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Genomic breeding programs have been paramount in improving the rates of genetic
progress of productive efficiency traits in livestock. Such improvement has been
accompanied by the intensification of production systems, use of a wider range
of precision technologies in routine management practices, and high-throughput
phenotyping. Simultaneously, a greater public awareness of animal welfare has
influenced livestock producers to place more emphasis on welfare relative to production
traits. Therefore, management practices and breeding technologies in livestock have
been developed in recent years to enhance animal welfare. In particular, genomic
selection can be used to improve livestock social behavior, resilience to disease and
other stress factors, and ease habituation to production system changes. The main
requirements for including novel behavioral and welfare traits in genomic breeding
schemes are: (1) to identify traits that represent the biological mechanisms of the
industry breeding goals; (2) the availability of individual phenotypic records measured
on a large number of animals (ideally with genomic information); (3) the derived traits
are heritable, biologically meaningful, repeatable, and (ideally) not highly correlated with
other traits already included in the selection indexes; and (4) genomic information
is available for a large number of individuals (or genetically close individuals) with
phenotypic records. In this review, we (1) describe a potential route for development
of novel welfare indicator traits (using ideal phenotypes) for both genetic and genomic
selection schemes; (2) summarize key indicator variables of livestock behavior and
welfare, including a detailed assessment of thermal stress in livestock; (3) describe
the primary statistical and bioinformatic methods available for large-scale data analyses
of animal welfare; and (4) identify major advancements, challenges, and opportunities
to generate high-throughput and large-scale datasets to enable genetic and genomic
selection for improved welfare in livestock. A wide variety of novel welfare indicator traits
can be derived from information captured by modern technology such as sensors,
automatic feeding systems, milking robots, activity monitors, video cameras, and
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indirect biomarkers at the cellular and physiological levels. The development of novel
traits coupled with genomic selection schemes for improved welfare in livestock can
be feasible and optimized based on recently developed (or developing) technologies.
Efficient implementation of genetic and genomic selection for improved animal welfare
also requires the integration of a multitude of scientific fields such as cell and molecular
biology, neuroscience, immunology, stress physiology, computer science, engineering,
quantitative genomics, and bioinformatics.

Keywords: behavioral genomics, big data, digital agriculture, phenomics, genomic information, genomic
selection, novel phenotypes, precision livestock

INTRODUCTION

Animal welfare has increasingly relevant ethical, legal, and
economic implications in livestock production around the world
(Rushen et al., 2011; Koknaroglu and Akunal, 2013; Marchant-
Forde, 2015; Grethe, 2017). Animal product consumers, and
public in general, are becoming more interested in ensuring good
welfare practices at all stages of the animal production chain,
which has direct implications for the whole industry. In addition,
poor welfare is associated with reduced animal productivity,
longevity, poor meat quality, low reproductive performance,
and high prevalence of diseases in herds or flocks (Cockram,
2002; Moberg, 2009; Miranda-de la Lama et al., 2013; Grethe,
2017; Croney et al., 2018a,b; Gonzalez-Rivas et al., 2020). This
global importance of animal welfare is indicated by the inclusion
of increasing numbers of species-specific and situation-specific
animal welfare chapters in the OIE Terrestrial Animal Health
Code (World Organization for Animal Health – OIE, 2019).

Historically, animal welfare has been defined under one of
three over-arching, and intersecting themes or approaches
(Fraser, 2008). These welfare approaches are biological
functioning, natural behavior, and affective states. These
three approaches overlap to provide a holistic overview of the
welfare of the individual, and indicators of the three approaches
should be taken into account in welfare assessments (Fraser
et al., 1997). Nonetheless, defining measurable parameters that
incorporate the underlying processes of all three approaches for
multiple individuals under commercial conditions is challenging.
This task is particularly difficult due to the context-dependent
and conditional nature of the behavioral response and the
affective state of the animals. However, the expression of natural
behaviors is paramount to improve welfare due to species-specific
behavioral needs (Duncan, 1998; Olsson et al., 2011). Specific
behaviors (e.g., motivated behaviors) have an intrinsic value for
animals, and the performance of these behaviors is necessary
to achieve acceptable animal welfare (Duncan, 1998). Non-met
behavioral needs and motivated behaviors results in frustration
and can develop in distress and other emotional disorders
(Mason, 2006; Keeling et al., 2011). Animals are sentience beings,
and this implies that livestock can experience positive and
negative affective states. For this reason, animal emotions are
essential in welfare assessments, and improvements in animal
welfare should promote positive affective states and reduce the
negative ones (Broom, 2011; Mellor, 2016).

An often used approach in animal welfare assessment is based
on the Five Freedoms (Brambell, 1965; McCulloch, 2013), which
consists of the absence of negative welfare (thirst, hunger, and
malnutrition; physical and thermal discomfort; pain, injury, and
disease; fear; and distress) as well as the presence of positive
welfare (e.g., freedom to engage in motivated behaviors; Broom,
1991; De Goede et al., 2013). These have been applied mostly
in terms of housing and husbandry (Mellor, 2016). However,
welfare assessments using the Five Freedoms examine on-farm
environment by looking mostly at input or resource-based
measures that usually describe the physical environment rather
than at outcome or animal-based measures that directly refer
to animal status (Butterworth et al., 2017). More recent focus
has been on the development of animal-based indicators and
expert opinion states that “animal-based measures are the most
appropriate indicators of animal welfare and a carefully selected
combination of animal-based measures can be used to assess
the welfare of a target population in a valid and robust way”
(European Food Safety Authority [EFSA], 2012).

Despite the fact that various countries have implemented
regulations and legislation to ensure ethical animal treatment
from birth to slaughter (Rushen et al., 2011), completely
eliminating welfare issues (e.g., incidence of diseases, thermal,
and metabolic stress) is still very challenging or impossible due to
multiple factors, including: climate change, especially in outdoor
systems (Cole et al., 2017); growing intensification of commercial
production systems; group-housed animals in inadequate
systems (negative interactions, e.g., due to aggressive behaviors,
feather pecking, and cannibalism); antibiotic resistance (Mathew
et al., 2007; Woolhouse et al., 2015); high disease prevalence
(Zessin, 2006); and, to a lesser extent, genetic selection based on a
limited number of production traits in some breeding programs
or indirect genetic responses (Rauw et al., 1998, 2017). In this
context, the implementation of selective breeding schemes to
genetically modify the animals’ biological mechanisms and/or
behaviors in ways that improve welfare in commercial systems
is a promising route (Jensen et al., 2008; Turner, 2011; Croney
et al., 2018b). This is likely to be achieved through selection and
breeding of more resilient animals.

Genetic selection for improved welfare has been investigated
and implemented in livestock species over the past few decades
(Rodenburg and Turner, 2012; Canario et al., 2013). Several traits
associated with animal welfare have been shown to be heritable
(the majority of the estimates are in the range of 0.15 to 0.40;
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TABLE 1 | Heritability estimates for indicators of heat tolerance based on direct or
indirect traits in pigs.

Indicator trait Breed Heritability References

Feeding behavior Crossbred animals
(grow-finish)

0.02 to 0.21 Cross et al., 2018

Thermoregulation Crossbred animals 0.39 to 0.83 Kim K. S. et al.,
2018

Lactation
performance

Large White
(Lactating sows)

0.20 to 0.31 Gourdine et al.,
2017

Thermoregulation Large White
(Lactating sows)

0.34 to 0.39 Gourdine et al.,
2017

Body weight Duroc (grow-finish) 0.23 to 0.26 Fragomeni et al.,
2016

Hot Carcass weight Crossbred animals
(grow-finish)

0.17 to 0.18 Fragomeni et al.,
2016

Farrowing rate Large White and
crossbred sows

0.02 to 0.08 Bloemhof et al.,
2012

Carcass weight Terminal crossbred
(grow-finish)

0.14 to 0.51 Zumbach et al.,
2008

Tables 1–4), including: feather pecking (Buitenhuis et al., 2004;
Muir et al., 2014; Grams et al., 2015), cannibalism (Rodenburg
et al., 2008; Bennewitz et al., 2014), animal robustness (Muir
et al., 2014; Rauw and Gomez-Raya, 2015; Friggens et al., 2017),
overall mortality (Knol et al., 2002; Grandinson, 2005; Bolhuis
et al., 2009), leg health (McLaren et al., 2016; Vargas et al.,
2017), bone strength (Kapell et al., 2017; Oviedo-Rondón et al.,
2017; Siegel et al., 2019), and immune response and disease
resistance (Bishop and MacKenzie, 2003; Stear et al., 2012;
Mallard et al., 2015; Schultz et al., 2020). Genetic and genomic
selection for welfare traits, itself, is unlikely to solve all the welfare
issues in commercial livestock operations. However, selective
breeding is a complementary approach to other strategies (e.g.,
management, nutrition, housing, and biosecurity), which should
result in permanent and cumulative gains in welfare (resilience)
over generations.

In brief, genomic selection (Meuwissen et al., 2001) refers to
the use of a large number of markers distributed across the whole
genome to estimate the breeding values (and future performance)
of breeding individuals for traits of interest (e.g., temperament,
feather pecking). Genomics provides a great venue for genetically
improving animal welfare, as it permits increasing the accuracy
of breeding values for selection candidates or close relatives, even
if they are not exposed to additional stressors. In this regard,
data collection can be performed in chosen herds or flocks (e.g.,
nucleus or phenotyping herds) that are genetically connected
to the potential breeding animals. This creates an opportunity
to measure a large number of traits (deep phenotyping) in the
same group of animals and use this information to genetically
select non-phenotyped animals in commercial farms. As long
as there is a sufficiently large training population (individuals
with both phenotypes and genotypes) genetically related to the
selection candidates, the accuracy of genomic breeding values
can be moderate to high. Therefore, genomic tools facilitates
selection for complex behavioral and welfare traits in commercial
farms (Rodenburg and Turner, 2012). This is very advantageous,

especially in the case of disease resilience, where a disease
challenge might be required and cannot be performed in the
nucleus farms (Putz et al., 2019).

A limited number of livestock breeding programs have
included welfare indicator traits in their selection schemes
(Miglior et al., 2017; Preisinger, 2018; Turner et al., 2018; Chang
et al., 2020). A major challenge for the implementation of genetic
evaluation for welfare traits has been the difficulty in collecting
individual measurements on a large number of animals (Houle
et al., 2010; Turner et al., 2018). As welfare is a multifactorial
state, there is a need for simultaneously measuring multiple
variables over time (repeated records). This requirement can be
a major constraint in commercial breeding programs due to the
infrastructure needed to collect the data, economic feasibility,
standardization of data collection protocols, and lack (or reduced
availability) of equipment and procedures that maximize the
welfare of the animals during the measurements.

More recently, precision livestock farming (PLF) technologies
(Friggens and Thorup, 2015; Berckmans, 2017), also termed
digital agriculture (Liakos et al., 2018), have been presented
as an alternative to individually assessing welfare indicator
traits on commercial farms. These technologies rely on
continuous automatic real-time monitoring and controlling of
animal activities and environmental conditions (Berckmans,
2014). This is usually done using sensors (e.g., accelerometers,
ruminal boluses, biosensors, and radio-frequency identification –
RFID-enabled ear tags), imaging (e.g., cameras), sounds (e.g.,
microphones), and recording of movements (Lohölter et al.,
2013; Andriamandroso et al., 2016; Terrasson et al., 2016;
Neethirajan, 2017; Vranken and Berckmans, 2017; Rufener et al.,
2018; Ellen et al., 2019; Halachmi et al., 2019). However, many
of these technologies measure phenotypes at flock or herd
level, down to pen level, with individual-level data options only
more widespread for large livestock species kept in smaller
numbers. In addition to PLF technologies, variables based on
simpler equipment and protocols can also be collected in large
scale and used to assess animal welfare (e.g., lesion scoring,
hoof health scoring, docility scoring, and milking temperament
assessed by animal handlers). Furthermore, computational and
data science fields (e.g., machine learning, computer vision,
and cyber-physical systems) are quickly advancing (Nayeri
et al., 2019; Tomisław et al., 2019; Verma et al., 2020). Thus,
datasets generated from PLF technologies coupled with data
science developments are paramount to translate animal welfare
indicators into accurate genomic breeding values to be used for
selective breeding aiming to enhance animal welfare.

Previous reviews have focused on the use of precision
technologies for a variety of purposes, especially on-farm
management (Neethirajan, 2017; Neethirajan et al., 2017;
Vranken and Berckmans, 2017; Croney et al., 2018b; Benjamin
and Yik, 2019; Halachmi et al., 2019). The current review,
expands this scope by focusing on the use of precision
technologies for selective breeding to enhance animal welfare
in commercial livestock production, with a focus on terrestrial
species. In this context, our main objectives are to: (1)
describe ways to develop novel welfare indicator traits (using
ideal phenotypes) for both genetic and genomic selection
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schemes; (2) summarize key indicator variables of livestock
behavior and welfare, including a detailed assessment of thermal
stress in livestock; (3) describe the primary statistical and
bioinformatic methods available for large-scale data analyses of
animal welfare; and (4) identify major advancements, challenges,
and opportunities to generate high-throughput and large-scale
datasets to enable genetic or genomic selection for enhanced
welfare in livestock.

MAIN REQUIREMENTS FOR
IDENTIFYING WELFARE TRAITS FOR
SELECTIVE BREEDING PURPOSES

Animal welfare science is a relatively new field that is quickly
evolving in an interdisciplinary manner (Carenzi and Verga,
2009; Broom, 2011; Marchant-Forde, 2015). The longitudinal
measurement or quantification of multiple welfare indicators
is the main requirement for selective breeding to enhance
animal welfare. In this section we present some ideas toward
the identification and description of ideal phenotypes for
selective breeding.

A phenotype, or phenotypic trait, is defined here as a variable
that can be measured on a continuous (e.g., cortisol level,
body temperature), or categorical (e.g., docility and longevity
scores) scale in individual animals and represents a biological
mechanism at a certain time point (or life stage). Animal welfare
is a multidimensional concept comprising physical, behavioral,
physiological, and emotional aspects (Broom, 1991; Rushen
et al., 2011), and thus, its objective measurement [automated
assessment with no bias or dependence on the device used (or
technician doing the assessment)] is a challenging task.

Firstly, continuous monitoring of the animal welfare state
from birth to slaughter (or involuntary culling) is needed because
animals can be more or less prone to certain welfare issues
at specific life stages [e.g., food allergies and gut inflammation
after weaning in piglets (Jayaraman and Nyachoti, 2017; Radcliffe
et al., 2019), tail biting and aggressive behaviors after mixing
pigs in larger groups (Camerlink et al., 2013; Shen et al., 2019),
feather pecking in laying hens (Ellen et al., 2019), and age-specific
disease occurrences such as mastitis in dairy species (Barkema
et al., 2015)]. Therefore, longitudinal phenotypes need to be
collected and analyzed (Rauw and Gomez-Raya, 2015; Berghof
et al., 2019; Oliveira et al., 2019a). Resilience, defined as the
capacity of an animal to be minimally affected by disturbances
or to rapidly return to the state attained before exposure to
a disturbance (Berghof et al., 2019), can also indicate welfare.
Based on longitudinal measurements, resilience indicators may
be derived based on deviations from expected production levels
over a period of time (Berghof et al., 2019), or variations
in automatically recorded feed intake (Putz et al., 2019). For
instance, Putz et al. (2019) proposed various novel phenotypes
related to disease resilience using daily feed intake data from
growing pigs under a multifactorial natural disease challenge
that was designed to mimic a commercial environment with
high disease burden. The novel resilience phenotypes proposed
by the authors were heritable and genetically correlated with

mortality and treatment rate (Putz et al., 2019). In the context
of longitudinal measurements, it is worth noting that stress
responses can be beneficial in helping the animals to cope
with their environment and challenging situations. However,
overstimulated stress response (too frequent or for too long)
can detrimentally affect biological functions such as production,
immune response, and coping abilities (Moberg, 2009; Palme,
2012; Rauw et al., 2017).

Secondly, a large number of variables need to be accurately
measured in individual animals as biological indicators of the
Five Freedoms (Brambell, 1965; McCulloch, 2013), including
physiological, behavioral, emotional state, and physical and
health characteristics. A single stressor can impact biological
functions of the animal in different ways [e.g., feed deprivation
can cause weight loss, hunger and frustration, behavioral
changes, altered metabolic rate (Ketterson and King, 1977),
and immune suppression; thermal stress can cause altered feed
intake, digestion, discomfort, uneven growth and body weight,
and altered metabolic function leading to distress and increased
mortality (Johnson, 2018); and social isolation, group mixing
and restraint can result in altered heart rate, elevated cortisol
levels, frustration, aggressive behavior, and weaker immune
systems (Ruis et al., 2001; Shen et al., 2019)]. Interestingly, the
stress response to possible threatening stimuli varies among
individuals dependent on how the stress is perceived (i.e.,
individual susceptibility), resulting in different individual welfare
outcomes. Animals are capable of experiencing positive and
negative emotions, and welfare indicators should not only focus
on physical conditions but on their emotional states as well
(Reimert et al., 2013; Wemelsfelder and Mullan, 2014; Jirkof
et al., 2019; Lawrence et al., 2019). In addition to physiological
indicators of stress, recording the prevalence of behavioral
signs associated with negative welfare such as arousal and
hyperactivity, frustration, distress, and depression can provide
important clues about how animals are coping with their
environment as well as their welfare (Keeling et al., 2011).

Thirdly, data collection should be based on non-invasive
methods that do not result in additional stress or discomfort
to the animals or alter their routine or circadian rhythms. For
instance, handling animals for measuring blood parameters could
cause stress hormone release (Stewart et al., 2005; Cook, 2012).
This could be an issue for assessing the undisturbed welfare
status of the animal in commercial production settings. Please
note that the effect of handling-induced cortisol release can be
minimized by recording the time from start of handling to end
of blood collection and including it as a covariate in the models;
or alternatively, training the animals to habituate to the blood
collection procedure, depending on the study goals. Similarly,
phenotyping animals during a stressful event intrinsic to their
management environment has been suggested to be preferred
than exposing animals to an experimentally imposed stressful
situation (Colditz and Hine, 2016).

The derived phenotypes need to be collected at a low
cost to enable measurement of a large number of animals,
which is a requirement for successful implementation of
genetic and genomic evaluations (Goddard et al., 2010), as
previously discussed. Obtaining phenotypic measurements that
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are accurate, biologically meaningful, repeatable, and comparable
among laboratories, countries, or companies, is critical for
genomic studies and its applications (Hocquette et al., 2012).
Therefore, standardizing measurement protocols or defining
phenotypes that can be easily standardized is needed because
traits recorded in different ways might reflect different biological
mechanisms, which may lead to difficulty in the implementation
of genetic and genomic evaluations based on datasets from
multiple phenotyping centers (or farms, countries, etc.). This
is still challenging as there are not enough welfare studies to
support differences in such protocols. The lack of available
datasets and optimal protocols indicates a need for worldwide
funding agencies (private and public) to increase financial
support for phenotyping animal welfare indicators for breeding
purposes. This has been recently included as a key priority
in some agricultural funding agencies as outlined in the latest
USDA Blueprint for Animal Genome Research 2018–2027
(Rexroad et al., 2019).

Lastly and critically important, the phenotypes identified
need to be heritable and repeatable. Low heritability might only
indicate high phenotypic variability in comparison to the total
additive genetic variance. Therefore, when necessary, it is crucial
to identify alternative variables that can better capture the genetic
variability for the trait(s) of interest (i.e., higher heritability;
König and May, 2019). The rate of genetic progress for a certain
trait also depends on the generation interval (Falconer and
Mackay, 1996), and therefore, traits that are measured earlier
in life, but reflect the welfare status of the animal in its whole
life (or at a later stage), are desirable. In this context, genomic
selection is a very powerful tool, as it enables the calculation of
genomic breeding values for young animals with no phenotypic
measurements (i.e., reduce generation interval). The genetic
correlation between welfare and commonly selected traits also
need to be investigated and appropriately weighted in selection
indexes to avoid detrimental effects in other important traits
(Phocas et al., 2016a,b).

The greater availability of high-throughput phenotyping
technologies (e.g., automated monitoring systems) in nucleus
and commercial farms, better communication and data
sharing among data recording organizations (e.g., Dairy Herd
Improvement, breed associations, veterinary clinics, and
slaughter facilities), and greater integration of complementary
disciplines will contribute to overcoming some of the challenges
associated with time and cost of welfare data collection
(Wemelsfelder and Mullan, 2014). In addition, PLF tools enable
the collection of continuous and real-time phenotypes as well
as environmental conditions (e.g., thermal stress, humidity, air
quality; Laberge and Rousseau, 2017), that are of great use for
assessing animal welfare.

WELFARE ASSESSMENT IN LIVESTOCK
PRODUCTION

The welfare of animals is determined by the interaction
between intrinsic animal characteristics and the environments
in which they are raised. The definition of welfare indicators

is largely dependent on a clear understanding of the biological
and emotional mechanisms behind the phenotypic variability
observed in the animal’s response to different stimuli. Novel
indicators are being proposed as the animal welfare science
moves forward. As discussed by Marchant-Forde (2015), accurate
welfare assessment should be comprised of components that
describe or quantify cellular, physical, physiological/biochemical,
and psychological states, and may include scoring scales
for additional health and behavior indicators such as body
weight, respiration rate, ocular discharge, feces condition, and
provoked behavioral response (Marchant-Forde, 2015). Vertical
phenotyping is therefore of great importance because several
variables can be related to a family of phenotypic traits
(Hocquette et al., 2012).

The aggregation of multiple indicators to produce an
overall assessment of animal welfare is of great relevance
(Botreau et al., 2007a,b). One can expect that genomic
selection for improved welfare will continue to be a very
interdisciplinary field, integrating animal welfare, cell and
molecular biology, neuroscience, immunology, stress physiology,
computer science, engineering, quantitative genomics, and
bioinformatics. This section will succinctly review biological
mechanisms behind animal welfare and how this knowledge can
be used for the identification of novel welfare indicators for
breeding purposes.

Biological Mechanisms Related to
Animal Welfare
Livestock in commercial production systems are constantly
exposed to a variety of environmental stressors or management
practices (e.g., human presence, noise, strange objects, restricted
space, heat, cold, humidity, and feed restriction). Therefore, the
animals’ welfare, productivity, and environmental fitness will rely
on their ability to cope with and react to these challenges (Broom,
1991; Guy et al., 2012; Colditz and Hine, 2016; Berghof et al.,
2019; Hu et al., 2019). At any point in time in which an animal
is exposed to a variety of potential challenges or stressors, it
will counteract using behavioral and physiological processes or
sub-systems, linked through a network of neural and hormonal
communication. The stressors may vary in magnitude and
duration – being short-term (acute) or longer-term (chronic) –
and if the animal’s processes counteract and adjust successfully,
the animal copes with the stressor and habituates (Moberg
and Mench, 2000). This ability to cope and habituate is the
cornerstone of resilience – the ability to use these biological sub-
systems to bounce back to “normal functioning” after disturbance
(Scheffer et al., 2018). An animal with high resilience is able
to recover quickly from larger disturbances and there is low
temporal autocorrelation in the fluctuations of any given sub-
system working to counteract disturbances (Scheffer et al., 2018;
Berghof et al., 2019). There is also the ability of the sub-systems to
work more independently in animals with high resilience and to
return the animal to the baseline state, before its interconnected
sub-systems are also activated. With low resilience, the opposite
is true. A small disturbance may show a slow recovery, high
temporal autocorrelation, and high inter-dependence among
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sub-systems, with the worst-case scenario resulting in a cascade
of sub-system failure (Scheffer et al., 2018).

Within animal agriculture, the main causes of stress include
environmental, immunological, metabolic, and social factors.
Some may be acute, for example, a single aggressive interaction
after mixing which is quickly resolved; some may be chronic,
for example, periods of sustained heat during summer months;
and some may even be permanent. A stress response is activated
when the central nervous system perceives a potential threat to
homeostasis. From the central nervous system, electrochemical
impulses are transmitted to the effector organs of the body
(muscles and glands) to initiate appropriate responses to the
stimuli (Cheng, 2010). The defense response consists of a
combination of four general biological responses (Moberg
and Mench, 2000): the autonomic nervous system response,
the neuroendocrine response, the immune response, and the
behavioral responses. Under extensive conditions, behavior can
often be adapted to mitigate the stress quickly. If confronted
by aggression, an individual can retreat and end the encounter
if given enough space. If hot, the animal can seek shade or
wallow. In farming systems, the behavioral processes may be
more constrained, and lack of space or thermal zones can mean
that an immediate behavioral response is not possible, as in these
two examples. The individual’s response to external stressors can
be influenced by numerous factors including prior experience,
genetics, age, sex, physiological status, emotional state, and
cognitive ability (Colditz and Hine, 2016).

The intricate details of stress system activation are available
elsewhere (Godoy et al., 2018), but generally, both physical
and psychological stressors interact through different pathways
to activate the hypothalamic-pituitary-adrenal (HPA), and
sympathetic-adrenal medullary (SAM) systems, which activate
together multiple sub-systems to maintain homeostasis. The
SAM axis results in the release of catecholamines, such as
epinephrine (E) and norepinephrine (NE), from the adrenal
medulla. The concentrations of E and NE are increased due to
a variety of stressors (Dalin et al., 1993) and activation is rapid,
within one to two seconds, since E and NE half-lives are short.
Simultaneous to the activation of the SAM axis, the hypothalamus
also activates the HPA axis releasing corticotropin-releasing
factor from the paraventricular nucleus of the hypothalamus.
Corticotropin-releasing factor stimulates the anterior pituitary to
release adrenocorticotropic hormone which activates the adrenal
gland to secrete glucocorticoids (i.e., cortisol, corticosterone) into
the blood. Therefore, cortisol concentrations have been used as
an indicator of stress (Ott et al., 2014), but not without debate
as to the appropriateness and need for refinement (Ralph and
Tilbrook, 2016). Glucocorticoid release is much slower than the
release of catecholamines, in most species beginning around
2 min after the stressor. However, there is also a circadian pattern
to glucocorticoid release due to their priming effect and thus,
there are limitations in relying on single time-point samples.
The glucocorticoids act collectively with the catecholamines to
increase blood glucose (Dallman and Hellhammer, 2011), thus
ensuring that there are enough energy reserves needed to mitigate
the stressors. Furthermore, the release of cortisol elicits a negative
feedback response to the HPA axis to return to basal levels and

homeostasis (Manteuffel, 2002; Stephens and Wand, 2012). There
is large variation in the response of the various components of the
HPA axis (Mormède et al., 2011), indicating a clear potential to
genetically select for biological changes in the stress response.

Indicators of Animal Welfare
There is large variability in animal’s response to stress factors
(Turner, 2011; Koknaroglu and Akunal, 2013; Turner et al.,
2018). Therefore, welfare assessment is needed in order to
identify the most resilient and healthiest animals for breeding
purposes as well as to develop mitigation strategies to minimize
or eliminate welfare issues. The evaluation of animal welfare
involves a complete assessment of the animal’s physiological,
behavioral, physical, and emotional state. Some of these
indicators can even be quantified prior to clinical signs of poor
welfare (e.g., milk somatic cell count and clinical mastitis).
This complete assessment relies on some key principles, such
as those developed in the Welfare Quality Project (described
in Rushen et al., 2011): good feeding, proper housing, good
health conditions, and appropriate behavior. These conditions
can be assessed based on various parameters, including aggressive
behavior when mixing or regrouping animals [especially in pigs
(Wurtz et al., 2017; Shen et al., 2019)], approach or avoidance
behaviors (Smulders et al., 2006), blood parameters (König and
May, 2019), body condition score (Roche et al., 2009), body
mutilations [e.g., tail damage (Keeling et al., 1996; Heinonen
et al., 2010)], body temperature (Weschenfelder et al., 2012),
cannibalism (Lambton et al., 2015), feather pecking (Buitenhuis
et al., 2003), feeding behavior [e.g., active chewing time,
rumination time, standing and lying time (Ding et al., 2018)],
proportion of time active and its posture (Vasseur et al., 2012),
immune response (Kovács et al., 2014), response to infection
(Nyman et al., 2014), inflammation (Heinonen et al., 2010), heart
and respiration rates (von Borell et al., 2007), glucocorticoids
(corticosterone and cortisol; Mormède et al., 2011; König and
May, 2019), lameness and gait problems (Chapinal et al., 2013),
panting frequency (Sullivan et al., 2011), poor maternal care
[e.g., savaging in pigs (Hellbrügge et al., 2008b)], ruminal pH
(indicator of digestive issues, such as ruminal acidosis; Abdela,
2016), shivering (Liu et al., 2017), social interactions (Rault et al.,
2013), abnormal repetitive behaviors (Mason, 2006; Olsson et al.,
2011), frustration behaviors (Duncan, 1998; Keeling et al., 2011),
variations in daily feed intake (Putz et al., 2019), and water intake
(Kume et al., 2010). As previously mentioned, this large number
of variables indicates that overall animal welfare needs to be
assessed based on a combination of multiple traits.

An Example of Welfare Assessment:
Quantifying Thermal Stress in Livestock
Body temperature measurements facilitate determination
of the animal’s thermoregulatory ability under varying
environmental conditions. These phenotypic records may
be valuable in selecting breeding stock with improved
welfare under environmental conditions that cause heat
stress (Carabaño et al., 2017, 2019). Heat tolerance is heritable
(Table 1; Ansari-Mahyari et al., 2019; Carabaño et al., 2019;
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Osei-Amponsah et al., 2019) and causes major welfare and
economic losses to the livestock industry (Mayorga et al., 2020);
however, the ability to appropriately analyze and understand
phenotypic indicators is necessary for the development of new
breeding programs to select for heat tolerant animals. Absolute
body temperature (TB) measures may be used to assess an
animal’s heat stress response whereby greater TB can indicate
increased heat sensitivity and reduced TB can indicate greater
heat tolerance (Johnson, 2018). For the simplest analyses,
either daily average TB or TB during certain time periods (e.g.,
morning, afternoon, and night-time) may be calculated to
compare between animals under differing environmental heat
loads. As an assessment of TB responsiveness, the TB change
rate as a function of increasing heat load (Figure 1A) can be
used to determine heat stress sensitivity. In addition, these data
can be used to determine the ability of animals to acclimate or
adapt if compared across heat stress exposure days, whereby a
greater decrease in TB responsiveness over exposure days can
indicate improved acclimation ability and these data may be
important markers for selecting animals with better heat stress
coping abilities.

Although these analyses are valuable in initial thermal
sensitivity assessments, these data alone cannot explain the
underlying cause of thermal sensitivity or tolerance. This
is important when trying to balance heat tolerance with
maintained productivity because heat tolerance may be an
outcome of decreased metabolic rate resulting from decreased
performance (Brown-Brandl et al., 2014), which is not a desirable
outcome under commercial production conditions. Therefore,
understanding how animals dissipate excess body heat and how
heat dissipation interacts with heat tolerance and productivity
is an important factor to consider in breeding programs. When
obtaining phenotypic thermoregulatory data, it is important
that measures of heat dissipation (e.g., respiration rate – RR,
skin temperature – TS, and sweating rate – SR) are taken in
combination with TB to ascertain information about an animal’s
capacity to maintain euthermia as heat dissipation influences
TB, and TB influences heat dissipation (Blatteis, 1998). Balancing
heat production with heat loss is essential under environmental
conditions that cause heat stress in animals. Animals with
improved performance (e.g., milk production, growth rate, and
egg production) generate greater metabolic heat when compared
to their lower producing counterparts (Brown-Brandl et al.,
2014; Cabezón et al., 2017). In turn, the heat sensitivity of high
producing animals may be increased if heat dissipation capacity
is not sufficient.

Several analyses may be used to assess relationships between
heat dissipation mechanisms and TB. To determine heat
dissipation efficiency through the skin, the relationship between
TS and TB can be calculated. As heat dissipation through the
skin is reliant on core TB, an increased ratio may indicate
greater heat dissipation. However, this ratio may be influenced
by the external environment (e.g., cooler temperatures cause
vasoconstriction and warmer temperatures cause vasodilation;
Blatteis, 1998) and thus ambient temperature can be used in
the analysis. In this case, the thermal circulation index may be
calculated using TS, ambient temperature, and TB as described

FIGURE 1 | Relationships between (A) body temperature (TB) and ambient
temperature (TA), (B) TB and respiration rate (RR), and (C) milk production
and the TB vs. RR slope.

by Curtis (1983): thermal circulation index = (TS – ambient
temperature)/(TB – TS). The thermal circulation index can
be used to determine the capacity of an animal to dissipate
heat from the core to the skin and subsequently to the
surroundings under steady state thermal conditions (Kpodo
et al., 2019). In addition to TS, the assessment of TB as a
function of RR may be used to assess RR efficiency whereby
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a greater TB slope with increasing RR indicates reduced RR
efficiency and a decreased slope indicates increased efficiency
(Figure 1B). This is an important factor to consider outside
of absolute RR values because an increase in RR may not
necessarily indicate greater heat sensitivity if the end result is
a euthermic TB. Alternatively, comparing RR as a function of
TB may explain heat sensitivity in which a lower RR rise with
increasing TB can explain heat sensitivity if the RR increase
is not sufficient to dissipate excess body heat. These methods
may also be applied to the assessment of SR. Finally, results
from these thermoregulation analyses may also be compared with
performance parameters to determine their influence on growth
rate, reproductive success, milk output, and egg production
(Figure 1C). These data can enable balancing improved welfare
under heat stress conditions with performance measures and
evaluate which thermoregulatory measure is most important in
a particular system.

There are multiple strategies for increasing heat tolerance,
such as within-breed genetic or genomic selection (Nguyen
et al., 2017; Carabaño et al., 2019), crossbreeding or the use
of more climatic adapted genetic resources such as Zebu cattle
(Bos taurus indicus), and slow growing or less-feathered birds
(Singh et al., 2001; N’dri et al., 2007; Fathi et al., 2013).
Furthermore, gene editing might also be an important tool
for introgressing certain gene alleles that confer greater heat
tolerance (Hansen, 2020), such as the “slick hair” gene in cattle
(Littlejohn et al., 2014), and “naked neck” and “frizzle” genes in
chicken (Fathi et al., 2013).

Phenotyping Technologies Used to Assess
Thermal Stress
Body temperature measures are commonly used to assess the
thermoregulatory capacity of animals. These measures often
include RR, SR, TS, and TB, and these phenotypic traits
are most commonly used as a determination of heat stress.
Traditionally, these measures were obtained through labor
intensive and invasive practices. However, in recent years, several
non-invasive and/or automated methods to collect these data
have been developed.

Skin temperature
During heat stress, blood flow to the skin increases to facilitate
heat dissipation, which may be measured by an increase in
TS (Yahav et al., 2005; Katiyatiya et al., 2017). However,
environmental factors such as wind speed, humidity, and direct
sunlight exposure (Church et al., 2014), or physical factors
such as hair thickness, hair length, and hair and skin color
(Gebremedhin et al., 2008) can impact the efficiency of heat
loss through the skin or directly alter the TS independent of
changes in TB (i.e., direct sunlight exposure, exposure to heating
elements, etc.). Interpreting TS values requires additional inputs
and considerations. For animals housed outdoors without shade
(i.e., cattle on pasture or in feedlots) or under heating elements
(i.e., pigs or chickens under heat lamps), it is difficult to separate
the effects of the environment on changing TS compared to
the influence of TB on increasing/decreasing TS due to heat
dissipation through the skin. It is important to consider that

TS measures greater than TB should not be interpreted as heat
dissipation as it is impossible to dissipate a greater amount
of heat than is produced within the body and it is likely that
these values are indicative of environmental influences on the
TS rather than changing TB. In cases where radiant heat is not
a factor (i.e., environmental chambers, in the shade, etc.) TS
measures (on shaved or hairless skin) may be helpful in the
assessment of heat dissipation for the selection of more heat
tolerant animals and a common, non-invasive method to assess
TS is through infrared thermography (Ferreira et al., 2011; Nääs
et al., 2014; Lees et al., 2018). Taken together, researchers must
consider these factors when making determinations about the
significance of changing TS in relation to heat dissipation vs.
radiant heat load.

Infrared thermography measures the infrared radiation
emitted from an animal and this radiation depends on
the temperature, emissivity, and conductivity of the animal
(Knízková et al., 2007). There are two types of infrared systems
to measure temperature on animals: infrared thermometers and
thermal cameras. Infrared cameras are more software intensive
than infrared thermometers and can be used for monitoring
large areas (Sellier et al., 2014), which allow for a greater
representation of the TS of the entire animal or at specific
sites as desired by the researcher. An alternative to infrared
technology that may be more invasive are contact sensors affixed
to the skin (Teunissen et al., 2011; Mostaço et al., 2015).
Contact sensors are more accurate than infrared technology
and provide continuous automated measurements, but potential
issues precluding their use may include battery life and long-term
adhesion to the skin (Mostaço et al., 2015), and destruction or loss
of the devices in group-housed animals. Therefore, researchers
should assess both types of technology and determine which
one best fits their requirements in a particular environment or
research setting.

Respiration rate
In general, animals cope with heat stress by increasing RR
to reduce the extra heat load via evaporative heat loss.
However, it is important to mention that during extreme
heat strain when heat loss cannot be balanced with heat
gain, animals will switch from increased RR to deep slow
respirations (López Armengol et al., 2017). One way to measure
RR is visually by counting flank movements at the flank
region (Mostaço et al., 2015). While this traditional method
is regularly used, it is labor-intensive and time consuming.
As an alternative to this method, researchers have developed
technologies that assess RR through changes in air temperature
near the nostrils of animals using infrared thermography (Lowe
et al., 2019), or direct measures of air temperature near the
nostrils using a mounted device (Milan et al., 2016). The
use of sensors to detect nasal exhalation pressure has been
proposed to evaluate RR in cattle (Strutzke et al., 2019). Finally,
researchers have also used an externally-mounted bioharness
designed for humans, that measures chest expansion (Briefer
et al., 2015). Unfortunately, many of the automated methods
to assess RR are in development and there are currently
no known commercially-available and validated options for
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researchers to automatically (and non-invasively) assess RR in
livestock animals.

Sweating rate
Cattle increase SR to dissipate excess body heat through
evaporative heat loss from the skin surface. Heat loss via
sweating may be influenced by wind velocity, air temperature,
relative humidity, and thermal and solar radiation (Collier and
Gebremedhin, 2015). The SR can be determined using a digital
moisture sensor on the dorsal areas of animals to determine
trans-epidermal water loss (Nuutinen et al., 2003; Gebremedhin
et al., 2008). The digital moisture sensor is a closed system, free of
ambient airflow, and allows for monitoring of water loss (Scharf
et al., 2008). Another method to measure SR is applying a cobalt
chloride disk to the skin and recording the length of time the
cobalt chloride disk changes color in order to calculate SR (Moser
et al., 2012; Nursita and Cholis, 2019). However, a potential
drawback to this method in animals is the ability to maintain
the disk on the skin for the length of time required for the color
change to occur.

Body temperature
Heat stress causes an increase in TB implying that the
animal has lost the ability to maintain homeostasis. In pigs,
infrared (Mostaço et al., 2015), and digital clinical thermometers
(Gebremedhin et al., 2008; Mostaço et al., 2015) are commonly
used to measure TB rectally. However, when using a clinical
thermometer, restraint is often required, which can stress the
animal and potentially increase TB. Other reliable and accurate
TB measurement devices include surgically implanted telemetry
devices (Lacey et al., 2000) and intramuscularly implanted
microchips (Iyasere et al., 2017). Both devices are good for
automatically collecting data at pre-set intervals, but have the
risk of infection after surgery and a greater recovery time
prior to data collection. In cattle, less invasive studies have
used automatic measurements of reticule-rumen boluses (Timsit
et al., 2011; Liang et al., 2013), which give continuous rumen
temperature measurements in real time (Lohölter et al., 2013;
Lees et al., 2018). In pigs, gastrointestinal temperature can be
measured using orally administered temperature sensors (or
boluses, as commonly defined in similar sensors used in cattle
studies) monitored with a wireless core body temperature data
recorder (Johnson et al., 2016). Although the boluses allow
measurement without disturbing the animal, they have short
communication distances between the bolus and reader thus
requiring manual data collection, the boluses are costly, and
TB fluctuations may exist depending on the temperature of
feed and water consumed (Lee et al., 2016b). Alternatively,
vaginal implantation of wireless sensors can accurately determine
TB using a radio-telemetric system (Kyle et al., 1998; Johnson
and Shade, 2017) or a temperature logger (Gebremedhin
et al., 2008). Specifically, in pigs (Johnson et al., 2016),
beef cattle (Burdick et al., 2012), and dairy cattle (Garner
et al., 2016), vaginal temperature can be measured with a
thermochron temperature recorder attached to a plastic device
controlled internal drug releasing device. However, this is
only effective in females. Finally, temperature sensing with

an ear canal radiotelemetry system can be used on cattle
due to its long-distance wireless communication and simple
attachment similar to ear tagging (Lee et al., 2016b), which
provides temperature stability but has the risk of the tagged
device to fall off.

HIGH-THROUGHPUT PHENOTYPING
TECHNOLOGIES

The rapid development of integrated biological (e.g., -omics
technologies) and engineering systems and the Internet of Things
(IoT) is enabling the development of affordable monitoring
devices and high-throughput technologies (Neethirajan et al.,
2017). These tools can be used for individually monitoring
large numbers of animals in commercial settings and are
advantageous to quantify biological indicators through rapid,
repeatable, and automated measurements. This is crucial because
the ideal welfare assessment indicators should be as objective
as possible, robust (can be applied under a wide range of on-
and off-farm situations), relevant and valid (reveal aspects of the
animal’s affective or physiological state that is important to their
welfare), reliable (can be repeated with confidence in the results),
cost-effective, and well accepted by all industry’s stakeholders
(Fleming et al., 2016).

The technological devices used include sensors such as
cameras, microphones to capture vocalizations, thermometers,
automated feeding and milking systems, automatic scales to
measure body weight and lean-fat ratios, milk spectral data,
electrodes to detect skin conductivity and heart rate, and
accelerometers (Vranken and Berckmans, 2017; Benjamin and
Yik, 2019; Halachmi et al., 2019). In this section, we describe
phenotyping technologies that can be (or have been) used to
assess animal welfare and potentially incorporated in genetic or
genomic evaluation schemes in commercial livestock systems. It
is important to note that some of these technologies are still under
development and validation stages. In some cases, there could
exist disagreements on their ability to assess welfare (de Rosa
et al., 2019). We have highlighted examples from multiple species,
but it is worth noting that the technologies and indicator traits
described in this study can be easily translated or extrapolated
from one species to another.

Biomarkers
As previously indicated, various endocrine and behavioral
mechanisms are involved in coping with stressors (e.g.,
aggression, hunger, and disease challenge). Glucocorticoids,
secreted by the adrenal glands, are the most evident indicators
of a stress response (Cook, 2012; Palme, 2012). They are usually
measured in plasma samples; however, blood collection itself can
cause additional stress as a result of handling and restraint (Cook,
2012). Palme (2012) discussed various non-invasive methods
for the determination of glucocorticoids or their metabolites
in saliva, urine, excreta, milk, hair/feathers, and eggs. Fecal
and hair (or feather) samples are promising alternatives as
circulating hormone levels are integrated over a certain period
of time and are less affected by short fluctuations (Palme, 2012;
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Pawluski et al., 2017). The frequency of sample collection will
depend on whether the impact of acute or chronic stress factors
is being evaluated.

In addition to cortisol, various blood-based biomarkers have
been associated with aggression in pigs, including plasma
triiodothyronine (T3), 5-hydroxytryptamine, and tryptophan
(Shen et al., 2019). Furthermore, disease challenge is another
great welfare impairment. Huzzey et al. (2011) evaluated the
potential of using pre-partum analytes associated with stress
(cortisol) or inflammation (haptoglobin), and NEFA (non-
esterified fatty acids) as indicators of increased risk for health
complications after calving. The authors reported that NEFA was
a more suitable post-partum health indicator compared to fecal
or plasma cortisol metabolites, and plasma haptoglobin.

In some species (e.g., dairy cattle, dairy sheep, and dairy
goats), additional biomarkers can be identified in body fluids
measured routinely, such as milk. For instance, in milk, mid-
infrared spectrometry (MIR) has been used to monitor potential
metabolic issues and diseases such as mastitis, ketosis, fat–protein
ratio, NEFA or phospholipids, glucose, and insulin growth factor
1 (Egger-Danner et al., 2014; Tetens et al., 2015; König and
May, 2019), usually associated with negative welfare implications
in production systems. In this regard, fat–protein from routine
milk recording data has been indicated as a selection criterion
to improve metabolic stability (Koeck et al., 2014). As such,
various research projects have investigated the use of milk
MIR data for prediction of novel indicator traits for selection
purposes [e.g., RobustMilk, Opti-MIR, PhenoFinlait, and GplusE
(Egger-Danner et al., 2014)].

Mastitis is a disease with major welfare implications in
dairy species (Martin et al., 2018). Test-day somatic cell count
(transformed to somatic cell score) is a routinely collected
phenotype that has already been included in commercial
breeding programs to improve udder health (Miglior et al., 2017;
Martin et al., 2018). Minerals (e.g., Ca, K, Mg, Zn, Se, and
P) or mineral content measured via milk MIR has also been
suggested as potential biomarkers to improve mastitis resistance
(Egger-Danner et al., 2014), and milk protein fractions as suitable
biomarkers for heat tolerance (Carabaño et al., 2017).

Animals raised in extensive production systems (e.g.,
beef cattle, sheep) can suffer substantially from endoparasite
infections caused by gastrointestinal nematodes (Papadopoulos
et al., 2012). Various biomarkers have been proposed to
genetically select for host resistance (i.e., ability to control
pathogen burden) or tolerance (i.e., ability to limit the impact
of a given pathogen burden on performance), but serum
or milk antibodies (different isotypes of immunoglobulins),
and fecal egg count are the most commonly used indicators
(Bishop and Morris, 2007; König and May, 2019).

In ruminant species, measuring rumen pH can indicate
metabolic and nutritional dysfunctions associated with negative
welfare implications such as acidosis (Leek, 1983; Hamilton et al.,
2019). There are various sensors available to measure H-ion
concentration in the rumen by electrical means. These sensors (or
boluses) are usually coupled with radio-frequency transmitters
for continuous real-time data acquisition and there are already
various commercially available devices (Mottram et al., 2008;

Kim H. et al., 2018; Hamilton et al., 2019). Technology prices
are decreasing over time and its quality is improving (e.g.,
robustness, battery life). Such devices can generate a large amount
of data to be used for identifying disease resilient animals for
breeding purposes.

There is also a potential to use biosensors for breath analysis
aiming to identify disease indicators (bovine respiratory disease,
tuberculosis, brucellosis, and ketoacidosis), especially volatile
organic compounds (Fend et al., 2005; Burciaga-Robles et al.,
2009; Neethirajan et al., 2017). Biosensors to analyze metabolites
in sweat [e.g., lactate levels; indicator of physical stress (Jia et al.,
2013)] have also been developed and converted to portable
formats [e.g., belts, adhesive RFID sensor patch (Neethirajan
et al., 2017)]. A large number of alternative compounds
have been investigated over time, including adrenaline,
noradrenaline, corticotropin-releasing factor, prolactin, glucose,
lactic acid, blood leukocyte levels, and cellular immune response
(Neethirajan et al., 2017). There are various bioanalytical devices
and wearable technologies that can be implanted on the animals
to analyze sweat composition [e.g., sodium and lactate content
(Garcia et al., 2016; Glennon et al., 2016; Heikenfeld, 2016)],
and assess body temperature (Sellier et al., 2014) such as wireless
temperature sensor nodes that can be appressed to the base
of calf ’s tail (Nogami et al., 2014), detection of analytes and
pathogens (Mungroo and Neethirajan, 2014; Vidic et al., 2017),
and many others (Neethirajan, 2017).

The development of biosensors is rapidly advancing in human
research (Metkar and Girigoswami, 2019), and one can expect
that these technologies will soon be adapted to the livestock
industry. High-throughput phenotyping of physiological and
metabolic changes combined with large-scale genomic (and other
-omic) datasets will be paramount on implementing genomic
selection for improved animal welfare in commercial farms. It
is important to highlight that it is very unlikely that a single or
few biomarkers could be used for a holistic assessment of animal
welfare. However, welfare biomarkers can be complementary to
other data sources.

Machine Vision (Cameras)
Machine vision has been used for several purposes in animal
sciences, including determination of body weight (Tscharke and
Banhazi, 2013; Kongsro, 2014), body condition score (Azzaro
et al., 2011; Halachmi et al., 2013), detection of aggressive
behavior (Lee et al., 2016a; Chen et al., 2017; Nasirahmadi et al.,
2017), walking patterns and lameness (Stavrakakis et al., 2015),
and posture and behavior during lactation (Lao et al., 2016).
Often, video recordings are used to manually assess animal
behavior (Oczak et al., 2013), but the manual analysis of these
videos is time-consuming, and may introduce human error
(Catarinucci et al., 2014).

A wide variety of cameras are available (e.g., RGB, infrared
thermography cameras, 3D cameras), and more recently, there
is an increasing number of research projects investigating the
automation of machine vision and data analytics (Ventura
et al., 2020). Therefore, machine vision is expected to play
an important role in the design of large-scale data collection
for breeding schemes to improve animal welfare. For instance,
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3D cameras [e.g., Microsoft Kinect (Microsoft, Redmond, and
Washington) and Intel RealSense (Intel, Portland, and Oregon)]
are usually equipped with a high-definition camera, an infrared
illuminator, and time-of-flight (ToF) depth sensor that produces
color (Benjamin and Yik, 2019). These cameras are reasonably
cost-effective, can handle large amounts of data, have low power
requirements, do not require any contact with the animal (remote
measuring), and are adaptable to variable light and background
conditions (Benjamin and Yik, 2019).

Infrared thermography or thermal imaging is increasingly
being used as a non-invasive method to assess animals’
physiological and emotional state, including skin temperature,
inflammation in certain areas of the body (e.g., udder –
mastitis), locomotion disorders, and respiratory diseases (Stewart
et al., 2005; Alsaaod et al., 2014; Harris-Bridge et al., 2018;
Jorquera-Chavez et al., 2019). Boileau et al. (2019) used infrared
thermography taken from pigs in a controlled test environment
and indicated that the obtained peripheral temperature provided
useful information about the physiological and welfare outcomes
of aggressive behavior in pigs. Moreover, image motion feature
extraction was used for recognition of aggressive behaviors
among group-housed pigs, with an accuracy of 95.82 and 97.04%
for medium and high aggression, respectively (Chen et al., 2017).
Infrared thermo-imaging has also been investigated as a potential
tool to quantify the number of ticks in the body surface of
Brangus cattle, which causes major health and welfare issues,
especially in tropical countries (Barbedo et al., 2017).

In the swine industry, farrowing is a challenging stage
for both the sow (transition from gestation to farrowing and
lactation), and the piglets (susceptibility to crushing, chilling,
and malnutrition; Marchant et al., 2001; Johnson and Marchant-
Forde, 2009). Aiming to identify solutions to these issues,
Leonard et al. (2019) monitored behavioral activities of sows and
piglets in a commercial setting utilizing an autonomous machine
vision system. A digital and ToF depth imaging system was
implemented and a process with minimal user input to analyze
the collected images was developed to calculate the hourly and
daily posture and behavior activities of sows housed in individual
farrowing crates. Depth sensors were placed on top of each stall
in three farrowing rooms and controlled by mini-computers.
Algorithms were able to accurately classify sow behavior (sitting:
99.4%, standing: 99.2%, kneeling: 99.7%, and lying: 99.9%). This
autonomous system enables acquisition of a large amount of
replicated data, and this research is a great example of integrated
technology into on-farm environments that can potentially
generate phenotypic records for genomic selection purposes.
Lao et al. (2016) also used a machine vision-based system that
automatically recognizes sow behavioral activities (e.g., lying,
sitting, standing, kneeling, feeding, drinking, and shifting) in
farrowing crates. The system consists of a low-cost 3D camera
that simultaneously acquires digital and depth images and a
software program that detects and identifies sow behaviors.
This algorithm achieved an accuracy of 99.9% for lying, 96.4%
for sitting, 99.2% for standing, 78.1% for kneeling, 97.4% for
feeding, 92.7% for drinking, and 63.9% for transitioning between
behaviors. As sows are individually housed in farrowing crates,
these systems will likely be very useful for selective breeding

for maternal ability [e.g., maternal behavior, piglet survival
(Hellbrügge et al., 2008a)], and other alternative breeding goals
(Baxter et al., 2011; Muns et al., 2016).

Another use of machine vision is analyzing the overall posture
of the animal to detect lameness (and genetically select for
improved hoof health). Blackie et al. (2013) evaluated kinematic
gait analysis to assess stride characteristics, joint flexion and spine
posture in dairy cows with different lameness status. The dairy
cows were video-recorded walking along an alley (1.6 m wide),
with colorful markers placed in specific parts of their bodies. In
this case, the need for markers is a limitation for measuring large
numbers of animals. Under farm conditions, body movement
pattern recognition was applied to identify lameness in dairy
cattle with an accuracy of 76% (Viazzi et al., 2013). Abdul Jabbar
et al. (2017) used three-dimensional (3D) video data to analyze
gait asymmetry by simultaneously tracking the movements of
the spine and hind limbs of dairy cows and precisely identified
95.7% of lame cows. Body condition score is another variable
that can be automatically recorded, including through the use of
a Kinect camera (Microsoft Corp., Redmond, WA, United States)
triggered by passive infrared motion detectors (Spoliansky et al.,
2016), or by modeling cow body shape from digital images
(Azzaro et al., 2011).

Tail biting is a major welfare issue in the swine industry and
is a heritable trait [i.e., can be reduced through selective breeding
(Breuer et al., 2005)]. Brünger et al. (2019) used neural networks
to identify tail lesions in pictures from 13,124 pig carcasses and
was able to correctly identify 74% of tail lesions and 95% of
tail losses. Also in pigs, the behavioral and clinical alterations of
growing pigs infected with two common strains of Salmonella
spp. were investigated using a video-recording system (Ahmed
et al., 2014). Recordings were able to detect clear changes in
pigs’ movement, feeding and drinking behavior in response to
Salmonella spp. infection. Additionally, Porto et al. (2015) used
a multi-camera video-recording system to detect cow feeding
behavior with an accuracy of 88% for feeding and 86% for
standing behavior. Furthermore, Vetters et al. (2013) used an
infrared sensor to determine the flight speed, to cross a fixed
distance of 1.83 m, when exiting the squeeze chute as an indicator
of cattle temperament.

Heart rate and heart rate variability are indicators of
cardiovascular system functioning and cardiac autonomic
modulation that are used to estimate physiological and
psychological stress in animals (von Borell et al., 2007).
In recent years, optical methods for measuring heart rate
have received increased interest and technical development
(Halachmi et al., 2019). Beiderman et al. (2014) proposed
a photonic remote sensing system assembled on a robotic
platform to measure important biological indicators such as
heart beating, breathing and chewing activity. In this research,
the algorithm development used image processing and image
pattern recognition techniques. This promising technology can
be used in livestock breeding farms to generate useful and
practical information about animal welfare and stress resilience
to incorporate into breeding programs.

Machine vision can generate a large amount of data
in individual animals with high precision and through
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remote sensing (non-invasive method), but there is still a
need to optimize accurate data collection and individual
identification/recognition (connecting images to animal ID is
still a challenging process). Kashiha et al. (2013) investigated the
feasibility of an automated machine vision method to identify
marked pigs in a pen and achieved an accuracy of 88.7%.
However, more efficient alternatives are still needed. Major and
on-going advancements are happening in this area. For instance,
facial recognition to identify individual animals is currently
being investigated (Hansen et al., 2018).

Wurtz et al. (2019) performed a comprehensive systematic
review of studies that used machine vision technology to
assess behavior of indoor-housed farm animals. The authors
highlighted the need to build upon existing knowledge, instead of
developing devices from scratch, and validate these devices under
commercial settings (in large scale). Some equipment cannot
be used for measuring large numbers of animals, which is a
constraint for generation of data for breeding purposes.

Activity Sensors (Accelerometers,
Activity Monitors)
Activity sensor or accelerometer devices are becoming popular
in commercial livestock operations and, therefore, have great
potential to generate large-scale datasets for breeding purposes.
In general, accelerometers contain several sensors that record
location and transmit velocity and acceleration data in one or all
three dimensions (Benjamin and Yik, 2019). This includes static
forces (e.g., animal is lying down), as well as movements (e.g.,
walking; Benjamin and Yik, 2019). These devices can be attached
to different parts of the animal body (e.g., ear, neck, back, feet, and
legs) and classify a variety of activities such as feeding, gait (and
lameness), lying, panting, ruminating, standing, walking, nest-
building (pigs), and grazing behavior (Cornou and Lundbye-
Christensen, 2008; Escalante et al., 2013; Oczak et al., 2015;
Thompson et al., 2016; Traulsen et al., 2018; Alsaaod et al., 2019;
Benaissa et al., 2019; Halachmi et al., 2019). These metrics can
be used as indicators of welfare (including health status) and for
detection of positive or negative welfare status (Alsaaod et al.,
2019; Benaissa et al., 2019). For instance, day-to-day variation
in activity has been successfully used for lameness detection in
dairy cattle (De Mol et al., 2013; Alsaaod et al., 2019), which is a
heritable trait (Chapinal et al., 2013). Accelerometers and activity
loggers have been also used in poultry to record the development
of space use in layers housed in multi-tiers aviaries (Kozak et al.,
2016a,b) and gait in grower and finisher turkeys (Dalton et al.,
2016). Results reported in de Haas et al. (2017) suggest that
activity patterns recorded by accelerometers can help to detect
the onset of feather pecking. Therefore, recording devices such
as accelerometers and activity monitors are sensitive to detect the
development of behavioral and health problems in livestock.

In this section, we describe some studies using activity sensors
that generated data feasible for inclusion in selective breeding
schemes. The pedometer is a commonly used activity-monitoring
device in dairy cattle, and there are multiple types available in
the market. For instance, Shepley et al. (2017) and Mattachini
et al. (2013) reported the successful application of pedometers

for calculating activity and detecting lying behavior in dairy
cows, respectively. Oczak et al. (2015) used accelerometer data
(ear tag with a 3-axis accelerometer sensor) to determine nest-
building behaviors of non-crated farrowing sows with more
than 85% accuracy. This could aid in the generation of data
to improve genetic selection for maternal behavior and piglet
survival. Borchers et al. (2016) evaluated six different triaxial
accelerometer technologies that provided accurate assessment of
cow behavior, including feeding time, lying time, and rumination
pattern. Along the same lines, Benaissa et al. (2019) used leg- and
neck-mounted accelerometers combined with machine learning
algorithms to automatically record dairy cow behavior (i.e., lying,
standing, and feeding behavior) with high precision (80–99%)
and sensitivity (87–99%).

Activity sensors can also be useful in outdoor production
systems. For instance, González et al. (2015) performed
unsupervised behavioral classification of electronic data collected
at high frequency from collar-mounted motion and GPS sensors
in grazing cattle. The behaviors assessed included foraging,
ruminating, walking, resting, and “other active behaviors”
(which included scratching against objects, head shaking, and
grooming). Similar results have also been presented in other
studies (e.g., Williams et al., 2016; Manning et al., 2017). As
wireless data transfer in real time from collar transmitters to
data analysis stations is possible and feasible, the large datasets
generated are another great source of potential welfare indicators
to include in pasture-based breeding schemes. In free-stall-
housed dairy cattle, Bikker et al. (2014) indicated the potential use
of a 3-D accelerometer that can be attached to ear identification
tags and used to classify behaviors (e.g., resting, ruminating)
based on ear movements.

In summary, accelerometers are small and low-cost devices
that can be embedded into wearable sensors used in wireless
sensor networks to generate and transfer real-time data to
databases (data center stations). They are usually used for
tracking animals’ positions and recording locomotion and
activity/inactivity patterns in general (Benjamin and Yik, 2019),
but a large number of traits can be derived from the data collected
(Williams et al., 2016). In addition to using all the data generated
for management (e.g., reproduction, disease detection) purposes,
there is still a greater need to investigate the usefulness of such
datasets for breeding more resilient animals with a better welfare.
We expect that the recent availability of large-scale datasets
generated by such devices in herds/flocks of animals with both
pedigree and genomic information has great potential to redirect
livestock breeding goals.

Acoustic Sensing (e.g., Vocalization)
Livestock vocalizations can be a good source of information
about animal welfare status and social interactions (Exadaktylos
et al., 2014; Neethirajan, 2017). Acoustic sensing is a non-invasive
method, inexpensive, and less dependent on lighting or the
specific position of the animal (Mcloughlin et al., 2019). Some
studies have investigated the relationship between vocalization
and health (Exadaktylos et al., 2008; Silva et al., 2009; Ferrari
et al., 2010), poultry welfare (Zimmerman and Koene, 1998),
stress events [e.g., piglet crushing (Manteuffel et al., 2017), pain
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during husbandry procedures (Marchant-Forde et al., 2009)], and
feeding behavior based on pecking sound (Aydin et al., 2014).
Various devices have been developed over time. For instance,
a microphone can be installed in rumination neck collars
to record rumination time based on sounds of regurgitation
(Ambriz-Vilchis et al., 2015).

Despite the wealth of information that can be captured by
sounds, acoustic devices are a more challenging source of data
collection for livestock breeding purposes. Most commercial
breeding programs are of medium to large size and intensive
systems (i.e., many animals are housed together at high stocking
density). Various sounds are therefore produced at the same
time, and sound analysis or sound recognition becomes difficult
due to background noise (Du et al., 2018). Identifying the focal
animal emitting the vocalization is also challenging, especially
under on-farm conditions (e.g., noise background due to feeding
and ventilation equipment, other animals). There are automatic
measurement techniques and software being developed that
could focus on specific vocalizations at specific time points (e.g.,
transport, handling; Moura et al., 2008; Halachmi et al., 2019).
There might also be an opportunity to combine technologies such
as machine vision, machine learning, and acoustic sensors.

Automatic Milking Systems (Milking
Robots)
With the intensification of dairy cattle production, automated
milking systems (AMS; milking robots) are becoming more
popular around the world. Labor cost savings in AMS have been
estimated to range from 18 to 46% (Rotz et al., 2003; Mathijs,
2004; Bijl et al., 2007). In addition, the benefits of AMS include
higher milk production per cow as a result of greater milking
frequency (Tremblay et al., 2016; Tse et al., 2017), improved
cow welfare (Jacobs and Siegford, 2012), earlier and easier
disease detection (Tse et al., 2017), more interesting/fewer routine
activities for the dairy producers (Woodford et al., 2015), and
more flexible lifestyle to the farmers compared to conventional
milking systems. The proportion of dairy farms using AMS is
expected to increase substantially over the next years. Moreover,
AMS generate a large amount of data that can be used to
derive phenotypes that can be helpful for breeding purposes [e.g.,
disease disorders (King and DeVries, 2018)].

Several variables influence the welfare, performance, and
efficiency of milk production in AMS. These traits include: (1)
the willingness of the cow to voluntarily enter the milking robots.
Therefore, milking interval and frequency are largely influenced
by individual cow motivation. In this regard, cow training has
been identified as a key challenge by producers (Tse et al.,
2018). Thus, genetically selecting cows that are easier to train
(or other motivation traits to enter the milking robot, such as
low neophobic cows) is highly desirable; (2) cow ability to stay
calm during cleaning/disinfection and attachment of milking
equipment, especially in the presence of sounds and mechanical
movements. Cows with a proactive temperament kick-off the
milking equipment and prolong preparation and teat attachment
times (Wethal and Heringstad, 2019); (3) inter-milking interval;
(4) udder and individual quarter milk production (as more

heterogeneous production among quarters will result in longer
retention in the milking box); (5) udder conformation and teat
size/placement, which is associated with teat cup attachment
success rate; (6) milking time and length of the milking procedure
(milking box time), which is directly associated with milking
speed; (7) milk flow rate (milking speed). It is worth noting that
milking speed is unfavorably correlated with udder health, and
consequently, both traits need to be considered simultaneously
(Sewalen et al., 2011). In addition, (8) cow dominance behavior,
as more submissive cows are forced to wait for a longer period
of time and forced to adjust their feeding behavior and milking
times; and, (9) ability to quickly leave the milking robots after the
last teat cup is removed. Despite the importance of all these traits,
relatively few studies have investigated how they can be quantified
based on data generated in AMS, their genomic predictive ability,
and the degree to which these traits are associated with longevity,
health (e.g., mastitis), and other economically and welfare
important traits. This is a great source of data that can be used
to genetically improve various resilience and performance traits
in dairy cattle. More recently, some studies have investigated
the genetic background of AMS-derived traits, indicating that it
generates various variables that are heritable (Table 2).

Individual Feed Intake Recording
Systems
Individual feed intake recording systems are usually used for
collecting data to enable precision management as well as
genetic and genomic selection for improved feed efficiency
(Hoque and Suzuki, 2009; Egger-Danner et al., 2014; Hadinia
et al., 2019). However, there are additional variables that can
be used as proxies of animal resilience and feeding behavior
(Maselyne et al., 2015; Putz et al., 2019). For instance, voluntary
variations in feed intake can indicate disease resilience, feeding
competition, or negative agonistic interactions (Ahmed et al.,
2014; Munsterhjelm et al., 2015; Matthews et al., 2016; Putz et al.,
2019). In some cases these changes might not differ with regards
to the total consumption but rather the frequency and duration
of feeding activities (Tolkamp et al., 2011).

There is a large number of automated feeding systems
commercially available that can be used to measure feed intake,
feeding behavior, and other related variables (Hoque and Suzuki,
2009; Chen et al., 2010; Maselyne et al., 2015; Johnston et al.,
2016; Matthews et al., 2016). Most systems use specially-designed
single-space feeders (Maselyne et al., 2015). In general, there is
a RFID (radio-frequency identification) antenna to identify the
focal animals feeding and traits of their feeding bout. In addition
to consumption rate (i.e., feed intake per unit of time), various
other variables can be extracted such as the frequency of meals,
meal duration, feeding duration, feeding pattern (e.g., time of the
day; Maselyne et al., 2015), agonistic behaviors, and dominance
relationships among dairy cows (Foris et al., 2019). Automatically
recorded datasets have been used to understand the genomic
background (including GWAS) of feeding behavior traits such as
daily number of feeder visits, feeding time and duration per visit,
and total daily duration at feeder (Do et al., 2013). Predictors or
early indicators of tail biting outbreaks have been identified using
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TABLE 2 | Heritability estimates for traits derived from Automated Milking Systems (AMS; milking robots) in Holstein (HO), Norwegian Red (NR), and Swedish
Red (SR) cattle.

Trait Measurement protocol or trait definition Breed Heritability (SE) References

Attachment failures (%) Proportion of milkings with at least one
attachment failure

HO, SR 0.21 (0.07)–0.31 (0.07) Carlström et al., 2016

Average flow rate (kg/min) Average of the milk flows measured for each
quarter within 1 milking

HO, SR 0.37 (0.06)–0.48 (0.08) Carlström et al., 2013

Average milk flow Average milk flow in kg/min HO 0.25 (0.07) Viviana Santos et al., 2018

Box time Time from when a cow enters the AMS to when
it exits the milking unit

NR 0.27 (0.03) Wethal and Heringstad, 2019

Box time (min) Difference between begin and end time HO, SR 0.21 (0.05)–0.44 (0.07) Carlström et al., 2013

Distance front-rear (mm) Average distance between the front and rear
teat ends

HO 0.56 (0.02)–0.61 (0.02) Poppe et al., 2019

Electrical conductivity from all
four quarters

Electrical conductivity was used as an indicator
reflecting the udder health status

HO 0.53 (0.09) Viviana Santos et al., 2018

Electrical conductivity Electrical conductivity (EC) measured as
maximum (ECmax) and mean (ECmean)

HO 0.23–0.35 (0.03) Wethal et al., 2020

Elevated mastitis risk Please see the formula in the reference HO 0.09 (0.04) Wethal et al., 2020

Flow rate Average kg of milk/min of milking time NR 0.48 (0.04) Wethal and Heringstad, 2019

Front teat distance (mm) Distance between left and right front teat ends HO 0.53 (0.03)–0.60 (0.02) Poppe et al., 2019

Handling time Difference between box time and milking time
and sums the time before the milk starts flowing
and the time from when the last teat cup was
removed to the time the cow leaves the system

NR 0.05 (0.01) Wethal and Heringstad, 2019

Handling time (min) Difference between box time and milking time HO, SR 0.05 (0.02)–0.15 (0.03) Carlström et al., 2016

Incomplete milking (%) Proportion of incomplete milkings out of all
milkings throughout the lactation

HO, SR 0.02 (0.03)–0.06 (0.05) Carlström et al., 2016

Incomplete milkings Number of daily milkings with a minimum of one
teat registered as incompletely milked

NR 0.01 (0.01) Wethal and Heringstad, 2019

Interval between two
consecutive milkings

Time span between two consecutive milkings HO 0.07 (0.03) Viviana Santos et al., 2018

Kick-offs Daily number of milkings with at least one teat
cup kick-off

NR 0.06 (0.01) Wethal and Heringstad, 2019

Log-transformed handling time Log of handling time NR 0.07 (0.02) Wethal and Heringstad, 2019

Log-transformed online cell
count

Udder health indicator HO 0.09 (0.03) Wethal et al., 2020

Milk yield at a quarter basis:
front left

Milk yield measured by the AMS HO 0.19 (0.06) Viviana Santos et al., 2018

Milk yield at a quarter basis:
front right

Milk yield measured by the AMS HO 0.05 (0.06) Viviana Santos et al., 2018

Milk yield at a quarter basis:
rear left

Milk yield measured by the AMS HO 0.11 (0.06) Viviana Santos et al., 2018

Milk yield at a quarter basis:
rear right

Milk yield measured by the AMS HO 0.08 (0.05) Viviana Santos et al., 2018

Milking efficiency Ratio of milk yield (kg) and box time (min) NR 0.22 (0.03) Wethal and Heringstad, 2019

Milking frequency Recorded by the AMS HO 0.14 (0.01) Nixon et al., 2009

Milking frequency Number of milkings per day NR 0.05 (0.01) Wethal and Heringstad, 2019

Milking interval Difference between the begin time for the
present milking and the begin time for the
previous milking

SR 0.09 (0.03)–0.23 (0.05) Carlström et al., 2013

Milking interval Time between milking sessions NR 0.02 (<0.01) Wethal and Heringstad, 2019

Milking interval (hours) Difference between the begin time for the
present milking and the begin time for the
previous milking

HO 0.17 (0.05)–0.26 (0.05) Carlström et al., 2013

Number of milkings Number of milkings per cow per 24 h HO, SR 0.02 (0.01)–0.07 (0.01) Carlström et al., 2013

Rear teat distance Distance between left and right rear teat ends in
mm

HO 0.37 (0.03)–0.47 (0.02) Poppe et al., 2019

Rejected milkings Number of visits for cows in the AMS without
being milked

NR 0.02 (<0.01) Wethal and Heringstad, 2019

(Continued)
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TABLE 2 | Continued

Trait Measurement protocol or trait definition Breed Heritability (SE) References

Teat not found Defined as the number of daily milkings in
which the AMS was unable to find at least one
of the teats for milking

NR 0.002 (0.004) Wethal and Heringstad, 2019

Total milk yield per day Milk yield measured by the AMS HO 0.18 (0.06) Viviana Santos et al., 2018

Udder balance (mm) Average difference in distance to the floor
between the front and rear teat ends

HO 0.38 (0.03)–0.40 (0.02) Poppe et al., 2019

Udder depth (mm) Average distance of teat ends to the floor HO 0.65 (0.02)–0.69 (0.02) Poppe et al., 2019

data from electronic feeders (Wallenbeck and Keeling, 2013),
suggesting another potential source of data for selective breeding
against damaging and aggressive behaviors in pigs.

Automated calf feeders are becoming more common as
well (Johnston et al., 2016). These systems deliver milk via a
nipple at volumes and frequencies that resemble natural calf
feeding behavior, support faster growth (De Paula Vieira et al.,
2008), and promote calf health such as reduced sickness events
(Godden et al., 2005; Barkema et al., 2015). The data generated
(e.g., individual milk intake rate, frequency of feeding events)
can also be used to derive proxies for genomic selection for
improved calf health and overall resilience variables for genomic
selection purposes.

In the case of poultry, precision feeding stations in
broiler breeders can provide individual information about their
performance in terms of growth rate and feed intake during
rearing and lay (Hadinia et al., 2019). This information allows
individual and automatic management of the feed restriction
level and improve body weight uniformity in the flock (Zuidhof,
2018). For breeding selection purposes, individual performance
records with precision feeding enable selection for feed efficiency.
Feed efficiency in addition to other traits in the pedigree lines
facilitates the selection of a parent stock with high welfare and
performance that need low feed intake for the same growth rate.

In summary, automated feeding systems are becoming
popular in livestock production and the large amount of data
generated can also be used to derive welfare and resilience
indicators for genetic and genomic selection (Howie et al., 2009,
2011). Studies investigating the genetic background of traits
measured by automated feed intake recording systems are shown
in Table 3.

Microbiota Profiling
The gut microbiome can influence various host biological
processes including immunity, growth, metabolism, brain
development and functioning, behavioral stress (both acute
and chronic), neurophysiological disorders, and emotional well-
being such as anxiety and depression (Mu et al., 2016; Karsas
et al., 2018; Kraimi et al., 2019). Therefore, an alternative
(and complementary route) approach for minimizing welfare
issues might be by altering the gut microbiota through
selection (i.e., host-microbiome interactions), dietary changes
(Parois et al., 2020), and management processes (Kurilshikov
et al., 2017; Kraimi et al., 2019). There is evidence of
a bidirectional interaction between the host and the gut

microbiome in which changes in the microbial community
affect host behavior and perturbations in behavior alter the
composition of the gut microbiota (Collins and Bercik, 2009;
Mu et al., 2016).

In pigs, the interplay between gastrointestinal tract
microbiota, host genetics, and complex traits (mainly related
to growth and feed efficiency) was investigated using extensive
quantitative-genetic methods and they found that the bacteria
genera had a significant narrow sense host heritability ranging
from 0.32 to 0.57 (Camarinha-Silva et al., 2017). Another study
compared the gut microbiota of two chicken lines raised under
the same husbandry and dietary conditions and reported that
68 (out of 190) microbiome species were affected by genotype
(line), gender and genotype by gender interactions (Zhao et al.,
2013). In addition, the genetic relationships between behavior
and digestive efficiency was investigated in 860 chickens from
a cross between two lines divergently selected on digestive
efficiency (Mignon-Grasteau et al., 2017). The authors detected
common genomic regions for the presence of bacteria such as
Lactobacillus and L. crispatus and traits such as feeding behavior
(Mignon-Grasteau et al., 2017). A pilot study investigated
the effects of early-life microbiota transplantation on feather
pecking, and behavioral and physiological traits related to feather
pecking (van der Eijk et al., 2020). The researchers reported that
chicken lines with divergent genetic merit for feather pecking
had different microbiota composition. Furthermore, early-life
microbiota transplantation had immediate and long-term effects
on behavioral responses and long-term effects on immune
characteristics and peripheral serotonin; however, the effects
were dependent on the host genotype (van der Eijk et al., 2020).

Targeted sequencing and metagenome shotgun sequencing are
the two main approaches for generating microbiome profiling.
Recently, a low-cost and high-throughput approach based on
Restriction-Enzyme Reduced Representation Sequencing (RE-
RRS) has been proposed as an alternative to capture the
diversity of the rumen microbiome (Hess et al., 2020). As
the costs to generate sequencing datasets decrease, microbiome
profiling might be an additional relevant phenotype for
further investigations and potential applications for selection to
improved welfare in livestock species.

Qualitative/Subjective Scores of
Behavioral/Welfare Indicator Traits
Qualitative and subjective scoring are additional approaches to
assess animal welfare. Many of these indicators can be collected
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TABLE 3 | Heritability estimates for traits derived from automated feeding systems in sheep, swine and cattle.

Trait Measurement protocol or trait definition
(general observations)

Species Heritability (SE) References

Feed intake at the visit Feed intake recorded by the automatic feeder Sheep 0.38 (0.07) Marie-Etancelin et al., 2019

Feeding duration at the visit Time recorded by the automatic feeder Sheep 0.28 (0.06) Marie-Etancelin et al., 2019

Between−visit time Between−visit time interval Sheep 0.38 (0.07) Marie-Etancelin et al., 2019

Feeding rate Defined as the ratio between feed intake and
feeding duration

Sheep 0.37 (0.06) Marie-Etancelin et al., 2019

Number of meals per day A minimum of two consecutive data points
were required to constitute a meal

Swine 0.315 (0.075) Rohrer et al., 2013

Average meal length (s) Meal length was calculated as number of
consecutive data points times 20 s

Swine 0.604 (0.087) Rohrer et al., 2013

Daily meal time (m) Recorded by the feeder – no details presented Swine 0.37 (0.079) Rohrer et al., 2013

Percentage of meals alone Recorded by the feeder – no details presented Swine 0.391 (0.076) Rohrer et al., 2013

Average number of pigs at feeder Recorded by the feeder – no details presented Swine 0.514 (0.081) Rohrer et al., 2013

Percentage of meals at gate-side Recorded by the feeder – no details presented Swine 0.157 (0.056) Rohrer et al., 2013

Percentage of meals at open-side Recorded by the feeder – no details presented Swine 0.213 (0.070) Rohrer et al., 2013

Feeding duration, min·d-1 Recorded by the feeder – no details presented Cattle 0.25 (0.16) Durunna et al., 2011

Head-down time, min·d-1 Recorded by the feeder – no details presented Cattle 0.14 (0.15) Durunna et al., 2011

Feeding rate, kg·h-1 Recorded by the feeder – no details presented Cattle 0.35 (0.16) Durunna et al., 2011

Feeding frequency, visits·d-1 Recorded by the feeder – no details presented Cattle 0.56 (0.19) Durunna et al., 2011

Feeding duration, min·d-1 Recorded by the feeder – no details presented Cattle 0.14 (0.11) Durunna et al., 2011

Head-down time, min·d-1 Recorded by the feeder – no details presented Cattle 0.09 (0.1) Durunna et al., 2011

Feeding rate, kg·h-1 Recorded by the feeder – no details presented Cattle 0.67 (0.19) Durunna et al., 2011

Feeding frequency, visits·d-1 Recorded by the feeder – no details presented Cattle 0.59 (0.18) Durunna et al., 2011

on a large scale and incorporated into livestock breeding schemes
to enhance animal welfare and overall resilience. For instance,
Hessing et al. (1993) suggested using the back-test as a stress
indicator in pigs. In brief, pigs are manually restrained on their
backs for a certain period of time (e.g., 1 min) and are scored
based on their behavioral responses to assess reactivity and
proactivity. For example, Rohrer et al. (2013) used the back-
test to determine the effects of early-life handling in pigs. In
addition to the back-test, Løvendahl et al. (2005) estimated
variance components for aggressive behavior of sows at mixing
by counting the number of mild or severe aggressive behaviors
performed or received during 30 min after grouping and
determined maternal ability by recording the sows’ responses to
piglet vocalization during handling.

Additional subjective scoring systems of temperament
include: docility score in cattle (Adamczyk et al., 2013; Haskell
et al., 2014; Schmidt et al., 2014), milking temperament in dairy
cattle (Chang et al., 2020), maternal behavior and reactivity
in mobile chute in Zebu cattle (Peixoto et al., 2011), and tests
involving novelty, emotional reactivity, human contact and social
isolation (Boissy et al., 2005; Mignon-Grasteau et al., 2017; Larsen
et al., 2018). Furthermore, health scoring systems have also been
proposed: lung scoring (as an indicator of pneumonia resistance,
McRae et al., 2016), FAMACHA eye color chart scoring in sheep
and goats [as an indicator of internal parasite resilience (Kaplan
et al., 2004)], and body condition scoring (Köck et al., 2018).
In addition to the objective indicators of climatic resilience
presented before, some examples of qualitative scores of climatic
resilience are: hair length in cattle (Piccoli et al., 2020), drooling
score, respiration rate, and panting score (Gaughan et al., 2008;

Schütz et al., 2014). Lameness scoring systems are widely used
across livestock species (Thomsen et al., 2008; Reader et al., 2011;
Nalon et al., 2013; Granquist et al., 2019). In cattle raised in
extensive production systems, important adaptation traits have
been genetically and genomically evaluated, including prepuce
(navel) score, hair length score, and ocular pigmentation score,
in addition to tick resistance (based on tick count; Piccoli et al.,
2020). There are various methods available to aggregate multiple
indicators to produce an overall assessment of animal welfare
(Botreau et al., 2007a,b).

Despite the usefulness of qualitative scoring systems, it is
important to note that observer bias and experience can influence
subjective scores of animal behavior and welfare (Tuyttens et al.,
2014). Fleming et al. (2016) presents a detailed description
on the contributions of qualitative behavioral assessments in
livestock welfare.

LARGE-SCALE DATA ANALYSIS:
STATISTICAL AND COMPUTATIONAL
METHODS

Major technological advancements in large-scale data analyses
have been mainly driven by the availability and use of PLF
technologies (Rutten et al., 2013). The advancements in data
collection have been accompanied by the development and
refinement of sophisticated statistical and data analysis methods.
In this regard, a plethora of machine learning approaches have
been applied (and is currently in expansion) in livestock breeding
programs (Nayeri et al., 2019).
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TABLE 4 | Heritability estimates for traits derived from various technologies and biomarkers in chicken and cattle.

Technology (summary) Trait Measurement protocol or trait
definition (general observations)

Species Heritability (SE) References

Camera Frequency of feeding Determined by the focal sampling
on each individual (a meal was
defined as a sequence during
which birds were continuously
feeding and which was separated
from another feeding event by more
than 3 s)

Chicken 0.06 (0.02) Mignon-Grasteau et al.,
2017

Camera Frequency of moving Recorded by camera – no details
presented

Chicken 0.09 (0.07) Mignon-Grasteau et al.,
2017

Camera Frequency of lying Recorded by camera – no details
presented

Chicken 0.10 (0.06) Mignon-Grasteau et al.,
2017

Infrared sensors Flight speed (m/s) Infrared sensors were used to
trigger the start and stop of the
timing system

Cattle 0.49 (0.18) Nkrumah et al., 2007

Milk infrared spectra Blood β-hydroxybutyrate at
11 to 30 DIM

Blood BHB was predicted from milk
spectra

Cattle 0.248 (0.005) Belay et al., 2017

Milk infrared spectra Blood β-hydroxybutyrate at
31 to 60 DIM

Blood BHB was predicted from milk
spectra

Cattle 0.274 (0.004) Belay et al., 2017

Milk infrared spectra Blood β-hydroxybutyrate at
61 to 90 DIM

Blood BHB was predicted from milk
spectra

Cattle 0.322 (0.005) Belay et al., 2017

Milk infrared spectra Blood β-hydroxybutyrate at
91 to 120 DIM

Blood BHB was predicted from milk
spectra

Cattle 0.360 (0.005) Belay et al., 2017

Transponder Daily feeding duration
(min/d)

Daily feeding duration was
computed as the sum of the
difference between feeding event
end-times and start times per day
for each animal

Cattle 0.28 (0.12) Nkrumah et al., 2007

Transponder Daily feeding head down
time (min/d)

Sum of the number of times the
electronic identification
(transponder) of the animal was
detected by the Growsafe system
during a feeding event multiplied by
the scanning time of the system

Cattle 0.33 (0.12) Nkrumah et al., 2007

Transponder Daily feeding frequency
(events/d)

Number of independent feeding
events for a particular animal in a
day (recorded by the transponder)

Cattle 0.38 (0.13) Nkrumah et al., 2007

The development of prediction equations for welfare indicator
traits is expected to increase. In the case of dairy species, milk
MIR has a great potential to be used as indirect predictor of many
traits that are expensive or difficult to measure directly, including
health status indicators (De Marchi et al., 2014; Bastin et al., 2016;
Dórea et al., 2018).

The wide availability of large-scale and high-throughput
phenotypes requires adequate computational capacity and
powerful software to store, manage, and rapidly (or real time)
transfer data from farms (or other data recording stations)
to central databases. High-throughput data extraction can be
performed using software such as Pig1, MapReduce2, and
Hadoop3 (Koltes et al., 2019). The definition of the methods to
convert the stored phenotypes into useful information for real-
time management decisions in the farm or breeding purposes
is still a challenging task (Koltes et al., 2019). Therefore, the

1https://pig.apache.org/
2https://en.wikipedia.org/wiki/MapReduce
3https://hadoop.apache.org/

development of statistical methods such as machine learning and
neural artificial intelligence are of great relevance.

Phenotypic quality control is one of the first steps in the data
analysis process and consists of removing noise and outliers. Data
standardization or transformation can also be needed depending
on the statistical model assumptions, when merging datasets
from different populations, or when using different equipment,
calibration methods, or data collection protocols (Norton and
Berckmans, 2018). Big data handling and manipulation requires
good computational infrastructure and efficient programming
methods (Nayeri et al., 2019). Furthermore, most PLF devices
generate repeated records for each individual [i.e., longitudinal
traits (Oliveira et al., 2019a)], which are highly desirable for
monitoring livestock welfare. However, the covariance structure
among records needs to be considered in the statistical models
(Oliveira et al., 2019a).

Defining the appropriate statistical methods and models to
be used for data analyses is paramount for the accuracy of the
results obtained. However, this can be challenging when there is
a large number of variables extracted from the high-throughput
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phenotypic datasets (Koltes et al., 2019; Nayeri et al., 2019). In
the case of predictive modeling, feature selection can improve
model performance and avoid or reduce model overfitting (Saeys
et al., 2007), as well as improving the model interpretability
(Butterworth, 2018).

One approach to analyze high-throughput phenotypic data
consists of statistically evaluating differences between the
averages of groups (Norton and Berckmans, 2018), considering
all together or within specific time points. Thus, the research
question needs to be clearly described, which is directly related
to the final goal of using the monitoring algorithm (Nayeri
et al., 2019). Common examples of welfare-related objectives are
recognizing cow gait score or footpad lesion scores in chickens
(Norton and Berckmans, 2018). The next step consists of defining
the reference points that can be used to draw a conclusion related
to the final algorithm-use goal (Butterworth, 2018).

When fitting longitudinal records, many popular statistical
methods will frequently overfit the data, due to its high
dimensionality and rank deficiency (Butterworth, 2018). In this
context, machine learning is viewed as a key method to deal
with big data, and it has proven to be useful in classifying
individuals through supervised learning algorithms (Nayeri
et al., 2019). The classification methods based on supervised
learning algorithms can use class labels previously defined by
the researcher, or by permitting the unsupervised learning
(Saeys et al., 2007). However, other methods such as neural
networks, support vector machines, linear and non-linear density
based classifiers, decision trees, naive Bayes, wavelet analysis,
k-nearest neighbor, and k-means have also being reported in
the literature in terms of classification analysis (Butterworth,
2018; Koltes et al., 2019; Nayeri et al., 2019). For instance,
Bakoev et al. (2020), evaluated the prediction accuracy of nine
machine learning classification algorithms and reported that
Random Forest and K-Nearest Neighbors better predicted pig leg
weakness based on measurements taken at an early stage of the
animal development.

GENETIC AND GENOMIC SELECTION
TO ENHANCE ANIMAL WELFARE AND
OVERALL RESILIENCE

There are two main options to evaluate animal welfare (based
on resilience indicators) in a breeding program (Knap, 2008):
(1) using reaction norm analysis, which enable the estimation
of breeding values for production performance considering
different environmental gradients (indirect approach), or, (2)
directly including the measurable welfare traits in the breeding
goal and in the selection indexes (direct approach), as mentioned
in the previous sections in this review. However, usually reaction
norms have been used for genetic evaluations of livestock animals
due to the arduousness of using the direct approach and correctly
defining the measurable trait (Rauw and Gomez-Raya, 2015).

Reaction norm has been defined as the expression pattern
of a trait along a continuous environmental gradient (de Jong,
1995; Knap, 2005). Several variables can be used as environmental
gradients in the reaction norms, such as disease exposure, social

stress, temperature, and nutrient quality (Rauw and Gomez-
Raya, 2015). Thus, animals maintaining production, health, and
coping well across the environmental gradient are suggested to be
more resilient (Rauw and Gomez-Raya, 2015). Although reaction
norms are mostly described as linear relationships, they can take
more complex shapes. Thus, the first derivative of the function
in that environment is defined as plasticity, i.e., the difference in
trait measurements between environments (de Jong, 1995).

Reaction norm models have been mainly applied to beef
and dairy cattle, due to the wide use of artificial insemination
and consequently dispersion of semen into several different
environments. Therefore, this wide range of environments
facilitate the investigation of changes in the expression of traits
through a continuous descriptor of environments (Rauw and
Gomez-Raya, 2015). In this context, Ravagnolo and Misztal
(2002) estimated the genetic component of heat tolerance for
non-return rate in Holstein cattle using a random regression
animal model (Oliveira et al., 2019a) and temperature humidity
index (THI). THI was calculated using temperature and humidity
data provided by public weather stations, which can be obtained
from on-line sources in various countries. For instance, this
has been done in beef cattle for birth weight, weaning weight,
post-weaning weight gain, and yearling scrotal circumference
by using reaction norms and the contemporary groups as the
environmental descriptor (Santana et al., 2013).

Another interesting application of reaction norms is for
genomic prediction of breeding values. Few studies have reported
the estimation of breeding values for animals in different
environments using either a multiple-step (Silva et al., 2014) or
single-step (Mota et al., 2016; Oliveira et al., 2018) approach.
In this context, Silva et al. (2014) concluded that reaction
norms should be used for proper genomic evaluation of total
number of piglets born. Moreover, Oliveira et al. (2019b) showed
that random regression models can be used to estimate Single
Nucleotide Polymorphism (SNP) effects over time in genome-
wide association studies.

Despite the great potential of reaction norm models for
genetic and genomic evaluation of livestock animals, they
have not been used to model welfare indicators yet. However,
Sih et al. (2004) proposed that behavior can be included in
reaction norms models. Similarly, Dingemanse et al. (2010)
indicated that animal behavior can be described as a function
of environmental variation. In this context, Dingemanse et al.
(2012) used reaction norms to estimate genetic parameters for
exploration behavior in an open-field test of wild-caught three-
spined stickleback fish. Similar analysis can potentially be applied
to social interactions, feeding behavior, and activity patterns in
livestock production systems (Rauw and Gomez-Raya, 2015).
In addition to using climatic variables from public weather
stations, there is a growing interest on recording additional and
more precise climatic variables within production operations
(Laberge and Rousseau, 2017).

As reviewed by Egger-Danner et al. (2014), some countries
have well established health recording systems (e.g., Austria,
Canada, France, Germany, and Nordic countries), including the
use of veterinary diagnoses, whereas others focus on producer-
recorded data. Combined use of health data from farmers and
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diagnosis documented by veterinarians may be an option to
improve coverage of direct health data (Egger-Danner et al.,
2014). Data recorded in slaughter facilities (e.g., tail lesions in
pigs; skin lesions in poultry) might also be a useful source of data
for breeding purposes.

Modifying animals’ environments by eliminating all stressors
and other causes of poor welfare through management
approaches (e.g., housing, management practices, nutrition,
biosecurity) can be thought of as the soundest alternative to
improve welfare in livestock operations. However, this is very
difficult (or impossible) to achieve in commercial farms due to
economic and practical constraints and additional factors such
as climate change and antibiotic resistance. Therefore, genetically
selecting animals that are more resilient to different stressors
and better suited for that environment, while also developing
strategies to minimize the stress sources and causes of impaired
welfare, is likely to be the more successful alternative in the
long-term (Rodenburg and Turner, 2012).

There is clear within-population genetic variation to response
to stress and overall resilience (Tables 1–4), indicating that
genetic progress for enhanced animal welfare can be successfully
achieved. Direct selection for reduced stress responsiveness can
impact other relevant traits (e.g., performance, reproduction)
due to pleiotropic or linkage effects. Therefore, the practical
application of selective breeding to enhance welfare and
overall resilience will require the use of selection indexes to
enable simultaneous genetic progress on all relevant traits in
individual populations. Ignoring genetic correlations among
traits can result in undesirable effects, such as reduced welfare,
coping mechanisms, and overall resilience due to primary
selection for performance traits (Rauw et al., 1998; Rauw and
Gomez-Raya, 2015). Furthermore, ignoring direct selection for
welfare indicators could increase competition and agonistic
interactions, which would reduce welfare, and consequently,
overall productivity (Cheng, 2010; Rodenburg and Turner, 2012;
Muir et al., 2014).

Genetic and genomic selection to enhance animal welfare and
overall resilience can be achieved through multi-trait selection
and selection indexes (Muir et al., 2014), combining various
indicators of welfare and resilience, as described in this review.
These traits include both direct and indirect indicators of welfare
and resilience. Genomic selection has become the gold standard
approach for genetically evaluating and selecting breeding
animals (Meuwissen et al., 2016). This is especially advantageous
for welfare traits because genomic breeding values can be
predicted for selection candidates that have not been challenged
by a certain stressor (e.g., pathogens, heat stress). This can be
done by using data from a large training population (animals
with both phenotypes and genotypes) of individuals genetically
related that are raised under those stress conditions (e.g., tropical
regions in the case of heat stress). Genomics also provides an
opportunity to better understand the biological mechanisms
associated with each trait through genome-wide association
studies and functional analyses. In addition to genomic and
phenotypic datasets, alternative “-omic” approaches can be of
great value to unravel biological mechanisms underlying animal
welfare and to improve the accuracy of genomic predictions.

This includes multiple phenotypic layers, such as gene expression
(transcriptomics), epigenomics (e.g., DNA methylation), proteins
(proteomics), metabolites (metabolomics), lipids (lipidomics),
and microbiota (microbiomics). The integration of multi-
omic data and joint modeling and analyses are very powerful
techniques to understand the systems biology of healthy and
sustainable production of animals (Suravajhala et al., 2016).
Despite the usefulness of such approaches, there are still
many challenges and further developments to be addressed
(Suravajhala et al., 2016).

Welfare is predicted to play an important role in livestock
breeding goals (Rodenburg and Turner, 2012; Croney et al.,
2018a). This is mainly due to the clear benefits of improved
welfare in farm production efficiency and sustainability [e.g.,
reduced mortality, improved animal health, and product quality
(Dawkins, 2017)], but in certain cases can have detrimental
effects in overall production efficiency. In this context, various
livestock breeding programs have started to incorporate welfare
and resilience indicators in their breeding programs. Examples
of welfare indicators that have been investigated or included in
selection schemes in livestock breeding programs around the
world are: aggression (Løvendahl et al., 2005); behavior (Rohrer
et al., 2013); boar taint (to avoid castration; Tajet et al., 2006;
Zadinová et al., 2016), calf wellness (Gonzalez-Peña et al., 2019),
calving ease (Jamrozik and Miller, 2014; Vanderick et al., 2014;
Li and Brown, 2016), cortisol levels (Mormède et al., 2011);
docility (Norris et al., 2014); feather pecking (Dawkins and
Layton, 2012), feet and leg health (Kapell et al., 2012, 2017);
fertility disorders (Guarini et al., 2018; Fleming et al., 2019),
hoof health [in cattle (Chapinal et al., 2013; Häggman and Juga,
2013; Heringstad et al., 2018), sheep (Conington et al., 2008),
and pigs (Quintanilla et al., 2006)]; lesion scores (Wurtz et al.,
2017; Angarita et al., 2019), longevity (Serenius and Stalder,
2006; Ramos et al., 2020), mastitis (Martin et al., 2018); maternal
behavior and progeny survival (Gäde et al., 2008; Hellbrügge
et al., 2008a,b), metabolic diseases (Egger-Danner et al., 2014;
Jamrozik et al., 2016; Pryce et al., 2016), nematode resistance
(Doeschl-Wilson et al., 2008), overall resilience (Berghof et al.,
2019), paratuberculosis (Brito et al., 2018; Mallikarjunappa et al.,
2020); pre-weaning survival (Su et al., 2007; Nielsen et al., 2013);
social dominance (Tong et al., 2020); tail or ear biting (Breuer
et al., 2005), and thermal tolerance (Fragomeni et al., 2016;
Misztal, 2017; Nguyen et al., 2017; Xu et al., 2017). Genetic
selection and modern genomic techniques (e.g., gene editing)
might also be an alternative to eliminate the need for stressful
procedures in commercial applications such as cattle dehorning
(Van Eenennaam and Young, 2018).

Since domestication, artificial selection has altered coping
mechanisms of livestock animals. For instance, there is evidence
that chronic stressors have made modern laying hens more
fearful of humans than their ancestors (Jones et al., 1988; El-
Lethey et al., 2000; Jensen et al., 2006), and increased feather
pecking and cannibalism in a larger range of environmental
conditions (Canario et al., 2013; Decina et al., 2019). Also,
pigs selected for high lean growth, show increased anxiety
in the presence of humans (Scott et al., 2000) and leaner
pigs are more stressed by transport and harder to handle

Frontiers in Genetics | www.frontiersin.org 19 July 2020 | Volume 11 | Article 793

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00793 July 29, 2020 Time: 17:38 # 20

Brito et al. Large-Scale Phenotyping of Livestock Welfare

than fatter pigs (Grandin, 1998). In general, livestock breeding
programs focus primarily on direct breeding values (selection for
individual production; Rodenburg and Turner, 2012). However,
most livestock species are group-housed, and therefore, genetic
selection for associative effects (social breeding values) has
been proposed (Muir, 2003). Associative effects represent the
social impacts of one animal on the performance of another.
For instance, genetic selection based on group rather than
individual performance can reduce mortality due to aggressive
behaviors in poultry and pigs (Muir, 1996, 2005; Rodenburg
et al., 2010; Angarita et al., 2019). The incorporation of
indirect genetic effects in livestock breeding programs has the
potential to substantially increase responses to selection in traits
affected by social interactions [e.g., feather pecking, cannibalism;
(Rodenburg et al., 2010; Rodenburg and Turner, 2012)]. There
are three main methods to improve associative effects (Ellen
et al., 2014): (1) direct selection to reduce aggressiveness; (2)
multi-level selection (Bijma and Wade, 2008; Muir et al., 2013);
and (3) multi-trait selection where the direct and associative
effects of each animal are estimated and directly selected for in
a selection index (Muir, 2005; Bijma et al., 2007a,b; Muir et al.,
2014). Some factors that can impact the estimates of indirect
genetic effects are: level of competition for resources (e.g., feed,
water), stocking density, age, and body weight variation when
animals are mixed.

As previously indicated, selective breeding for enhanced
welfare may require breeding animals to be exposed to the
stressor on which the animals will be genetically evaluated
for (e.g., pathogens, thermal stress). However, breeding
nucleus animals are usually raised under high health and
biosecurity standards, in low stocking densities, and low level of
environmental stressors. Therefore, there might be genotype-
by-environment (GxE) interactions if selection is based entirely
on phenotypic records obtained in nucleus farms. Genomics
can facilitate this process, as a training population can be
developed based on animals raised in commercial farms (with
all common stressors). Therefore, GxE should be considered
when performing genomic selection for improved animal welfare
and overall resilience. For example, behavior expression might
differ based on animal group size (even at the same stocking
density), resource availability, housing system, and use of PLF
technologies (e.g., milking robot).

Practical implementation of selection to enhance animal
welfare will require the development of appropriate selection
indexes for combining indicators of welfare and overall resilience.
However, this is challenging due to the difficulty of determining
the economic value or importance of each welfare indicator
trait (Nielsen et al., 2008; Croney et al., 2018a). In this context,
the main challenges associated with the incorporation of animal
welfare in livestock breeding goals are (Nielsen et al., 2008):
(1) defining the social and economic value of improved animal
welfare; (2) the perspectives of all stakeholders (e.g., farmers,
consumers, citizens, and governmental authorities) need to
be considered when defining the breeding goals, in which a
consensus can be difficult to be achieved; and, (3) potential
antagonist relationships with performance (or other conventional
traits; Nielsen et al., 2008).

The wealth of data generated by PLF, data recording
organizations, and genotyping schemes require the availability
of good computational infrastructure, efficient software and
well-trained professionals (Morota et al., 2018; Koltes et al.,
2019). In addition to management practices, using these datasets
for breeding purposes is expected to motivate farmers to
further invest in phenotyping and genotyping tools. More
efficient use of PLF datasets include international modeling
and data-sharing initiatives and by adopting a collaboration
model between industry, researchers, farmers, and stakeholders
(Halachmi et al., 2019).

Most studies and applications of breeding for animal
welfare have focused on intensive production systems, whilst
extensive conditions (infrequent handling or reduced contact
with humans) have largely been ignored (Turner and Dwyer,
2007; Rodenburg and Turner, 2012; Turner et al., 2018). There are
welfare issues in extensive production systems (e.g., heat stress;
temperament; and disease challenge), and genetic selection for
improved welfare under those conditions should also be a priority
for breeding companies and organizations.

Agroecological and organic production systems are expected
to become more common over the next decades (Dumont et al.,
2014; Phocas et al., 2016a,b). Therefore, breeding goals will also
need to be refined for improved welfare and resilience under
those conditions (as reviewed by Phocas et al., 2016a,b). As noted
by Phocas et al. (2016a), breeding objectives for smallholder
production systems in developing countries tend to differ from
those in developed countries, especially due to environmental,
economic and socio-cultural differences. Therefore, it is clear that
welfare concerns are present across production systems, but in
different levels, and alternative approaches will need to be taken
to optimize welfare while increasing food production to meet the
demands of a growing human population.

FINAL REMARKS

Quantifying welfare is paramount for breeding more resilient
animals. Some of the main requirements for defining ideal
welfare indicators are: (1) variables should be continuously
recorded throughout the animals’ life; (2) a large number
of variables need to be accurately measured in individual
animals as biological indicators of the five freedoms, including
physiological, behavioral, and emotional state, and physical and
health characteristics; (3) data collection should be based on
non-invasive methods that do not result in additional stress or
discomfort to the animals or alter their routine or circadian
rhythms; (4) the derived phenotypes need to be collected at a
low cost to enable measurement of a large number of animals,
which is a requirement for successful implementation of genetic
and genomic evaluations; (5) phenotypic measurements that are
accurate, valid, repeatable, and comparable among laboratories,
countries, or companies is critical; and (6) the phenotypes
identified need to be heritable and repeatable.

The definition of welfare indicators is largely dependent
on a clear understanding of the biological and emotional
mechanisms behind the phenotypic variability observed in the
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animal’s response to different stimuli. Therefore, the evaluation
of animal welfare involves a complete assessment of the animal’s
physiological, behavioral, physical, and emotional state. Some of
these indicators can even be quantified prior to clinical signs of
poor welfare (e.g., clinical mastitis).

The rapid development of integrated biological (e.g., -
omics technologies) and engineering systems and the IoT is
enabling the development of affordable monitoring devices
and high-throughput technologies (Neethirajan et al., 2017).
These tools can be used to individually monitor large numbers
of animals in commercial settings and are advantageous
to quantify biological indicators through rapid, repeatable,
and automated measurements. The technological devices used
include sensors such as cameras, microphones to capture
vocalizations, thermometers, automated feeding and milking
systems, automatic scales to measure lean-fat ratios, milk spectral
data, electrodes to detect skin conductivity and heart rate,
and accelerometers. Qualitative scoring systems can also be
used to assess some aspects of animal welfare as well as data
routinely collected in commercial farms. As Animal Welfare
science evolves, novel indicators will emerge and improve our
understanding of animal welfare. Further improvements in
precision technologies, integration of data from multiple systems
and, in particular, increased training of farmers, their personnel,
and advisors to use sensor derived data will play a major role
in modern livestock production (Barkema et al., 2015). The
greater availability of high-throughput phenotyping technologies
(e.g., automated monitoring systems) in nucleus and commercial
farms, better communication and data sharing among data
recording organizations (e.g., Dairy Herd Improvement, breed
associations, veterinary clinics, and slaughter facilities), and
greater integration of complementary disciplines will contribute
to overcoming some of the challenges associated with time and
cost of welfare data collection (Wemelsfelder and Mullan, 2014).
In addition, PLF tools enable the collection of continuous and
real-time phenotypes as well as environmental conditions (e.g.,
thermal stress, humidity, and air quality; Laberge and Rousseau,
2017), that are of great use for assessing animal welfare.

Genetic and genomic selection to enhance animal welfare
and overall resilience can be achieved through multi-trait
selection and selection indexes (Muir et al., 2014), combining
various indicators of welfare and resilience. Genomic selection
is especially advantageous for welfare traits because genomic
breeding values can be predicted for selection candidates that
have not been challenged by a certain stressor (e.g., pathogens,
heat stress). Genomic selection for welfare traits, itself, is unlikely

to solve all the welfare issues in commercial livestock operations.
However, selective breeding is a complementary approach to
other strategies (e.g., management, nutrition, housing, and
biosecurity), which will result in permanent and cumulative gains
in welfare (resilience) over generations.

Genetic and genomic selection for improved animal welfare
require a multidisciplinary approach, including the integration
of a multitude of scientific field such as cell and molecular
biology, neuroscience, immunology, stress physiology, computer
science, engineering, quantitative genomics, and bioinformatics.
In this context, it is paramount to train the next generation of
researchers in multi-disciplinary teams and develop collaborative
research projects.

High welfare standards will continue to be a priority in
livestock production systems. We expect that this review provides
a comprehensive description of welfare phenotyping techniques
coupled with the use of genetic and genomic selection to enhance
animal welfare in commercial production systems.
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