arises when the time to evaluate a solution is
variable.330

The Borg MOEA is a steady-state algorithm. Steady-state algorithms do not
have defined generational boundaries; instead, each individual in the population
evolves inside its own distinct evolutionary cycle. Since no boundary exists
between generations, such algorithms are also called “asynchronous MOEAs”.
Additionally, the lack of a boundary often reduces overhead and increases the335

parallel performance of the algorithm. The remainder of this section describes
the master-slave Borg MOEA implementation.

The master-slave Borg MOEA maintains a queue of unevaluated solutions.
Whenever a slave node is available for processing, it queries this queue for
the next solution to evaluate. If the queue is empty, then the typical Borg340

operator selection and offspring generation mechanism is triggered to insert one
or more offspring (unevaluated solutions) into the queue. Otherwise, the next
unevaluated solution in the queue is sent to the slave node. The main Borg
MOEA loop is this process of slave nodes querying the queue for solutions, and
new solutions being generated and appended to the queue as needed.345

When a slave node finishes evaluating a solution and sends the evaluated
objective and constraint values to the Borg master node, these solutions are
immediately added to the population and ǫ-dominance archive. The strategy
for adding/replacing solutions in the population and archive are identical to the
serial Borg MOEA. These newly-added solutions are now available as parents350

when the offspring generation mechanism is invoked next. The flowchart of
these steps is shown in Figure 3. The other components of the Borg MOEA,
such as ǫ-progress restarts, adaptive population sizing, etc., occur next and are
identical to the serial Borg MOEA. The only difference is that any new solutions
generated during a restart are appended to the queue.355

Initialization works similarly to the serial Borg MOEA with one exception.
As with offspring generation, the solutions generated during initialization are
added to the queue and processed as described earlier. However, consider what
happens when running on N + 1 processors, with 1 master node and N slave
nodes, and an initial population size of N . All N initial solutions will be gen-360

erated randomly and sent to the slave nodes for evaluation. The first solution
to finish evaluation is added to the population, and the next offspring is imme-
diately generated. At this point, the population has only 1 evaluated solution,
which is problematic for multi-parent recombination operators and also lacks
sufficient genetic diversity. To ensure that the population is filled with a suffi-365

cient number of solutions before applying the evolutionary operators to generate
offspring, the master-slave Borg MOEA always generates at least 2N initial so-
lutions, where N is the number of slave nodes. This ensures that at least N
solutions have been added to the population prior to applying any evolutionary
operators.370
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Figure 3: Flowchart of the main Borg MOEA loop running on the master
nodes. A queue supports the asynchronous generation and evaluation of off-
spring. When a slave node is available (it returns an evaluated offspring), the
master queries the queue for the unevaluated offspring. If the queue is empty,
the algorithm invokes the operator selection and offspring generation steps from
the serial Borg MOEA.

3.2. Multi-Master Implementation

The multi-master Borg MOEA hybridizes the master-slave implementation
with the island-based model of parallelization representing a hierarchical par-
allelization scheme as defined by Cantú-Paz (2000). In an island-based model,
each island runs a distinct MOEA with its own population evolved indepen-375

dently of other islands. Implementations of island-based MOEAs often include
periodic migration events, wherein a small fraction of the population at each is-
land is transmitted to one or more other islands. These migrations are intended
to permit sharing of information between islands.

While the classic island-based model is a popular strategy for parallelizing380

MOEAs, it exacerbates the parameterization and algorithmic design challenges
present in MOEAs. In order to run an island-based MOEA, one must select (1)
the number of islands, (2) the number of processors per island, (3) the popula-
tion size on each island, (4) operator selection and parameterization, (5) whether
to run the same MOEA (homogeneous) or different MOEAs (heterogeneous) on385

each island, (6) migration policies; etc. Cantú-Paz (2000) developed theoretical
models to determine problem-specific values for some of these settings, but in
doing so also shows the complexities and non-linear relationships between the
various settings that makes parameterization challenging. The effectiveness of
an island-based MOEA is heavily dependent on such non-trivial design choices390

that must be tailored to individual problems. This is a limiting factor in the
operational value of classic island-based MOEAs.

Our design of the multi-master Borg MOEA seeks to generalize its ease-of-
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use and auto-adaptivity while maximizing its parallel efficiency on large-scale
computing architectures. Several studies have shown that the Borg MOEA’s395

auto-adaptivity eliminates parameterization concerns by allowing the algorithm
to adapt and maximize its potential on a given problem (Hadka and Reed, 2012;
Hadka et al., 2012). This eliminates issues (3), (4), and (5), since the dynamics
of the Borg MOEA automatically configure the algorithm for the local con-
ditions encountered during search. This additionally implies that each island400

running the Borg MOEA can assume drastically different search operators as
needed to maximize performance. For instance, a struggling island can intro-
duce heavy mutations to escape local optima while another island is fine-tuning
near-optimal solutions using small, local perturbations. We address (6) by in-
troducing an auto-adaptive migration mechanism based on the search progress405

made by each island. Unlike the unguided migration events in classic island-
based models, in the multi-master Borg MOEA migrations only occur when an
island is struggling and injects high-quality solutions and new search operator
preferences to guide the struggling local population. Lastly, we answer (1) and
(2) in Hadka et al. (2013) by contributing a discrete event simulation model to410

predict topologies for the multi-master Borg MOEA that maximize its parallel
efficiency. The full details of the multi-master Borg MOEA implementation are
given below.

As shown in Figure 4, the multi-master Borg MOEA introduces a new node,
called the “controller”, that has two responsibilities: (1) maintaining a global415

ǫ-dominance archive, and (2) providing guidance to master nodes when they
need help. The global ǫ-dominance archive maintains the Pareto optimal solu-
tions discovered by all master nodes. Identical to how each master node uses
the ǫ-dominance archive to track the operators that contribute new, Pareto ap-
proximate solutions, the controller uses the global ǫ-dominance archive to track420

the operators that contribute globally Pareto approximate solutions. Note the
term “global” as used here refers to the aggregate of all ǫ-dominant solutions
from the full suite of searching master nodes. Each master node periodically
sends an update to the controller. This update contains any new Pareto approx-
imate solutions discovered by the master since its last update. In this study,425

this update is sent every 10000 NFE. This is small enough to ensure the global
ǫ-dominance archive is updated frequently but large enough not to overwhelm
the controller node (Hadka, 2013).

Since each master node is running an instance of the master-slave Borg
MOEA, it includes all of the mechanisms to detect search stagnation and trig-430

ger restarts. In the event that these mechanisms are unsuccessful at escaping
the local optima, the master node notifies the controller that it needs assis-
tance. Upon receiving the help request, the controller seeds the master with the
contents of the global ǫ-dominance archive and global operator probabilities.
This in essence replaces the local ǫ-dominance archive that was stuck at a local435

optima with the global search state. Additionally, it provides the best-known
global operator probabilities for contributing new Pareto approximate solutions.
Upon receiving this guidance from the controller, the master updates its internal
state and triggers a restart. Since the local archive of the master node is now set
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Figure 4: Diagram of the multi-master implementation of the Borg MOEA. The
multi-master Borg MOEA consists of two or more master-slave instances. This
diagram depicts three such instances. The multi-master consists of an additional
controller node, which communicates with the masters using several messages.
(1) Each master node periodically transmits its local ǫ-dominance archive to the
controller to update the global archive. (2) When a master node is struggling,
it sends a help message to the controller. (3) The controller responds with
guidance, which includes the global ǫ-dominance archive and global operator
probabilities.
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to the global ǫ-dominance archive, the solutions injected during the restart are440

derived from the global search state, and the adaptive population sizing ensures
the population is resized appropriately given the global search state.

The multi-master implementation also features a different style of initial-
ization from the serial and master-slave Borg MOEA implementations. The
original Borg MOEA generated the initial population by sampling the decision445

variables uniformly at random from their bounds. While uniform sampling is
a common initialization strategy used in MOEAs, it has a major disadvantage:
it makes no guarantee that the sampled points are representative of the actual
distribution. In the context of MOEAs, this means that there is no guaran-
tee that the initial population includes a representative sampling of all decision450

variable combinations. Instead, uniform sampling tends to result in areas with
higher and lower densities, potentially introducing random bias into the initial
search population.

It has been proposed in the literature to use other sampling techniques like
Latin hypercube sampling (LHS) and Sobol’s low-discrepancy sequence genera-455

tor (Bäck et al., 1997). The improved quality of the samples by LHS and Sobol’
sequence have been used in Monte Carlo simulations to improve convergence
and reduce the number of required samples (Macdonald, 2009). In the context
of MOEAs, LHS and Sobol’ sequence help ensure that the initial population con-
tains a representative sampling of the search space. In the multi-master Borg460

MOEA, we propose the global Latin hypercube initialization strategy. When
the multi-master algorithm first starts, each master node notifies the controller
of its desired initial population size. The sum total is the number of initial so-
lutions generated by the controller using LHS. The controller then uniformly at
random partitions these solutions into the initial populations for each master.465

Finally, the controller transmits the initial populations to the master.
For example, suppose we have 16 islands each using an initial population

size of 100. Just like the master-slave Borg MOEA, the master node generates
twice as many initial solutions as required to ensure that the population is filled
prior to entering the main evolutionary loop. Thus, each island would request470

200 initial solutions. Then, the controller would generate 16 ∗ 200 = 3200 initial
solutions using LHS. Next, these 3200 solutions will then be randomly parti-
tioned into 16 groups of 200. Finally, each group is sent to the corresponding
island.

While this initialization strategy adds some additional overhead at startup,475

it has the benefit of ensuring that globally, the multi-master algorithm starts
with a well-distributed, diverse set of initial solutions. Without this approach,
the initial populations would have less diversity and likely subject to faster
preconvergence.

4. Complex Environmental System: Water Supply Portfolio Planning480

This section introduces a challenging risk-based urban water portfolio plan-
ning application to test the effectiveness, efficiency, and reliability of the par-
allel variants of the Borg MOEA. Urban water supply management is the act
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of securing and allocating water resources to a locale under varying environ-
mental and economic conditions. Population growth, increased urbanization,485

water scarcity due to droughts, and climate change are factors that challenge
water supply management and increase the risk of critical water supply fail-
ures (Kundzewicz et al., 2007; Frederick and Schwarz, 1999; Lane et al., 1999;
Vorosmarty et al., 2000; Milly et al., 2008; Brekke et al., 2009). A number of
approaches can be taken to facilitate increases in demand and mitigate the490

impact of supply fluctuations. The municipality can undertake structural im-
provements, such as building new reservoirs, and non-structural adaptations,
such as purchasing water on water markets (Anderson and Hill, 1997). Water
markets aim to allocate water resources to their highest-value use by trans-
ferring volumes of water across regions or user sectors (Israel and Lund, 1995;495

Hadjigeorgalis, 2008).
In this case study, water supplies can be purchased using three market mech-

anisms: permanent rights, leases, and options. Permanent rights represent the
purchase of a fixed percentage of the stream inflows to a reservoir. Leases facil-
itate short-term transfers of water from agricultural users to a city, but prices500

fluctuate with supply and demand. For instance, the onset of drought condi-
tions can lead to a spike in prices. Alternatively, options reserve volumes of
water at a fixed price that can be transferred later in the year. Options that
remain unused at the end of the year are dropped, and can become costly if the
city holds many unused options at the end of the year.505

Several studies considering only single-objective formulations of this problem
have shown that water markets with both options and leases can reduce the over-
all cost associated with maintaining reliable urban water supplies (Lund, 1995;
Wilchfort and Lund, 1997; Watkins Jr. and McKinney, 1999; Jenkins and Lund,
2000; Characklis et al., 2006; Kirsch et al., 2009). Kasprzyk et al. (2009) pro-510

posed the first many-objective formulation of this problem, allowing tradeoffs
between cost, reliability, surplus water, cost variability, frequency of using leases,
and unused transfers of water. They applied this problem to a city located in
the Lower Rio Grande Valley (LRGV) in southern Texas with a 10-year plan-
ning horizon. A Monte Carlo simulation models the city using both thirty-three515

years of historical data from the region with additional factors like growing pop-
ulation demands, variable hydrologic conditions, and market pricing dynamics.
In this study, we use the most challenging “Case D” variant of the problem from
Kasprzyk et al. (2009) and refer to it as the LRGV problem.

The LRGV problem consists of 8 decision variables, 6 objectives, and 3 con-
straints. The 8 decision variables shown in Table 1 control the use of permanent
rights, options, and leases by the simulation model. Several of these decision
variables are discrete. Since the Borg MOEA uses real-valued operators, the
decision variables are rounded to the nearest integer prior to invoking the simu-
lation model. The simulation model outputs the 6 objectives shown in Table 2.
The LRGV problem is thus defined by

F (x) =(fcost(x), frel(x), fsurplus(x), fcostvar(x),

fdropped(x), fleases(x)) (1)

16



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Table 1: Decision variables used by the LRGV problem.

Decision Variable Type Range Description
NR Integer 30,000-60,000 Volume of permanent rights
NOlow

Integer 0-20,000 Low-volume options con-
tracts

NOhigh
Real NOlow

− 2NOlow
High-volume options con-
tracts

ξ Real 0.1-0.4 Low to high options thresh-
old

αMay-Dec Real 0.0-3.0 Lease/options strategy for
May-Dec (“when to ac-
quire”)

βMay-Dec Real αMay-Dec-3.0 Lease/options strategy for
May-Dec (“how much to ac-
quire”)

αJan-Apr Real 0.0-3.0 Lease/options strategy
for Jan-Apr (“when to
acquire”)

βJan-Apr Real αJan-Apr-3.0 Lease/options strategy for
Jan-Apr (“how much to ac-
quire”)

Table 2: Objectives used by the LRGV problem.

Objective Description Direction ǫ Search Precision
fcost Cost Min 0.003
frel Reliability Max 0.002
fsurplus Surplus Min 0.01
fcostvar Cost Variability Min 0.001
fdropped Dropped Transfers Min 0.002
fleases Number of Leases Min 0.003
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where

x =(NR, NOlow
, NOhigh

, ξ, αMay-Dec, βMay-Dec,

αJan-Apr, βJan-Apr). (2)

The 3 constraints ensure that potential solutions satisfy limits in cost variability,
reliability, and critical reliability. Reliability measures small failures that can be
mitigated by water conservation or other practices. Critical reliability measures
larger failures where the city fails to meet more than 60% of the required demand
in a given month. Formally, these constraints are defined by

fcostvar < 1.1 (3)

frel > 0.98 (4)

Pr[Si,j > 0.6di,j ] = 1.0, ∀i ∈ [1, 12] and j ∈ [1, T ] (5)

where Si,j is the simulated supply and di,j is the simulated demand for month520

i in the year j, and T = 10 is the number of simulated years. Full details of the
LRGV problem are available in Kasprzyk et al. (2009, 2012).

Since the LRGV simulation is stochastic, many Monte Carlo trials are per-
formed when computing the expected values for its performance objectives.
Increasing the number of Monte Carlo trials will improve the quality the esti-525

mates of the expected values for the objectives, but also significantly increases
the evaluation time. In this study, 1000 samples are used, resulting in an evalu-
ation time of approximately 0.14 seconds. This evaluation time is based on runs
performed on the TACC Ranger supercomputer that operates 2.3 GHz AMD
Opteron Quad-Core 64-bit processors (see Section 5 for details).530

The first attempts to solve the LRGV problem used the ǫ-NSGA-II to dis-
cover the tradeoffs between various market strategies and their impact on cost
and reliability when faced with the uncertainty and risks inherent in water port-
folio planning (Kasprzyk et al., 2009). Reed et al. (2013) performed a rigorous
assessment of several MOEAs on the LRGV problem, identifying that all of the535

top serial MOEAs struggled with their attainments and controllability, many of
which completely failed on this problem.

These search failures are the result of several problem characteristics. First,
the LRGV problem is a many-objective problem with a fully stochastic objec-
tive space. Many MOEAs are unable to cope with problems with four or more540

deterministic objectives as they are unable to effectively navigate and search
high-dimensional spaces (Purshouse and Fleming, 2003, 2007; Hadka and Reed,
2012). Second, the problem is severely constrained. Reed et al. (2013) showed
a random sampling baseline where the probability of randomly generating a fea-
sible solution for the LRGV problem is approximately 1 in 500000. This implies545

the initial population will likely consist entirely of infeasible solutions, requiring
the MOEA to direct search towards feasible regions. MOEAs unable to do so
will fail to generate any Pareto approximate solutions. Third, as identified in
Kasprzyk et al. (2009), the best-known reference set consists of three disjoint
regions corresponding to vastly different water planning strategies. A successful550
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Table 3: The parallel MOEAs tested in this study and their salient characteris-
tics.

Implementation Islands Initialization Style Operator
Master-Slave ǫ-NSGA-II 1 Uniform Generational SBX+PM
Master-Slave Borg 1 Latin Steady-State Multi-operator
Multi-Master Borg 2 Global Latin Steady-State Multi-operator
Multi-Master Borg 4 Global Latin Steady-State Multi-operator
Multi-Master Borg 8 Global Latin Steady-State Multi-operator
Multi-Master Borg 16 Global Latin Steady-State Multi-operator
Multi-Master Borg 32 Global Latin Steady-State Multi-operator

MOEA must be able to locate and diversify across all disjoint regions within the
best known Pareto approximate set. Finally, the LRGV problem has an expen-
sive function evaluation time. As mentioned previously, the objective function
evaluation time in this study is approximately 0.14 seconds. This necessitates
the use of parallel MOEAs in order to discover high-quality solutions in a mini-555

mum amount of wallclock time while being a sufficiently small evaluation time as
to make parallel scalability challenging. Our parallel scalability as analyzed in
this paper is conservative as many real-world applications would have substan-
tially higher evaluation times making parallel scalability much easier to attain
(Hadka et al., 2013).560

5. Methodology

This study compared the master-slave and multi-master Borg MOEA im-
plementations against the ǫ-NSGA-II algorithm originally used to explore the
LRGV problem. ǫ-NSGA-II is one of the top-performing MOEAs on the LRGV
problem (Reed et al., 2013). In this study, we are using the large-cluster master-565

slave ǫ-NSGA-II implementation from Reed et al. (2008). The master-slave and
multi-master Borg MOEA implementations were written in high-performance
C with the use of MPI to facilitate communication between nodes. This code
was compiled and executed on the Texas Advanced Computing Center (TACC)
Ranger system. TACC Ranger consists of 3,936 16-way symmetric multipro-570

cessing (SMP) compute nodes, each containing four 2.3 GHz AMD Opteron
Quad-Core 64-bit processors and 32 GBs of memory. Each core can perform
9.2 GFLOPS. In total, there are 62976 processing cores. Recall that in this
paper we refer to these individual processing cores as “processors”. Nodes are
connected using two large Sun InfiniBand DataCenter switches.575

The master-slave and multi-master Borg MOEA implementations were ex-
ecuted in a number of different configurations to compare their scalability and
solution quality at large processor counts. On TACC Ranger, submissions are
limited to 16384 cores. Therefore, the three implementations were each executed
with 1024, 2048, 4096, 8192, and 16384 cores. Additionally, the multi-master580

19



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

runs used different topologies with 2, 4, 8, 16 and 32 islands. A single run of an
implementation was given 10 minutes of wallclock time, and allowed to evaluate
as many objective function evaluations as it could manage. Each run was re-
peated 50 times with different initial random seeds so that the expected search
quality and its deviation can be calculated. A summary of the algorithms tested585

in this study are given in Table 3.
The output of each run is the approximation set generated by the algorithm.

This approximation set is stored in a database. After all runs have been ex-
ecuted, the aggregation of all approximation sets across all algorithms forms
the reference set. This reference set contains all Pareto approximate solutions590

discovered in this study. Using this reference set, we can subsequently compute
various performance indicators. Based our prior comprehensive assessment of
the LRGV test case for a broad suite of MOEAs (Reed et al., 2013), we have
selected to emphasize the hypervolume indicator. Our prior results have shown
that the hypervolume is sensitive to the irregular Pareto approximate set geom-595

etry of the LRGV test case and that, in general, other measures are equivalent
or easier to satisfy at high levels of performance. Hypervolume measures the
volume of objective space dominated by an approximation set. Larger hyper-
volumes therefore correspond to approximation sets that dominate more space,
which in turn indicates high-quality approximation sets.600

Figure 5 shows an example of how hypervolume is computed in 2D space.
A reference point is chosen based on the bounds of the reference set plus some
additional delta. This delta ensures the boundary points contribute positive
volume to the overall hypervolume. Hypervolume is normalized to the range
[0, 1] such that the best possible set, the reference set, has a hypervolume of 1.605

Approximation sets with hypervolumes near 1 are high-quality, have converged
in proximity to the reference set, and are diversified across the entire Pareto
front.

While hypervolume can be expensive to calculate, it offers several advantages
over other performance indicators. Its results are scaling independent, it is com-610

patible with the dominance relation, and its meaning is intuitive (Zitzler et al.,
2002). Since the LRGV problem has six objectives, we elected to use the
efficient WFG hypervolume algorithm to calculate exact hypervolume values
(While et al., 2012).

In addition to recording the end-of-run approximation set, runtime data is615

collected every 10,000 NFE and stored in the database. The data includes a
snapshot of the approximation set discovered by the algorithm at the current
point in time, the operator probabilities used by the Borg MOEA’s adaptive
multi-operator mechanism, and local and global restart frequencies. Identical
to how we compute hypervolume for the end-of-run approximation set, we also620

compute hypervolume for each snapshot. This provides a view into the dynamics
of the algorithm. We can visualize the inner workings of the parallel Borg MOEA
and its impact on solution quality.
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Hypervolume (Dominated Region)

Reference Point

(c)

Figure 5: 2D demonstration of the hypervolume indicator. (a) The bounds
of the reference set are used to calculate the reference point; this calculation
typically adds a delta so that the boundary points contribute positive hyper-
volume. (b) Given an approximation set, the hypervolume is the volume of
space dominated between the approximation set points and the reference point.
(c) Demonstration of how an approximation set with good proximity but poor
diversity results in a sub-optimal hypervolume.

6. Results

The LRGV problem described in Section 4 was solved using the large-cluster625

master-slave ǫ-NSGA-II (see Reed et al. (2008)), the master-slave Borg MOEA,
and several configurations of the multi-master Borg MOEA as described in Sec-
tion 5. This section presents the results from this experiment. First, Section 6.1
investigates the time required to converge to high-quality solutions, identifying
the implementations which converged fastest and with the highest reliability.630

Second, we explore the end-of-run solution quality as a result of running each
implementation for a fixed amount of time in Section 6.2, identifying the imple-
mentation that produced the highest-quality result. In Section 6.3, we analyze
the operator dynamics introduced by the auto-adaptive multi-operator search
mechanism used by the Borg MOEA. Finally, Section 6.4 calculates the parallel635

efficiency and speedup of the implementations, identifying the configurations
that maximize their use of the underlying computing resources.

6.1. Convergence Speed and Reliability

Figure 6 shows the speed and reliability of the different parallel MOEA imple-
mentations tested in this study. These results show the cumulative distribution640

functions (CDFs) for generating high-quality approximation sets with respect
to wallclock time. Here, an algorithm generates a high-quality approximation
set if its hypervolume is ≥ 90% of the best-known, reference set hypervolume.
Each of the subplots in Figure 6 shows the results for different processor counts.
Each of the line series corresponds to one of the implementations in Table 3.645
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Figure 6: Probability of each parallel implementation of attaining a hypervol-
ume >= 90% of the reference set hypervolume on the LRGV problem. Each
subplot shows the results for different processor counts, from 1024 up to 16384
processors.
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These line series plot at each point in time the probability that the implementa-
tion generated high-quality approximation sets exceeding the 90% hypervolume
threshold. Ideal performance on these plots are vertical CDFs (i.e., no random
seed variability) at a minimum wallclock.

Starting with the 1024 processor subplot, we observe that none of the imple-650

mentations had a 100% probability of attaining the 90% hypervolume threshold
within the wallclock allowed. The closest results were provided by the 16 and
32 island multi-master Borg MOEA implementations, which reached the hyper-
volume threshold with 90% probability. This is followed closely by the 8 island
multi-master Borg MOEA implementation with 85% probability, and more dis-655

tantly by the 2 and 4 island multi-master Borg MOEA implementations with
60% and 55% probability, respectively. The high failure rates for several con-
figurations of the parallel Borg MOEA confirm the difficulty of the LRGV case
study as has been observed in prior work (Reed et al., 2013). All of the multi-
master Borg MOEA implementations significantly exceeded the reliability of660

the master-slave Borg MOEA and ǫ-NSGA-II implementations. Note that the
slopes of all of the success rate CDFs show strong random seed variability in the
time required to attain high-quality approximations of the LRGV case study’s
tradeoffs.

Additionally, by observing the position along the x-axis where the line series665

reached their maximum, we can determine the convergence speed of the algo-
rithm. Continuing with our analysis, we observe in the 1024 processor subplot
that the 16 and 32 island multi-master Borg MOEA implementations converged
in 450 and 560 seconds, respectively. In general, we desire MOEAs that produce
the highest-quality results. As with this case, when the quality attained by two670

different implementations are equivalent, we then look at the speed of conver-
gence. For the 1024 processor case, the 16 island multi-master Borg MOEA
implementation produced the best result.

As the processor count increases, we observe that many implementations are
able to reach the 90% hypervolume threshold with 100% probability. With 2048675

processors, the 16 island multi-master Borg MOEA implementation converged
fastest with 100% probability in 410 seconds. With 4096 processors, the 32
island multi-master Borg MOEA implementation dominates, converging with
100% probability in 190 seconds. With 8192 processors, the 16 and 32 island
multi-master Borg MOEA implementations perform similarly, converging with680

100% probability in 50 and 80 seconds, respectively. Finally, at 16384 processors,
the 16 and 32 island multi-master Borg MOEA implementations have nearly
identical convergence speeds of approximately 40 seconds. Note at 8192 and
16384 processor counts, the top performing instances of the multi-master Borg
MOEA have virtually no random variability. Any given trial of the algorithm685

is 100% reliable in both solution quality and wall clock time required. This a
major benefit for operational use of the algorithm on large parallel architectures
where compute hours are often strongly constrained.

From these results, it is clear that the multi-master implementations provide
significant improvements in terms of speed and reliability over the master-slave690

implementations. The master-slave Borg MOEA and ǫ-NSGA-II implementa-
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tions never converged with 100% probability, regardless of how many processors
were available. This failure is attributed to the inefficiency of the master-slave
implementations, which quickly become congested trying to receive messages
from so many slave nodes (Hadka et al., 2013). Furthermore, the ability of695

struggling islands to request help from the controller node also is a contributor
to the superior performance of the multi-master implementations.

At higher processor counts, inefficiencies due to congestion can also be seen
in the 2 and 4 island multi-master implementations. For instance, compare
the 2 island multi-master Borg MOEA for the 4096, 8192, and 16384 processor700

subplots. With 4096 processors, the 2 island multi-master Borg MOEA im-
plementation is performing reasonably well. However, its performance declines
significantly with 8192 and 16384 processors. This is a result of each island
becoming congested, and it is simply unable to evaluate as many NFE as the
implementations with more islands. This shows that selecting a topology appro-705

priate for the processor count is critical. Our discrete simulation-based approach
for determining the optimal topology for the multi-master Borg MOEA will be
discussed later in Section 6.4.

6.2. End-of-Run Quality

In the previous section, we analyzed the results in terms of the 90% hyper-710

volume threshold. We fixed the performance threshold and observed the time
required to reach this threshold. In this section, we instead fix time and look at
the performance of each implementation. As described in Section 5, each imple-
mentation was run for 10 minutes. The end-of-run hypervolume is calculated
from the approximation set produced by each MOEA after 10 minutes.715

Table 4 shows the median and standard deviation of the end-of-run hyper-
volume from all 50 seeds for each implementation. Recall that a hypervolume of
1 is optimal. At 1024 processors, the multi-master Borg MOEA improvement is
marginal. The hypervolume increases approximately 2% when switching from
the master-slave ǫ-NSGA-II to the 32 island multi-master Borg MOEA. At larger720

processor counts, the improvement is more significant. With 16384 processors,
the 32 island multi-master Borg implementation produces a hypervolume 29%
better than master-slave ǫ-NSGA-II. This implies a significant improvement in
solution quality when switching to the multi-master Borg MOEA implementa-
tion.725

Across all topologies, the 16384 processor runs of 32 island multi-master Borg
MOEA resulted in the best end-of-run hypervolume. Combined with the speed
and reliability results from Section 6.1, this shows concretely that the multi-
master Borg MOEA with a larger number of islands produces the highest-quality
results efficiently and reliably. Furthermore, the results significantly exceed the730

quality of the master-slave ǫ-NSGA-II and Borg MOEA implementations.
Table 4 also provides results from the Kruskal-Wallis and Mann-Whitney

U tests. Both tests determine whether differences in the medians of two sam-
pled populations are statistically significant or occurred due to random chance
(Sheskin, 2004). The Kruskal-Wallis test is first applied to all medians in the735

table to determine if there is a statistical difference in the entire table. Since the
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Table 4: Table showing the median and standard deviation of the end-of-run hy-
pervolume results. The Kruskal-Wallis and Mann-Whitney U tests were used to
test the statistical significance of the medians. The significant column contains
a X if the median from that row is significantly different than the best result,
16384 processor multi-master Borg MOEA (32 islands), with 95% confidence.
The row containing the best result is highlighted. The final column contains
the corresponding p-value from the Mann-Whitney U test.

Processors Implementation Median Stdev Significant p-value

1024

Master-Slave ǫ-NSGA-II 0.88889 0.013124 X 1.75×10−7

Master-Slave Borg 0.89146 0.015297 X 1.75×10−7

Multi-Master Borg (2 Islands) 0.89892 0.015105 X 1.75×10−7

Multi-Master Borg (4 Islands) 0.89512 0.010933 X 1.75×10−7

Multi-Master Borg (8 Islands) 0.90447 0.015395 X 5.71×10−7

Multi-Master Borg (16 Islands) 0.90786 0.011394 X 1.75×10−7

Multi-Master Borg (32 Islands) 0.90796 0.012429 X 2.03×10−7

2048

Master-Slave ǫ-NSGA-II 0.89667 0.013536 X 1.75×10−7

Master-Slave Borg 0.88374 0.013262 X 1.75×10−7

Multi-Master Borg (2 Islands) 0.90897 0.014425 X 3.18×10−7

Multi-Master Borg (4 Islands) 0.91225 0.013274 X 3.18×10−7

Multi-Master Borg (8 Islands) 0.91526 0.014061 X 2.74×10−7

Multi-Master Borg (16 Islands) 0.92074 0.015761 X 3.08×10−6

Multi-Master Borg (32 Islands) 0.91621 0.012114 X 2.36×10−7

4096

Master-Slave ǫ-NSGA-II 0.87477 0.014715 X 1.75×10−7

Master-Slave Borg 0.88124 0.013009 X 1.75×10−7

Multi-Master Borg (2 Islands) 0.92561 0.012299 X 2.36×10−7

Multi-Master Borg (4 Islands) 0.92572 0.015114 X 5.27×10−6

Multi-Master Borg (8 Islands) 0.92695 0.013407 X 7.82×10−6

Multi-Master Borg (16 Islands) 0.92601 0.015314 X 1.49×10−5

Multi-Master Borg (32 Islands) 0.9332 0.013837 X 4.01×10−5

8192

Master-Slave ǫ-NSGA-II 0.8163 0.014652 X 3.61×10−7

Master-Slave Borg 0.88813 0.015637 X 1.75×10−7

Multi-Master Borg (2 Islands) 0.91815 0.015299 X 5.71×10−7

Multi-Master Borg (4 Islands) 0.93421 0.011551 X 0.000149
Multi-Master Borg (8 Islands) 0.93698 0.016602 X 0.010163
Multi-Master Borg (16 Islands) 0.94167 0.010124 X 0.005836
Multi-Master Borg (32 Islands) 0.94194 0.012687 X 0.025419

16384

Master-Slave ǫ-NSGA-II 0.73672 0.14131 X 3.39×10−6

Master-Slave Borg 0.8907 0.017862 X 3.39×10−6

Multi-Master Borg (2 Islands) 0.91252 0.014744 X 5.05×10−6

Multi-Master Borg (4 Islands) 0.92989 0.01303 X 0.000464
Multi-Master Borg (8 Islands) 0.94489 0.01707 0.21356
Multi-Master Borg (16 Islands) 0.94534 0.013617 0.53383
Multi-Master Borg (32 Islands) 0.94814 0.014137

Kruskal-Wallis test indicated differences were significant, the Mann-Whitney U
test is applied to each pair to determine which specific cases are significant.
Since the 32 island multi-master Borg MOEA implementation produced the

25



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

O
p
e
ra

to
r 

P
ro

b
a

b
ili

ti
e
s
 /
 H

y
p
e
rv

o
lu

m
e

Elapsed Time (seconds)

SBX DE PCX SPX UNDX UM

Figure 7: The operator probability runtime dynamics from a single run of the
master-slave Borg MOEA with 1024 processors. The solid black line traces the
hypervolume of the approximation set at each point in time.

best end-of-run hypervolume, we compare the significance of this result with all740

other topologies. In Table 4, the “significant” column contains a check mark if
the end-of-run hypervolume from that row was statistically different from the
32 island multi-master Borg MOEA result with 95% confidence. Additionally,
the p-value from the Mann-Whitney U test is shown. With 95% confidence,
a p-value ≤ 0.05 rejects the null hypothesis and implies that the results are745

statistically significant.
These statistical tests show that there is not a statistically significant differ-

ence between the 8, 16, and 32 island multi-master Borg MOEA implementa-
tions with 16384 processors. However, these three implementations are statisti-
cally better than all other runs.750

6.3. Operator Dynamics

The Borg MOEA bases its selection of search operators on archive member-
ship and recency as discussed in Section 2. Adapting its search operators at
runtime allows the Borg MOEA to favor operators that contribute more Pareto
approximate solutions, leading to faster convergence and diversification. In this755

section, we explore the operator dynamics on the LRGV problem. The results
in this section are based on a single, typical run. We have confirmed that the
trends observed in these results are consistent with general trends.

Figure 7 shows the operator probabilities from a single run of the master-
slave Borg MOEA on the LRGV problem with 1024 processors. At each point760

in time along the x-axis, this plot shows the combination of search operators
using the shaded regions. Large shaded regions corresponding to heavier use
of that operator. Additionally, the black solid line traces the hypervolume of
the approximation set at each point in time. Although it would be expected
that the specific operator probabilities and search dynamics will vary, we have765
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found that they are generally consistent making these results reflective of typ-
ical search behavior. The run shown in Figure 7 begins with significant use of
simulated binary crossover (SBX), parent-centric crossover (PCX), and uniform
mutation with probability 1/L (UM). These four operators facilitate rapid iden-
tification and convergence to the Pareto approximate front. SBX takes over in770

diversifying along the Pareto front, since SBX with a large distribution index
(as with prior studies, this study uses a distribution index of 15) introduces
only small perturbations resulting in small, local improvements. Also note that
there is no single activated operator, but instead there exists cooperation be-
tween several search operators. This cooperation allows the Borg MOEA to775

combine the qualities of multiple search operators when generating offspring,
and can significantly improve the quality of search (Vrugt and Robinson, 2007;
Vrugt et al., 2009).

As demonstrated in this example, the use of multiple search operators sig-
nificantly improves the search dynamics of an MOEA. Membership and recency780

allow the MOEA to quickly identify the search operators that are beneficial.
We also observe that two operators, differential evolution (DE) and unimodal
normal distribution crossover (UNDX), had minimal use. While DE and UNDX
were not used heavily on the LRGV problem, they have been actively used on
other problems (Hadka et al., 2012). Allowing the MOEA to determine the ap-785

propriate selection of search operators is a significant advantage when using the
Borg MOEA for real-world complex engineered systems applications.

We can also explore the operator dynamics on the multi-master Borg MOEA.
Recall that each island maintains its own operator probabilities, but they can
request help from the controller. When receiving help, the island also receives790

updated operator probabilities that are derived from the global ǫ-dominance
archive. Figure 8 shows the operator dynamics for a single run of the 16 island
multi-master Borg MOEA with 1024 processors. Each of the subplots shows
the operator probabilities from a single island. The vertical black lines indicate
when the island requests help from the controller. Like Figure 7, the solid black795

line traces the hypervolume of the approximation set at each point in time.
Many islands, as expected, only require help at the end of the run once

the initial convergence and diversification is complete. However, we observe
that several islands benefit from receiving help earlier in runs. For instance,
Island 12 started with significant use of uniform mutation (UM). This selection800

of operator probabilities was ineffective; the algorithm quickly determined that
it was no longer making improvements and immediately asked the controller
for help. Upon receiving help, as indicated by the left-most vertical black line,
the guidance provided by the controller corrected the operator probabilities to
allow search to progress. Thereafter, the algorithm made continuous progress805

as indicated by the lack of additional help messages until much later in the run.
Other islands, such as Island 15, do not require any help during a run.

This example demonstrates how the Borg MOEA can avoid bad initial seeds
by relying on the global knowledge gained by running multiple concurrent in-
stances of the Borg MOEA. As we saw with Island 12 in Figure 8, an initial810

bad seed can be quickly detected and corrected without wasting significant com-
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Figure 8: The operator probability runtime dynamics from a single run of the
16 island multi-master Borg MOEA with 1024 processors. Each subplot shows
the operator probabilities for an island. The vertical black lines indicate when
the island requested help from the controller. Like Figure 7, the solid black line
traces the hypervolume of the approximation set at each point in time.
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puting resources. This contributes to the overall improvement in search quality
observed when running the multi-master Borg MOEA with many islands.

We lastly turn to look at the improvement in search quality resulting from
the island-based model in the multi-master Borg MOEA. Both Figure 7 and815

Figure 8 plot the hypervolume of the approximation set at each point in time
with solid black lines. Recall that hypervolumes near 1 indicate high-quality
results. The master-slave Borg MOEA search dynamics in Figure 7 show that
the hypervolume quickly levels off around 0.85 and makes no further improve-
ments. The master-slave Borg MOEA is simply unable to attain high-quality820

results. However, by running multiple islands and sharing solutions and op-
erator probabilities between islands as done in the multi-master Borg MOEA,
hypervolume is increased substantially. Figure 8 shows this effect. While indi-
vidual islands tend to converge slower than the master-slave run in Figure 7,
they attain substantially better hypervolume results later in the run.825

6.4. Parallel Efficiency and Speedup

Finally, we explore the parallel efficiency and speedup of the various master-
slave and multi-master Borg MOEA configurations explored in this study. Since
each implementation was run for a fixed wallclock time (10 minutes), efficiency
is based on the total NFE in each run. Thus, if NFES is the total NFE for830

a serial run and NFEP is the total NFE for a parallel run with P processors,
efficiency is calculated by

efficiency =
NFEP

P ·NFES

. (6)

The total NFE of the serial algorithm running for 10 minutes is NFES = 4285.
Table 5 shows the total NFE expended by each parallel implementation and the
calculated efficiency.835

With only 1024 processors, all of the configurations have very high efficiency.
As expected, as the number of islands increases, the efficiency drops slightly due
to the overhead introduced by having additional master nodes, the controller
node, and the additional communication between these nodes.

When the number of processors increases beyond 1024, the efficiency of840

the master-slave Borg MOEA rapidly declines. With 16384 processors, the
master-slave Borg MOEA is running with an efficiency of 0.064. At this point,
the increased overhead and communication burden overloads the single master
node and reduces the overall NFE. Increasing the number of islands reduces
the workload on individual master nodes, spreading the NFE across multiple845

islands. Looking at the 16384 processor case in Table 5, switching from the
master-slave to a 2 island multi-master configuration increases the efficiency
from 0.064 to 0.205. Increasing the number of islands improves the efficiency
further, reaching an efficiency of 0.964 with 32 islands.

In Hadka (2013), we developed a discrete event simulation model for ac-850

curately predicting the efficiency of the master-slave and multi-master Borg
MOEA. Table 5 shows the actual and the predicted efficiency from this model for
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Table 5: Table showing the median NFE expended by each implementation and
the parallel efficiency.

Processors Implementation Total NFE Efficiency Predicted Efficiency

1024

Master-Slave Borg 4293080 0.978 0.98
Multi-Master Borg (2 Islands) 4301767 0.98 0.99
Multi-Master Borg (4 Islands) 4291951 0.978 0.99
Multi-Master Borg (8 Islands) 4277744 0.975 0.98
Multi-Master Borg (16 Islands) 4242323 0.967 0.97
Multi-Master Borg (32 Islands) 4166046 0.949 0.96

2048

Master-Slave Borg 7755607 0.884 0.91
Multi-Master Borg (2 Islands) 8610209 0.981 0.97
Multi-Master Borg (4 Islands) 8609865 0.981 0.98
Multi-Master Borg (8 Islands) 8588290 0.979 0.98
Multi-Master Borg (16 Islands) 8552526 0.975 0.97
Multi-Master Borg (32 Islands) 8478679 0.966 0.97

4096

Master-Slave Borg 7681163 0.438 0.47
Multi-Master Borg (2 Islands) 16496460 0.94 0.91
Multi-Master Borg (4 Islands) 17174236 0.979 0.97
Multi-Master Borg (8 Islands) 17207637 0.98 0.97
Multi-Master Borg (16 Islands) 17142685 0.977 0.97
Multi-Master Borg (32 Islands) 17129074 0.976 0.96

8192

Master-Slave Borg 7160437 0.204 0.23
Multi-Master Borg (2 Islands) 17057671 0.486 0.46
Multi-Master Borg (4 Islands) 32469898 0.925 0.92
Multi-Master Borg (8 Islands) 34009570 0.969 0.97
Multi-Master Borg (16 Islands) 34139711 0.973 0.98
Multi-Master Borg (32 Islands) 34121055 0.972 0.98

16384

Master-Slave Borg 4470551 0.064 0.08
Multi-Master Borg (2 Islands) 14385033 0.205 0.23
Multi-Master Borg (4 Islands) 32373010 0.461 0.47
Multi-Master Borg (8 Islands) 64639837 0.921 0.91
Multi-Master Borg (16 Islands) 67101524 0.956 0.96
Multi-Master Borg (32 Islands) 67661785 0.964 0.97

the LRGV problem. Timing collected from the LRGV runs determined the in-
puts to the simulation model. These inputs included estimates for the algorithm
overhead, TA = 0.000105 seconds, the communication overhead, TC = 0.000006855

seconds, and objective function evaluation time, TF = 0.14 seconds. All of these
timings were collected on TACC Ranger. From Table 5, we see that the simula-
tion model can very accurately predict the parallel efficiency of the multi-master
Borg MOEA.

We expect the multi-master Borg MOEA to be able to efficiently scale to860

very large processor counts by increasing the number of islands as needed to
remain efficient. Using the simulation model, we can predict the efficiency
of the multi-master Borg MOEA at larger processor counts. Figure 9 shows
the predicted efficiency for the LRGV problem. Note the linear relationship
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Figure 9: Predicted efficiency for the multi-master Borg MOEA on the LRGV
problem from 1024 up to 65536 processors.

between the number of processors and the number of islands. To maintain high865

efficiency, doubling the number of processors requires the number of islands to
double. This maintains a fixed number of processors per island, which is chosen
to yield the maximum efficiency. We can use this simulation model to determine
the optimal topology for maximizing efficiency.

Maximizing efficiency will increase NFE, but this does not necessarily cor-870

respond to increased search quality. It is also necessary to consider how par-
allelization improves overall search quality. Figure 10 shows the comparative
speedup attained when switching from the master-slave to the multi-master
Borg MOEA. Each subplot corresponds to a different processor count. The
lines within each subplot trace the speedup of that implementation. The base-875

line is the master-slave Borg MOEA. Results are averaged over 50 random seed
trials. The speedup measures how many times faster (or slower) the multi-
master Borg MOEA is in attaining the same hypervolume. For example, if the
master-slave Borg MOEA reached a hypervolume of 0.8 in 300 seconds, and
the multi-master Borg MOEA reached the same hypervolume in 150 seconds,880

it would show a speedup of 2. Since the master-slave is the baseline, it appears
as a flat line with a speedup of 1. Note that these speedup measurements are
provided between runs with the same processor count — the computing power
is fixed. Thus, any speedup observed is a result of the improved convergence
and diversity of a given implementation of the parallel Borg MOEA, and is not885

a result of more computing power.
With 1024 processors, we see that at low hypervolume thresholds, the multi-

master Borg MOEA implementations have lower convergence speeds than the
maser-slave Borg MOEA. Only as we increase the hypervolume threshold do
the multi-master Borg MOEA implementations begin to converge faster. The890
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Figure 10: Hypervolume speedup of the multi-master Borg MOEA implemen-
tations compared to the baseline master-slave Borg MOEA. These results are
averaged over the 50 random seed trials.
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master-slave Borg MOEA converges very fast, but it is limited to attaining
lower hypervolume than the multi-master Borg MOEA. Note in Figure 10 given
that the master-slave Borg MOEA baseline never attains the highest levels of
hypervolume, the multi-master Borg MOEA speedup results are conservative.
At the largest tested processor count, 16384, we see that the 16 and 32 island895

multi-master Borg MOEA runs reach a speedup of 10−18 times faster than the
master-slave Borg MOEA. This means these multi-master runs are converging
in 1/10th the wallclock time as the master-slave Borg MOEA, even though
the master-slave and multi-master are given the same number of processors.
This speedup is therefore a result of algorithmic improvements in the multi-900

master paradigm, allowing the algorithm to better exploit high processor counts
and capture the same solution quality in less time. This combined with the
global restarts and guidance provided by the controller help improve the speed,
effectiveness, and reliability of the multi-master Borg MOEA.

7. Conclusion905

The Borg MOEA was originally introduced to solve many-objective, multi-
modal, non-separable problems. The success of the Borg MOEA has been
demonstrated in several studies (Hadka and Reed, 2013, 2012; Hadka et al.,
2012; Reed et al., 2013). Application of the Borg MOEA is limited by its se-
rial implementation, which is unable to rapidly solve large-scale problems with910

expensive objective function evaluations.
To address this limitation, this study developed two parallel versions of the

Borg MOEA. The master-slave Borg MOEA runs a parallelized version of the se-
rial Borg MOEA where objective function evaluations are performed in parallel.
This provides direct speedup, but is limited by inefficiencies due to the commu-915

nication overhead that limits its ability to attain very high levels of performance.
The multi-master Borg MOEA is a hierarchical extension where two or more
islands run instances of the master-slave Borg MOEA in parallel. Additionally,
a global controller node maintains the global search state of the algorithm and
provides guidance to masters when they preconverge. This guidance extends the920

restart mechanism and the adaptive selection of search operators of the serial
Borg MOEA, allowing for global restarts and sharing of the global search state.

Applying these parallel implementations of the Borg MOEA to a risk-based
water supply portfolio planning problem, we observed that the master-slave
and multi-master Borg MOEA produced high-quality solutions when compared925

to another state-of-the-art parallel MOEA, ǫ-NSGA-II. The multi-master Borg
MOEA with 32 islands produced the highest-quality results. This is attributed
to the ability of the multi-master implementation to quickly detect preconver-
gence in islands and provide guidance in the form of the global ǫ-dominance
archive and global operator probabilities.930

The efficiency, reliability, and search quality of the multi-master Borg MOEA
have been demonstrated running on up to 16384 processors with over 95% effi-
ciency. We contribute an accurate discrete event simulation of the multi-master
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Borg MOEA’s parallel efficiency that shows the algorithm has the strong poten-
tial for use on emerging Petascale and planned Exascale computing architectures935

(> 100000 processors). The ability to scale efficiently to high processor counts
makes the Borg MOEA a viable tool for solving extremely large-scale, complex
environmental problems. For the LRGV problem explored in this study, the 32
island multi-master Borg MOEA solved the problem with the highest-quality
results in 10 minutes using 16384 processors. If running in serial, this would940

require over 109 days of computation. This opens the possibility for further re-
search to explore the value of the multi-master Borg MOEA for addressing more
complex environmental systems effectively while providing decision-makers with
the ability to rapidly evaluate their tradeoffs, formulations, and potential design
solutions.945
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