
Large-Scale Peer-to-Peer Autonomic Monitoring∗

João Leitão
IST/INESC-ID

jleitao@gsd.inesc-id.pt

Liliana Rosa
IST/INESC-ID

lrosa@gsd.inesc-id.pt

Lúıs Rodrigues
IST/INESC-ID
ler@ist.utl.pt

May 18, 2009

Abstract

The increasing scale and complexity of distributed system motivates
the need for autonomous management. One of the key aspects in the
management of distributed systems is the issue of component monitoring.
Component monitoring is particularly challenging in large-scale dynamic
systems, given the need to ensure that each component is monitored by at
least one non-faulty component, despite joins, leaves, and failures, both
at node and at network level. This paper proposes that components self-
organize in an unstructured overlay network of constant degree in order to
ensure that each component is always monitored by a threshold of other
components.

1 Introduction

Computing environments are increasingly complex, featuring a larger and larger
number of heterogeneous software and hardware components. One of the key
aspects of the maintenance of such systems is the issue of component monitor-
ing. Clearly, in large-scale system, it is impossible to perform such monitoring in
a centralized manner, due to the huge load (in terms of processing and network
traffic) imposed on the central monitoring component. However, the task of pre-
defining a distributed monitoring scheme can be hopeless in a highly dynamic
environment, given the constant changes in the number of components and in

∗This work was partially funded by FCT project REDICO – Dynamic Reconfiguration of
Communication Protocols – (PTDC/EIA/71752/2006) through POSI and FEDER. Sections
of this report were published in the Proceedings of the Workshop on Distributed Autonomous
Network Management Systems, in conjuction with Globecom, New Orleans, USA, November,
2008.

1



the network topology. The increasingly complexity of this task can also over-
whelm a human administrator, making the system prone to human error. For
instance, in a large data-center (with thousands of components) one may wish
to monitor components to detect failures, in order to trigger human intervention
in a timely manner. The definition of the monitoring relations across the sev-
eral components in such a scenario can be overwhelming, namely when several
components are added and removed from the system (e.g. for maintenance or
upgrading purposes).

Autonomic computing deals with the inherent growing complexity of sys-
tems and components, addressing the problems introduced above. The idea
behind autonomic computing is to automate the low-level and vital functions
in a system, to alleviate experts from dealing with the burden of such com-
plexity and heterogeneity. Therefore, the essence of autonomic computing is
self-management, where the system is able to self-tune according to on-going
changes, such as components, workloads, operational conditions, and user needs,
despite the occurrence of failures. Self-management is achieved through self-
configuration, self-optimization, self-healing, and self-protection [1]. The first
refers to autonomous configuration of components, protocols, etc, according to
specified target goals. The second refers to automated performance-tuning or
operation improvement. The third refers to handling failures in the system.
The fourth and last, focus on the protection required from malicious attacks
and cascading failures. To achieve these goals, an autonomic system will need
to continuously monitor itself.

Autonomic monitoring is vital for self-management, since it allows the sys-
tem to assess its own current use and state. However, monitoring large-scale dis-
tributed systems that are faced with failures and changes due to reconfigurations
is a hard task. We have already noted that large-scale prevents the use of cen-
tralized approaches. Also, large-scale prevents decentralized approaches where
each component monitors every other component. Further, frequent changes in
the system, due to runtime reconfiguration and updates, result in a dynamic dis-
tributed system, which prevent static or off-line monitoring assignments. Also,
the monitoring overhead has to be acceptable for the system. Therefore, to
achieve monitoring in a large-scale distributed system, it must be performed in
a distributed manner, where each component monitors a small number of other
components, while being resilient to frequent failures and network dynamism.

To address all these requirements, we propose a monitoring approach based
on self-healing unstructured peer-to-peer overlay networks. The idea is that
components can self-organize in an overlay with a given predefined neighbor
degree, such that each component becomes responsible for monitoring it im-
mediate neighbors in the overlay. The peer-to-peer overlay has the necessary
flexibility to handle changes in network topology and dynamic settings, in an
autonomous manner.

The rest of this paper is organized as follows: Section 2 describes the moni-
toring needs identified for large-scale distributed systems, and briefly overviews
unstructured overlay networks and HyParView which are the basis for our pro-
posal. Section 3 describes our architecture and depicts how it addresses the

2



identified requirements. It also provides experimental results that illustrates
some of the relevant properties of HyParView. Section 4 overviews the related
work and finally, Section 5 concludes the paper and presents some future direc-
tions of our work.

2 Overlay Networks for Monitoring

In this section we present the monitoring needs and relevant aspects of un-
structured overlay networks, briefly describing HyParView, which builds and
maintains such an overlay.

2.1 Monitoring Needs

Monitoring aims at maintaining information about the current system state,
keeping track of changes in the target monitored properties. Knowing the system
state is fundamental to perform the operations necessary to achieve the system
goals with the desired performance. This section addresses the requirements
and main challenges that autonomic monitoring faces in large-scale distributed
systems.

In this work we propose a robust and autonomous monitoring architecture
that works for large-scale, distributed, and dynamic networks, independently of
data type and location. For that purpose there are several requirements that
need to be satisfied.

The first requirement is that, for each component c in the system, there
exists at any time at least one component m monitoring it. Given that failures
may occur at any moment, for fault-tolerance, it is in fact desirable that each
component is monitored by at least a threshold of other components. This
threshold should be preserved despite the join and leave of new components in
the system.

The second requirement is that the monitoring load is distributed by all the
components in the system. This avoids that one or a few number of components
become responsible by monitoring a large portion of the system components as
this could easily introduce processing or bandwidth bottlenecks in the moni-
toring architecture. As before, load-balancing should be preserved in face of
components leaving, joining, or failing.

The third requirement is that the monitoring architecture must have the
means to disseminate the relevant acquired monitoring data through the net-
work. The dissemination mechanisms should also be highly scalable and resilient
to faults, to ensure that the monitoring information (for instance alarms) reach
the relevant components that are able to trigger corrective measures, despite
the occurrence of faults.

We have already seen that to satisfy these requirements is a non-trivial task
in large-scale dynamic systems. In particular, one needs to design a monitoring
architecture that ensures that each component is permanently monitored by the
desired threshold of components. Thus the monitoring overlay must self-adapt,

3



such that when a new component joins, or a component leaves or fails, the re-
maining components re-distribute the monitoring load in a way that preserves
such monitoring invariant. In the following, we will show that there is an un-
structured overlay network that have exactly the properties needed to satisfy
these requirements. This overlay can be used not only to assign the monitoring
tasks but also to disseminate the monitored information in a resilient manner
when required.

2.2 Unstructured Overlay Networks

The peer-to-peer paradigm presents several advantages when compared with
the classic client-server model, namely in terms of scalability, load balancing
and fault-tolerance. A common strategy to organize and define communication
patterns among peers in this paradigm is to rely in an overlay network. Overlay
networks are logical networks supported, usually, by a membership service which
maintains neighboring associations between nodes.

Maintaining full membership information has a prohibitive cost, not only due
to the potential large size of system, but also due to the high cost of maintaining
such information up-to-date in face of membership changes. Therefore, to ensure
scalability, peer sampling services are usually implemented by building a local
partial view, containing a sub-set of the full membership, at each node.

When the partial views of nodes are selected at random, the resulting overlay
networks is said to be unstructured. This kind of overlay networks is commonly
used for supporting efficient and reliable application level multicast [3, 8], as they
present several interesting properties such as: scalability, autonomous operation,
self-organization, and self-healing capabilities.

2.3 HyParView

The Hybrid Partial View membership protocol, or simply, HyParView [3] is a
fully decentralized membership protocol that builds and maintains an unstruc-
tured overlay network. The protocol was designed to support highly efficient and
reliable application level broadcast protocols, with special interest in scenarios
where large percentages of nodes may fail simultaneously.

Unlike other membership protocols, HyParView keeps two distinct partial
views which are maintained using different strategies with different purposes1.

A small symmetric active view with a size of log(n) + 1 where n is the total
number of nodes in the system, which is mainly used to support communication
among peers. This view is maintained using a reactive strategy which means
that it is only updated in response to some external event that affects the
overlay (e.g. a node joining or leaving). TCP connections are maintained to each
neighbor in these partial views. TCP is used as an unreliable failure detector [3],
which facilitates the implementation of the reactive maintenance strategy.

Each node also maintains a larger passive view usually k times larger than
the active view, whereas k is a constant related with the fault tolerance level

1In fact, the protocol is said to be Hybrid because it combines these different strategies.

4



of the protocol. The passive view is maintained by a cyclic strategy therefore,
periodically, each node performs a shuffle operation with one random node in
the overlay that results in the update of both nodes passive views. This partial
view is used for fault tolerance and serves as a backup list of nodes that is used
to attempt to fill the active view when some of the nodes in it are suspected as
being failed.

Although originally HyParView was designed to support reliable broadcast
in combination with a efficient flooding technique, a companion protocol named
Plumtree [2] allows to efficiently build and maintain a highly resilient spanning
tree embedded in the overlay maintained by HyParView’s active view.

3 Architecture

We propose a monitoring architecture based on the unstructured overlay defined
by the active view of the HyParView protocol. In our approach, each component
of the system is mapped in a node, or peer, in the HyParView overlay. The
monitoring relations are mapped on top of the neighboring relations defined by
the overlay, therefore if node n is neighbor of node p in the overlay, component
n monitors component p. The reader should notice that because active views
in the HyParView protocol are symmetric this also implies that component p is
neighbor of component n and therefore p monitors n.

In order to join the monitoring overlay, components simply have to execute
the Join procedure of the HyParView protocol. To that end, a new component
has to know another existing (correct) component in the system and contact it.
The Join procedure ensures, through random walks in the overlay maintained
by HyParView, that the new component will be attributed a threshold of neigh-
bors and, due to the symmetric nature of neighboring relations, be known and
monitored by that same amount of other random components.

The reader should notice that the reactive nature of neighboring relations
in the active view of HyParView, which promotes the stability of these rela-
tionships, allows to have monitoring operations that are able to observe the
evolution of relevant properties in components, enabling more complex and his-
tory based measures to be taken from the system. Such approach is not possible
using other well known gossip-based membership protocols such as Cyclon [8].

An explicit Leave mechanism had to be added to HyParView. Originally
the protocol did not require this, as a leaving node could be simply handled as
a failed node. However, for monitoring proposes, this could generate incorrect
alarms, that a component had failed.

3.1 Ensuring monitoring requirements

In Section 2.1 we have identified three requirements for monitoring dynamic
large-scale distributed systems. In this section we discuss how our architecture
addresses those requirements.

5



It has been shown that the overlay network maintained by HyParView is
connected, meaning that for each component, there is at least one path that
connects that component to all other components in the system. Therefore every
component in the system is guaranteed to have, at any given time, at least one
neighbor. Moreover, HyParView is self-healing and is able to recover from large
failures, as high as 80% of simultaneous node failure. Thus our architecture
satisfies the first requirement: for every component c, there exists at any given
time at least one component m that monitors it. Also, the reactive nature of
the active view combined with the additional passive view allows HyParView
to recover these properties after large failures faster than other gossip-based
membership protocols.

The second requirement is to distribute evenly the monitoring load among
all components in the system. This is also ensured by HyParView’s properties.
Active views have a limited size t; Moreover, HyParView is able to ensure that
almost every node (in our experiments 97.79%) has a full active view. Therefore,
(almost) every component of our system will monitor t other components, and
because the active view is symmetric, these component will also be monitored
by t other components, ensuring a monitoring threshold of t, as discussed earlier
in the paper.

The reader should notice that, although the remaining 2.21% nodes do not
have a full active view, they do not contain an empty view, and therefore it is
ensured that they monitor, and are monitored, by a lower threshold of t′. As
we show in Section 3.2, t′ is never below 2.

The final requirement identified was to support an efficient, scalable, and
highly fault-tolerant dissemination strategy, that could propagate the relevant
monitoring information to the components with the responsibility, or ability,
to initiate corrective measures. In our architecture, monitoring is a shared
task among all components therefore, information must be broadcasted to all
components in the system. To this end, we propose the use of the broadcast
primitive introduced in [3] to which HyParView was originally designed. This is
a scalable service, as it shares the load of disseminating information evenly across
all nodes in the system. Moreover, it is efficient and ensures that all participants
receive all broadcast messages as long as the overlay remains connected. The
same broadcast primitive also allows to deploy new monitoring configurations
for the embedded monitors described next.

Each component has an embedded monitor for acquiring the monitored data.
This monitor keeps the acquired data and combines it with other received data.
Each monitor requests from its neighbors data regarding the monitored proper-
ties. According to its configuration the monitor can either disseminate the data
or store it for posterior analysis. This can be done periodically, at given time
intervals, or whenever some particular change happens. In the latter scenario,
an alarm can be generated and disseminated to all other component monitors.
In terms of monitoring, these alarms are useful since they can notify a relevant
change that triggers some self-reconfiguration in components.

Although most components act as data sources, some components may not
be sources themselves but still require access to the monitoring data from other

6



components. One example are autonomic managers, described in [1], where one
or multiple managers depend on monitoring information to perform reconfigu-
ration actions. To support this, a monitor can operate in two distinct modes:
active, where it acquires and disseminates monitoring information, besides re-
ceiving information from other components; and passive, where the monitor
only receives and collaborates in the dissemination of information from other
components.

3.2 Evaluation

In this section we illustrate the relevant properties of HyParView that make
it the appropriate infrastructure for our monitoring architecture. We evaluate
these properties through simulation in the PeerSim [5] simulator, using its cycle
based engine. In this context, a simulation cycle is a virtual time unit that
starts with the transmission of a broadcast message by a random node and ends
when no message is in transit in the network (e.g. all produced messages in that
cycle were either delivered or lost).

We executed several experiments in a system composed of 10.000 compo-
nents. HyParView was configured with an active view size of 5 and a passive
view of 30. All other parameter associated with the internal operation of the
protocol were set to the same values described in [3].

Figure 1 depicts the degree distribution (e.g. the number of neighbors) of
components in a HyParView overlay. The overlay was generated by having every
node join the overlay using a single contact node.

Figure 1: Degree Distribution

Notice that the large majority of components in the system have a full active
view of 5 neighbors. There is no component in the system with 1 or fewer neigh-
bors. This ensures that: i) the monitoring load is evenly distributed through
all components, and ii) that all components in the system are monitored by
at least 2 other components, being the large majority monitored by the target
threshold of 5 other components.

Figure 2 depicts the number of simulation cycles required by HyParView
to recover the overlay connectivity in face of different simultaneous component

7



failures that range from 10% to 90% of the original components in the system.
We compare the performance of HyParView with that of Cyclon [8] a well known
gossip-based membership protocol which maintains an unstructured overlay net-
work. Cyclon was configured in our experimental setup with a partial view size
of 35 (the sum of both active and passive view of HyParView).

Figure 2: Recovery Time

Notice that HyParView connectivity is regained in a single simulation cycle
in scenarios where, at most, 60% of the components of the system fail simultane-
ously, whereas Cyclon takes increasingly larger times to recover its connectivity,
raging from 42 to 80 simulation cycles. In a catastrophic scenario where 90%
of the components in the system fail simultaneously, HyParView only requires
4 simulation cycles to recover, whereas Cyclon takes 159 simulation cycles.

4 Related Work

The Ganglia system [4] aims at scalable and distributed monitoring in high
performance computing systems. It focus on clusters, grids, and large-scale
systems with high availability. Ganglia architecture relies in a multicast-based
protocol to monitor the system state and in a tree of point-to-point connections
to aggregate clusters state information. Unfortunately, authors target stable
environments, whereas our work focus on eventually highly dynamic large-scale
systems. Moreover, their solution requires IP multicast which might not be
available in large-scale systems.

Another system is Astrolabe [6], that features information management, of-
fering support to detect changes and failures, as well as, support to perform
the necessary reconfigurations as reaction. It monitors the state of a collection
of distributed resources, providing summaries of this information to users. As-
trolabe architecture relies in an agent, running in each node, that executes a
gossip protocol. The membership update also depends on a failure detection
mechanism. Moreover, it requires the maintenance of an explicit tree of nodes
and also the selection of representatives (leaders) within portions of the tree
(subtrees).

Finally, in [7] the authors propose a scheme for building a distributed fail-

8



ure detector based on gossiping. Although the authors propose a peer-to-peer
model, their architecture is only based in the random exchange of messages
between the several nodes, whereas our work mainly relies in the properties of
an overlay topology. Moreover, the authors do not explain how they maintain
membership relation between nodes, and they only assume a small percentage
of node failures. Their work can be seen as complementary to our own, in the
sense that we could rely in a similar technique to provide failure detection in
our architecture.

5 Conclusions and Future Work

In this paper we proposed a monitoring approach based on self-healing un-
structured peer-to-peer overlay networks, more specifically by relaying in the
special properties provided by the HyParView protocol. We also identified a
set of monitoring requirements for large-scale dynamic distributed systems and
showed how our approach addresses these specific needs. Experimental work
illustrates the properties of HyParView that make it an appropriate support for
a monitoring service.

As future work we would like to extend our approach to handle more complex
communication patterns by the monitoring service. For instance, we would
like to combine structured overlay networks (DHT’s) with efficient broadcast
protocols, such as Plumtree, in order to support a publish-subscribe interface
for the information dissemination component.

In terms of self-management, we would like to extend the proposed architec-
ture with mechanisms for self-configuration of system components, based on the
acquired monitoring information. These mechanisms would include a configu-
ration policy, describing how the components should self-adapt, and autonomic
managers to control and coordinate the reconfiguration among different nodes.

References

[1] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

[2] J. Leitão, J. Pereira, and L. Rodrigues. Epidemic broadcast trees. In Proceed-
ings of the 26th IEEE International Symposium on Reliable Distributed Systems
(SRDS’2007), pages 301 – 310, Beijing, China, Oct. 2007.

[3] J. Leitão, J. Pereira, and L. Rodrigues. HyParView: A membership protocol for
reliable gossip-based broadcast. In DSN ’07: Proc. of the 37th Annual IEEE/IFIP
Intl. Conf. on Dependable Systems and Networks, pages 419–429, Edinburgh, UK,
2007. IEEE Computer Society.

[4] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed monitoring
system: design, implementation, and experience. Parallel Computing, 30(7):817–
840, 2004.

[5] Peersim p2p simulator. http://peersim.sourceforge.net/.

9



[6] R. V. Renesse, K. P. Birman, and W. Vogels. Astrolabe: A robust and scal-
able technology for distributed system monitoring, management, and data mining.
ACM Transactions on Computer Systems, 21(2):164–206, 2003.

[7] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-based failure detection ser-
vice. In Middleware’98, IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing, pages 55–70, England, September
1998.

[8] S. Voulgaris, D. Gavidia, and M. Steen. Cyclon: Inexpensive membership manage-
ment for unstructured p2p overlays. Journal of Network and Systems Management,
13(2):197–217, June 2005.

10


