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Abstract 

High-throughput computational imaging requires efficient processing algorithms to retrieve multi-dimensional 

and multi-scale information. In computational phase imaging, phase retrieval (PR) is required to reconstruct both 

amplitude and phase in complex space from intensity-only measurements. The existing PR algorithms suffer from 

the tradeoff among low computational complexity, robustness to measurement noise and strong generalization on 

different modalities. In this work, we report an efficient large-scale phase retrieval technique termed as LPR. It extends 

the plug-and-play generalized-alternating-projection framework from real space to nonlinear complex space. The 

alternating projection solver and enhancing neural network are respectively derived to tackle the measurement 

formation and statistical prior regularization. This framework compensates the shortcomings of each operator, so as 

to realize high-fidelity phase retrieval with low computational complexity and strong generalization. We applied the 

technique for a series of computational phase imaging modalities including coherent diffraction imaging, coded dif-

fraction pattern imaging, and Fourier ptychographic microscopy. Extensive simulations and experiments validate that 

the technique outperforms the existing PR algorithms with as much as 17dB enhancement on signal-to-noise ratio, 

and more than one order-of-magnitude increased running efficiency. Besides, we for the first time demonstrate ultra-

large-scale phase retrieval at the 8K level ( 7680 × 4320 pixels) in minute-level time.
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1 Introduction
Wide field of view and high resolution are both desir-

able for various imaging applications, such as medical 

imaging [1–4] and remote sensing [5], providing multi-

dimensional and multi-scale target information. As the 

recent development of computational imaging, large-

scale detection has been widely employed in a variety of 

computational imaging modalities [3, 4, 6, 7]. �ese com-

putational imaging techniques largely extend the spatial-

bandwidth product (SBP) [8] of optical systems from 

million scale to billion scale. As an example, the SBP of 

the real-time, ultra-large-scale, high-resolution (RUSH) 

platform [4] and the Fourier ptychographic microscopy 

(FPM) [3] have reached to as high as   108–109. Such 

a large amount of data poses a great challenge for post 

software processing. �erefore, large-scale processing 

algorithms with low computational complexity and high 

fidelity are of great significance for those imaging and 

perception applications in various dimensions [9].

In computational phase imaging, phase retrieval (PR) 

is required to reconstruct both amplitude and phase 

in complex space from intensity-only measurements. 

�is problem originates from the limitation of the low 

response speed of photodetectors that impedes direct 

acquisition of light wavefront. Mathematically, the under-

lying goal of PR is to estimate an unknown complex-field 

signal from the intensity-only measurements of its com-

plex-valued transformation, which is described as

where u is the underlying signal to be recovered 
(

u ∈ C
n×1

)

 , I contains the intensity-only measure-

ments 
(

I ∈ R
m×1

)

 , A represents measurement matrix 
(

A ∈ R
m×n

or C
m×n

)

 , and ω stands for measurement 

noise. Phase retrieval has been widely applied in plenty 

fields such as astronomy, crystallography, electron 

(1)I = |Au|2 + ω,
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microscopy and optics [10]. It solves various nonlinear 

inverse problems in optical imaging, such as coherent 

diffraction imaging [11] (CDI), coded diffraction pattern 

imaging [12] (CDP), Fourier ptychographic microscopy 

[3] (FPM) and imaging through scattering medium [13].

In the past few decades, different phase retrieval algo-

rithms have been developed. Gerchberg and Saxton pio-

neered the earliest alternating projection (AP) algorithm 

in the 1970s [14], which was then extended by Fienup 

et al. with several variants [15]. Due to its strong gener-

alization ability, AP has been widely employed in mul-

tiple phase imaging models. Nevertheless, it is sensitive 

to measurement noise, suffering from poor noise robust-

ness. Afterwards, researchers introduced optimization 

into PR, deriving a series of semi-definite programming 

(SDP) based algorithms [16, 17] and Wirtinger flow (WF) 

based algorithms [18–20]. �ese techniques enhance 

robustness to measurement noise, but they require high 

computational complexity and high sampling rate, mak-

ing them inapplicable for large-scale phase retrieval. 

Although the sparsity prior of natural images in trans-

formed domains can be incorporated as an additional 

constraint to lower sampling rate [21, 22], it further 

increases computational complexity. Although these 

algorithms can theoretically employ patch-wise [23] and 

parallel strategies to deal with large-scale data, such a 

manner leads to a heavier load of memory requirement.

In the last few years, the booming deep learning (DL) 

technique has also been introduced for phase retrieval 

[24]. Following the large-scale training framework, the 

DL strategy outperforms the above traditional PR tech-

niques with higher fidelity. However, it provides poor 

generalization that each suits only for specific mod-

els, such as holography [24] and FPM [25]. For different 

models and even different system parameters, the deep 

neural network requires to be retrained with new large-

scale data sets. Recently, the prDeep technique [26] inte-

grates iterative optimization and deep learning together, 

enabling to benefit from respective advantages. However, 

prDeep cannot recover complex-domain signals, leading 

to limited applications in practice. To sum, despite of dif-

ferent workflows, the above existing PR algorithms suffer 

from the tradeoff among low computational complexity, 

robustness to measurement noise and strong generali-

zation, making them inapplicable for general large-scale 

phase retrieval.

In this work, we report an efficient large-scale phase 

retrieval technique termed as LPR, as sketched in Fig. 1. 

It builds on the plug-and-play (PNP) [27] optimiza-

tion framework, and extends the efficient generalized-

alternating-projection (GAP) [9, 28, 29] strategy from 

real space to nonlinear. �e complex-field PNP-GAP 

scheme ensures strong generalization of LPR on various 

imaging modalities, and outperforms the conventional 

first-order PNP techniques (such as ADMM [27], ISTA 

[30] and FISTA [31] used in prDeep) with fewer auxil-

iary variables, lower computational complexity and faster 

convergence. As PNP-GAP decomposes reconstruc-

tion into separate sub-problems including measurement 

formation and statistical prior regularization [9, 32], we 

further introduce an alternating projection solver and 

an enhancing neural network respectively to solve the 

two sub-problems. �ese two solvers compensate the 

shortcomings of each other, allowing the optimization 

to bypass the poor generalization of deep learning and 

poor noise robustness of AP. As a result, LPR enables 

generalized large-scale phase retrieval with high fidelity 

and low computational complexity, making it a state-of-

the-art method for various computational phase imaging 

applications.

We compared LPR with the existing PR algorithms on 

extensive simulation and experiment of different imag-

ing modalities. �e results validate that compared to the 

AP based PR algorithms, LPR is robust to measurement 

noise with as much as 17dB enhancement on signal-to-

noise ratio. Compared with the optimization based PR 

algorithms, the running time is significantly reduced by 

more than one order of magnitude. Finally, we for the 

first time demonstrated ultra-large-scale phase retrieval 

at the 8K level ( 7680 × 4320 pixels) in minute-level time, 

where most of the other PR algorithms failed due to 

unacceptable high computational complexity.

2  Results
We applied LPR and the existing PR algorithms on both 

simulation and experiment data of three computational 

phase imaging modalities including CDI, CDP and FPM, 

to investigate respective pros and cons. �e competing 

algorithms for comparison includes the alternating pro-

jection technique (AP) [14, 15], the SDP based techniques 

(PhaseMax (PMAX) [33], PhaseLift (PLIFT) [16], Phase-

Lamp (PLAMP) [34]), the Wirtinger flow based techniques 

(Wirtinger Flow (WF) [18], Reweighted Wirtinger Flow 

(RWF) [35]), the amplitude flow based techniques [36, 37] 

(AmpFlow (AF), Truncated AmpFlow (TAF), Reweighted 

AmpFlow (RAF)), Coordinate Descent (CD) [38], KACz-

marz (KAC) [39], prDeep [26] and the deep learning tech-

nique (DL) [24]. Most of these algorithms parameters were 

tuned based on the Phasepack [40] to achieve best perfor-

mance. �e convergence is determined when the intensity 

difference of reconstructed image between two successive 

iterations is smaller than a preset threshold. We employed 

the peak signal-to-noise ratio (PSNR), structural similarity 

index (SSIM) [41] and root mean squared error (RMSE) 

to quantify reconstruction quality. All the calculation was 
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tested on a desktop PC with an Intel i7-9700 CPU, 16G 

RAM and an Nvidia GTX 1660s GPU.

2.1  Coherent di�raction imaging

CDI is a representative non-interferometric phase imaging 

technique, and has been widely applied in physics, chemis-

try and biology due to its simple setup [10]. It illuminates a 

target using coherent plane waves, and records the inten-

sity of the far-field diffraction pattern. By oversampling the 

diffracted light field and applying phase retrieval, both the 

target’s amplitude and phase information can be recon-

structed. Mathematically, the measurement formation of 

CDI is

(2)I = |F(u)|2,

where u denotes the target information, and F  represents 

the Fourier transformation that approximates the far-

field diffraction.

Following the above formation model, we employed 

a high-resolution image ( 1356 × 2040 pixels) from the 

DIV2K [42] dataset and an onion cell image [43] as the 

latent real-domain signals to synthesize two groups 

of CDI measurements. Because the prDeep technique 

for comparison is only applicable in real domain [26], 

we did not introduce phase into the latent signals. 

Due to the uniqueness guarantee of the solution, CDI 

requires at least 4 times oversampling in the Fourier 

domain [44]. Correspondingly, we padded zeros around 

the image matrix to generate a 2712 × 4080 image. 

We implemented Fourier transform to the image and 

Alternating Projection Enhancing Network

Light source Object Sensor

Subproblem-1 Subproblem-2

Generalized Alternating Projection

Measurement fidelity Prior regularization

Fig. 1 The schematic of the reported LPR technique for large-scale phase retrieval. LPR decomposes the large-scale phase retrieval problem into 

two subproblems under the PNP-GAP framework, and introduces the efficient alternating projection (AP) and enhancing network solvers for 

alternating optimization. The workflow realizes robust phase retrieval with low computational complexity and strong generalization on different 

imaging modalities
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retained only its intensity as measurements. Addition-

ally, to investigate the techniques’ robustness to meas-

urement noise, we further added different levels of 

white Gaussian noise (WGN) to the measurements.

Table  1 presents the quantitative reconstruction 

evaluation of different techniques. �e results show 

that the CD and KAC methods failed with no conver-

gence. �is is because these techniques require higher 

sampling ratio. �e PLIFT and PLAMP methods do 

not work as well, because they require matrix lifting 

and involve a higher dimensional matrix that is out 

of memory in large-scale reconstruction (Additional 

file 1: Fig. S1 shows the memory requirements of differ-

ent algorithms under different image sizes). �e other 

methods except for prDeep obtain little improvement 

compared to the AP algorithm. Specifically, the WF, AF 

and PMAX methods even degrade due to limited sam-

pling ratio and noise corruption. �e reconstruction of 

prDeep is better than the conventional algorithms, but 

with only 2dB enhancement on PSNR, and almost no 

SSIM improvement compared to AP. In contrast, LPR 

produces significant enhancement on reconstruction 

quality, with as much as 6dB and 0.29 improvement 

on PSNR and SSIM, respectively. Due to limited space, 

the results of another set of simulation is presented in 

Additional file  1: Table  S1 and Figs. S2 and S3, which 

coincides with the above quantitative results.

Table  1 also presents the running time of these tech-

niques. Because all the other algorithms used the result 

of AP as initialization, we recorded the excess time as 

the running time of these algorithms. From the results, 

we can see that prDeep consumes the most running time. 

LPR takes the same level of running time compared to the 

conventional algorithms, but with significantly improved 

reconstruction quality.

We further compared these algorithms on experiment 

CDI data [45], to validate their effectiveness in practical 

applications. �e imaging sample is live glioblastoma cell 

line U-87 MG. �e setup includes a HeNe laser (543nm 

5mW), a dual pinhole aperture that consists of two 100 

m pinholes spaced 100 m apart from edge to edge, a 35 

mm objective lens and a CCD camera ( 1340 × 1300, 16 

bits). Although the situ CDI modality used dual-pinhole 

illumination that is slightly different from the standard 

CDI, its reconstruction is still a phase retrieval task in 

essence. �e sequential measurements contain far-field 

diffraction patterns of several moments in the cell fusion 

process. Because the conventional algorithms obtain lit-

tle improvement compared to AP and prDeep is not 

applicable for complex-field samples [26], we only pre-

sent the reconstruction results of AP and LPR in Fig. 2. 

�e results show that there exist serious noise artifacts 

in AP reconstruction, especially in the amplitude images. 

�e cells are almost submerged by background noise at 0 

and 135 min, and the contours and edges of cells can not 

be clearly observed. In comparison, LPR produces high-

fidelity results that effectively preserve fine details while 

attenuating measurement noise. �e complete results of 

all the 48 moments are shown in Additional file 1: Figs. 

S4, S5, S6 and S7.

Table 1 Quantitative comparison under the CDI modality

CD and KAC fail with no convergence. PLIFT and PLAMP are out of computer memory. Most of the conventional algorithms produce little improvement than AP. LPR 

outperforms the other algorithms, with as much as 6dB (SNR = 30) and 0.29 (SNR = 20) improvement on PSNR and SSIM, respectively. We use the excess time beyond 

AP as the other algorithms’ running time, which shows that prDeep consumes the most running time. In comparison, LPR takes the same level of running time as the 

conventional methods

Algorithm SNR = 20dB SNR = 25dB SNR = 30dB

PSNR SSIM TIME PSNR SSIM TIME PSNR SSIM TIME

AP 18.46 0.50 819.67 21.75 0.58 854.37 22.29 0.65 863.14

WF 19.05 0.52 + 27.15 20.84 0.62 + 31.98 21.27 0.70 + 32.41

RWF 18.52 0.50 + 25.69 21.98 0.61 + 27.53 22.41 0.71 + 27.98

AF 16.55 0.42 + 28.61 19.63 0.49 + 29.74 19.83 0.54 + 27.29

TAF 18.57 0.53 + 26.04 21.81 0.59 + 25.99 22.30 0.65 + 26.49

RAF 18.52 0.53 + 22.55 21.79 0.58 + 21.80 22.27 0.65 + 22.19

PLIFT ✘-memory limitation ✘-memory limitation ✘-memory limitation

PLAMP ✘-memory limitation ✘-memory limitation ✘-memory limitation

PMAX 16.64 0.42 + 38.48 19.73 0.49 + 39.04 19.97 0.54 + 38.11

CD ✘-no convergence ✘-no convergence ✘-no convergence

KAC ✘-no convergence ✘-no convergence ✘-no convergence

prDeep 20.60 0.52 + 49.01 21.83 0.58 + 43.36 23.33 0.65 + 35.46

LPR 23.30 0.79 +28.52 25.52 0.83 + 29.97 28.11 0.86 + 27.19
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2.2  Coded di�raction pattern imaging

CDP [12] is a coded version of CDI, which introduces wave-

front modulation to increase observation diversity. �e strategy 

of multiple modulations and acquisitions enables to effectively 

bypass the oversampling limitation of the conventional CDI. 

Generally, the target light field is additionally modulated by a 

spatial light modulator (SLM), and the measurements after far-

field Fraunhofer diffraction can be modeled as

where d represents the modulation pattern, and ⊙ 

denotes the Hadamard product.

We simulated CDP measurements with five and sin-

gle phase modulations, respectively. �e modulation 

patterns d are subject to Gaussian distribution [12]. We 

employed the same image as CDI to be the ground-truth 

signal (real domain), and added various levels of WGN 

to the measurements. Table  2 presents the quantitative 

evaluation of different techniques under the CDP modal-

ity (5 modulations). �e results show that the Wirtinger 

flow based techniques (WF and RWF) failed because of 

insufficient measurements [18]. �e PLIFT and PLAMP 

methods are still out of memory. �e other conventional 

methods produce either little improvement or even 

worse reconstruction compared to AP. Although prDeep 

outperforms AP, it consumes around triple running time 

(3)I = |F(u ⊙ d)|2,

with high computational complexity. In comparison, 

the reported LPR obtains the best reconstruction per-

formance, with as much as 8.3dB on PSNR and 0.61 on 

SSIM. Besides, it also shares the same level of running 

time as AP, which maintains the highest efficiency among 

all the algorithms. �e detailed visual comparison of dif-

ferent methods is presented in Additional file 1: Fig. S8.

To further demonstrate the strong reconstruction per-

formance of LPR, we also compared these algorithms 

in the case of a  limited sampling ratio with only sin-

gle modulation, as shown in Table  3 and Fig.  3. Due to 

extremely insufficient measurements, most of the meth-

ods failed with either no convergence or poor recon-

struction quality. Under heavy measurement noise, the 

target information is either buried or smoothed. In con-

trast, the reported LPR technique enables as much as 

17dB enhancement on PSNR and 0.8 improvement on 

SSIM. As validated by the close-ups in Fig. 3, LPR is able 

to retrieve fine details, even in the case of heavy measure-

ment noise. Meantime, it is effective to attenuate noise 

and artifacts, producing smooth background.

In order to further illustrate the computational com-

plexity of different techniques, we show the computa-

tion time as a function of image size in Additional file 1: 

Fig. S9 . We can see that as the image size increases, LPR 

obtains a lower computational complexity than prDeep.
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Fig. 2 Comparison of experiment results under the CDI modality [45]. A dual-pinhole aperture is illuminated by a coherent light. A live 

glioblastoma cell sample is imaged in a time series of diffraction patterns. The reconstructed results describe the fusion process of two glioblastoma 

cells and form a high-density area. The AP technique is sensitive to measurement noise, and produces unsatisfying results. The reported LPR 

technique enables to remove noise artifacts and preserve fine details with high fidelity
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2.3  Fourier ptychographic microscopy

FPM is a novel technique to increase optical system’s 

bandwidth for wide-field and high-resolution imaging. 

It illuminates the target with coherent light at differ-

ent incident angles, and acquires corresponding images 

that contain information of different sub-regions of the 

target’s spatial spectrum. Mathematically, the measure-

ment formation model of FPM is

where F−1 is inverse Fourier transform, P denotes sys-

tem’s pupil function, and S represents the wave function 

of incident light.

Following the formation model, we first implemented 

a simulation comparison with the following setup 

(4)I =

∣

∣

∣
F

−1[P ⊙ F{u ⊙ S}]

∣

∣

∣

2

,

Table 2 Quantitative comparison under the CDP modality (5 modulations)

The Wirtinger �ow based (WF, RWF) techniques fail because of insu�cient measurements. PLIFT and PLAMP are out of memory. The other methods produce little 

improvement or consume extremely long running time compared to AP. In comparison, LPR consumes the same level of running time as AP, and obtains the best 

performance with as much as 8.3dB on PSNR (SNR = 15) and 0.61 on SSIM (SNR = 10)

Algorithm SNR = 10dB SNR = 15dB SNR = 20dB

PSNR SSIM TIME PSNR SSIM TIME PSNR SSIM TIME

AP 15.60 0.21 105.76 18.61 0.33 110.73 23.22 0.55 174.98

WF ✘-insufficient measurements ✘-insufficient measurements ✘-insufficient measurements

RWF ✘-insufficient measurements ✘-insufficient measurements ✘-insufficient measurements

AF 13.93 0.19 247.07 17.84 0.33 231.38 23.13 0.60 211.39

TAF 13.40 0.16 257.57 18.14 0.34 225.67 22.71 0.59 213.65

RAF 13.88 0.19 261.59 17.86 0.38 222.38 23.10 0.59 212.09

PLIFT ✘-memory limitation ✘-memory limitation ✘-memory limitation

PLAMP ✘-memory limitation ✘-memory limitation ✘-memory limitation

PMAX 11.08 0.13 295.84 11.36 0.14 300.21 11.66 0.15 296.28

CD 8.69 0.22 357.52 9.47 0.20 321.81 9.78 0.20 264.89

KAC 10.83 0.13 192.44 10.97 0.15 161.48 11.01 0.16 114.75

prDeep 22.67 0.61 301.41 24.42 0.72 282.14 26.85 0.76 380.60

LPR 22.73 0.82 124.80 26.92 0.88 137.33 31.89 0.94 228.42

Table 3 Quantitative comparison under the CDP modality (single modulation)

Most of the conventional algorithms fail with either no convergence or poor reconstruction quality because of extremely insu�cient measurements. In comparison, 

LPR still obtains the best reconstruction quality, with more than 17dB improvement on PSNR and nearly 0.8 on SSIM (SNR=20)

Algorithm SNR = 10dB SNR = 15dB SNR = 20dB

PSNR SSIM TIME PSNR SSIM TIME PSNR SSIM TIME

AP 11.71 0.08 13.96 12.82 0.09 13.55 13.02 0.10 13.34

WF ✘-insufficient measurements ✘-insufficient measurements ✘-insufficient measurements

RWF ✘-insufficient measurements ✘-insufficient measurements ✘-insufficient measurements

AF 10.47 0.08 24.61 10.53 0.08 23.73 10.82 0.09 23.36

TAF 10.52 0.08 24.05 10.93 0.07 24.21 11.02 0.08 23.09

RAF 10.38 0.06 26.17 10.43 0.07 25.83 10.78 0.08 25.82

PLIFT ✘-memory limitation ✘-memory limitation ✘-memory limitation

PLAMP ✘-memory limitation ✘-memory limitation ✘-memory limitation

PMAX ✘-insufficient measurements ✘-insufficient measurements ✘-insufficient measurements

CD ✘-insufficient measurements ✘-insufficient measurements ✘-insufficient measurements

KAC ✘-insufficient measurements ✘-insufficient measurements ✘-insufficient measurements

prDeep 18.29 0.39 153.41 19.21 0.54 142.34 23.92 0.68 104.84

LPR 21.11 0.81 77.80 25.64 0.87 81.51 30.10 0.89 62.89
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parameters: the wavelength is 625nm, the numerical 

aperture (NA) of objective lens is 0.08, the height from 

the light source to the target is 84.8mm, and the distance 

between adjacent light sources is 4mm. �e pixel size of 

camera is 3.4µm.Two microscopy images of blood cells 

[46] ( 2048 × 2048 pixels) were employed as the latent 

high-resolution (HR) amplitude and phase, respectively. 

�e size of captured low-resolution images (LR) was one 

fourth of the HR images.

Figure 4 presents the reconstruction results of AP [3], 

WF [47], deep learning (DL) [24] and LPR. For the DL 

technique, we used the result of the AP algorithm as the 

network’s input, and the network outputted the enhanced 

reconstruction results. In the training process, we used 

20,000 images (10,000 each for amplitude and phase) 

from the PASCAL Visual Object Classes dataset [48] and 

DIV2K dataset [42], and trained the network individu-

ally for different noise levels. From the results, we can 

see that AP is sensitive to measurement noise. WF can 

better handle noise, but it requires high computational 

complexity and long running time (more than one order 

of magnitude). Although DL consumes the least infer-

ring time and outperforms the AP and WF methods, its 

reconstruction quality is still worse than LPR in the pres-

ence of measurement noise. Compared with AP, LPR 

obtains as much as nearly 10dB enhancement on PSNR 

(SNR = 10). Besides, it consumes the same order of run-

ning time as AP. �e visual comparison also validates that 

LPR enables high-fidelity reconstruction of both ampli-

tude and phase. Due to space limitation, we present the 

other two sets of simulation results in Additional file  1: 

Figs. S10 and S11. 

We also implemented the algorithms on experiment 

FPM measurements. �e imaging sample is a blood 

smear stained by HEMA 3 Wright-Giemsa. �e setup 

consists of a 15 × 15 LED array, a 2 × 0.1 NA objective 

lens (Olympus), and a camera with 1.85µm pixel size. �e 

central wavelength of the LEDs is 632nm, and the lateral 

distance between adjacent LEDs is 4mm. �e LED array 

is placed 80mm from the sample. We captured two sets 

of 225 LR images that correspond to the 15 × 15 LEDs, 

respectively under 1ms and 0.25ms exposure time. �e 

reconstructed results are presented in Fig.  5, which 

shows that AP is seriously degraded under limited expo-

sure. Only the cell nucleus can be observed in amplitude, 

and other details are lost. LPR produces state-of-the-art 

reconstruction performance. �e measurement noise is 

effectively removed, and the cell structure and morphol-

ogy details are clearly retrieved.

2.4  Ultra-large-scale phase retrieval

In ultra-large-scale imaging applications such as 4K 

( 4096 × 2160 pixels) or 8K ( 7680 × 4320 pixels), most 

reconstruction algorithms are not applicable due to either 

highly large memory requirement or extremely long run-

ning time. Nevertheless, the reported LPR technique 
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Fig. 3 Visual comparison under the CDP imaging modality (single modulation). In such a low sampling ratio with measurement noise, all the 

conventional algorithms produce low-contrast resolution. The prDeep technique also produces serious reconstruction artifacts. The reported LPR 

technique outperforms the other methods with much higher fidelity
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still works well in such applications. As a demonstra-

tion, we implemented a simulation of 8K-level CDP (5 

modulations), using an 8K outer space color image as the 

real-domain ground truth (released by NASA using the 

Hubble Telescope). Its spatial resolution is 7680 × 4320 

(each color channel) with in total 33.1 million pixels. We 

simulated intensity-only measurements individually for 

different RGB channels, and the reconstruction was also 

implemented separately for different channels. Figure  6 

presents the reconstruction results of AP and LPR, with 

the input SNR being 5dB. �e close-ups show that the 

result of AP is drowned out by measurement noise, lead-

ing to dimness and loss of target details. In comparison, 

LPR outperforms a lot with strong robustness. Both their 

running times lie in the minute level. Another set of 8K 

reconstruction results is shown in Additional file 1: Fig. 

S12).

3  Methods
Following optimization theory, the phase retrieval task 

can be modeled as

(5)û = arg min
u

f (u) + �g(u),

where u denotes the target complex field to be recov-

ered, f(u) is a data-fidelity term that ensures consistency 

between the reconstructed result and measurements, and 

g(u) is a regularizer that imposes certain statistical prior 

knowledge. Conventionally, Eq. (5) is solved following the 

first-order proximal gradient methods, such as ISTA and 

ADMM that are time-consuming to calculate gradients 

in large-scale nonlinear tasks [32]. In this work, instead, 

we employ the efficient generalized-alternating-projec-

tion (GAP) strategy [32] to transform Eq. (5) with fewer 

variables to

where v is an auxiliary variable balancing the data fidelity 

term and prior regularization, A denotes measurement 

matrix, and I represents measurement. �e difference 

between the conventional ADMM and GAP optimization 

is the constraint on the measurement [32]. ADMM mini-

mizes 
∥

∥I − |Au|2
∥

∥ , while GAP imposes the constraint 

I = |Au|2.

To tackle the large-scale phase retrieval task, we extend 

the efficient plug-and-play (PNP) optimization framework 

(6)
(u, v) = argmin1/2�u − v�22 + �g(v)

s.t. I = |Au|2,
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5dB

SNR

10dB

SNR

15dB

Amplitude Phase

PSNR SSIM RMSE TIME

DL

DL

AP 14.8 0.38 2.57 27.1AP 14.8 0.38 2.57 27.1

WF 17.1 0.46 2.56 1630WF 17.1 0.46 2.56 1630

LPR 22.3 0.86 1.45 42.5LPR 22.3 0.86 1.45 42.5

DL 20.1 0.78 2.38 5.4

19.1 0.41 2.46 25.2AP 19.1 0.41 2.46 25.2AP

22.5 0.48 2.47 1604WF 22.5 0.48 2.47 1604WF

29.0 0.89 1.33 41LPR 29.0 0.89 1.33 41LPR

25.4 0.78 2.41 24.9AP 25.4 0.78 2.41 24.9AP

27.9 0.85 2.42 1490WF 27.9 0.85 2.42 1490WF

30.6 0.92 1.32 41.7LPR 30.6 0.92 1.32 41.7LPR

28.9 0.78 2.04 5.2DL

29.9 0.82 1.48 5.2DL

Fig. 4 Comparison of simulation results under the FPM modality. The left table presents quantitative comparison, while the right images show 

visual comparison. AP suffers from poor noise robustness. WF requires high computational complexity with longer running time (more than 

one order of magnitude). Although the deep learning technique consumes the least running time and outperforms the AP and WF methods, its 

reconstruction quality is still worse than LPR in the presence of measurement noise. In contrast, LPR produces the highest reconstruction quality 

with as much as nearly 10dB enhancement on PSNR (SNR = 10) and consumes the same order of running time as AP



Page 9 of 12Chang et al. eLight             (2021) 1:4  

[27] from real space to nonlinear complex space. Funda-

mentally, PNP decomposes optimization into two sepa-

rate sub-problems including measurement formation and 

prior regularization, so as to incorporating inverse recov-

ery solvers together with various image enhancing solvers 

to improve reconstruction accuracy, providing high flex-

ibility for different applications. Mathematically, Eq. (6) is 

decomposed into the following two sub-problems, to alter-

natively update the two variables u and v.

• Updating u: given v(k) , u(k+1) is updated via a Euclid-

ean projection of v(k) on the manifold I = |Au|2 as 

 where PR is phase retrieval solver. Considering 

its great generalization ability on various imaging 

modalities and low computational complexity, we 

employ the AP method as the PR solver. It alternates 

between the target and observation planes allowing 

to incorporate any information available for the vari-

ables, providing low sampling rate requirement.

• Updating v: given u(k+1) , v(k+1) is updated by an 

image enhancing solver EN as 

(7)u
k+1 = v

(k) + � · PR

(

I − |Av|2
)

,

 Although the iterative image enhancing research 

has made great progress in recent years with such as 

non-local optimization and dictionary learning [49], 

they maintain high computational complexity for 

large-scale reconstruction [50]. In this work, consid-

ering its state-of-the-art enhancement performance 

and flexibility to tackle different noise levels, we 

employed the deep learning based FFDNET [51] to 

deal with the sub-problem with high fidelity and self-

adaptation. �e neural network consists of a series 

of 3 × 3 convolution layers. Each layer is composed 

of a specific combination of three types of opera-

tions including convolution, rectified linear units and 

batch normalization. �e architecture provides a bal-

anced tradeoff between noise suppression and detail 

fidelity. While an image is input into the network, it 

is first down sampled into several sub-blocks, which 

then flow through the network for quality enhance-

ment. Finally, these optimized blocks are stitched 

together to the original size. Such a workflow enables 

(8)v
k+1

= EN

(

u
k+1

)

.

Fig. 5 Comparison of experiment results under the FPM modality. The target is a red blood cell sample that is prepared on a microscope 

slide stained with Hema 3 stain set (Wright-Giemsa). The limited exposure results in serious measurement noise, which directly flows into the 

reconstruction results of AP. The WF technique outperforms AP, but it still degrades a lot under a short exposure time (0.25ms). The reported LPR 

technique maintains strong robustness to measurement noise, and enables to retrieve clear cell structure and morphology details
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its great generalization ability on different image 

sizes.

After initialization, the variables are updated alternatively 

following Eqs. (7) and  (8). When the intensity difference 

of the  reconstructed image between two successive itera-

tions is smaller than a given threshold, the iteration stops 

with convergence. Since both the two solvers PR and EN 

are highly efficient and flexible, the entire reconstruction 

maintains low computational complexity and great gener-

alization. �e complete LPR algorithm is summarized in 

Algorithm 1 (Additional file 1), and the demo code has been 

released at https:// github. com/ bianl ab/ bianl ab. github. io.

4  Conclusion and discussion
In this work, we engaged to tackle the large-scale phase 

retrieval problem, and reported a generalized LPR opti-

mization technique with low computational complexity 

and strong robustness. It extends the efficient PNP-GAP 

framework from real space to nonlinear complex space, 

and incorporates the alternating projection solver and 

enhancing neural network. As validated by extensive 

simulations and experiments on three different compu-

tational phase imaging modalities (CDI, CDP and FPM), 

LPR exhibits unique advantages in large-scale phase 

retrieval tasks with high fidelity and efficiency.

�e PNP framework has a theoretical guarantee of 

convergence for most real-domain tasks, such as denois-

ing, deblurring [52, 53], etc. However, to the best of our 

knowledge, there is no theoretical proof of PNP’s conver-

gence in the complex domain. Further, there is also no 

theoretical guarantee of convergence for the alternating 

projection solver that has been widely used for ∼ 50 years 

[10]. Even though, the extensive experimental results of 

various imaging modalities in this work and other stud-

ies (e.g. Fourier ptychographic microscopy [3], coherent 

diffraction imaging [11], ptychography [54], and coded 

diffraction patterns [12]) have validated that the PNP 

AP

LPR

Fig. 6 The first demonstration of ultra-large-scale phase retrieval at the 8K level ( 7680 × 4320 × 3 pixels). The imaging modality is CDP with 5 

modulations. At such a large scale, only the AP and the reported LPR techniques still work, while the other ones fail due to high computational 

complexity. The results validate that LPR significantly outperforms AP with effective noise removal and detail reservation

https://github.com/bianlab/bianlab.github.io
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framework and the alternating-projection solver can suc-

cessfully converge to a global minimum.

�e LPR technique can be further extended. First, it 

involves multiple algorithm parameters that are cur-

rently adjusted manually. We can introduce the rein-

forcement learning technique [55] in our future work 

to automatically adjust these parameters for best per-

formance. Second, LPR is sensitive to initialization, 

especially under low sampling rate. �e optimal spec-

tral initialization [56] technique can be incorporated 

for stronger robustness. �ird, the stagnation problem 

in blind ptychographic reconstruction [54] deserves 

further study under the reported framework. �is ena-

bles to simultaneously recover both object and system 

parameters. Fourth, it is interesting to investigate the 

influence of employing other image enhancing solv-

ers such as super-resolution neural network, deblur-

ring network and distortion removal network. �is 

may open new insights for phase retrieval with further 

boosted quality.
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