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Summary

Discovering the unintended “off-targets” that predict adverse drug reactions (ADRs) is daunting 

by empirical methods alone. Drugs can act on multiple protein targets, some of which can be 

unrelated by traditional molecular metrics, and hundreds of proteins have been implicated in side 

effects. We therefore explored a computational strategy to predict the activity of 656 marketed 

drugs on 73 unintended “side effect” targets. Approximately half of the predictions were 

confirmed, either from proprietary databases unknown to the method or by new experimental 

assays. Affinities for these new off-targets ranged from 1 nM to 30 μM. To explore relevance, we 

developed an association metric to prioritize those new off-targets that explained side effects 

better than any known target of a given drug, creating a Drug-Target-ADR network. Among these 

new associations was the prediction that the abdominal pain side effect of the synthetic estrogen 

chlorotrianisene was mediated through its newly discovered inhibition of the enzyme COX-1. The 

clinical relevance of this inhibition was borne-out in whole human blood platelet aggregation 

assays. This approach may have wide application to de-risking toxicological liabilities in drug 

discovery.

Adverse drug reactions (ADRs) can limit the use of otherwise effective drugs. Next to lack 

of efficacy, they are the leading cause for attrition in clinical trials of new drugs1–3 and are 

more prominent still in the failure of molecules to advance from pre-clinical research into 

human trials.4 Some ADRs are caused by modulation of a drug’s primary target,5 others 
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result from non-specific interactions of reactive metabolites.6 In many cases, however, 

ADRs are caused by unintended activity at off-targets. Notorious examples of off-target 

toxicity include that of the appetite suppressant Fen-Phen, withdrawn from the market after 

numerous patient deaths. These owed to the activation of the 5-HT2B receptor by one of its 

metabolites, norfenfluramine, leading to proliferative valvular heart disease.7 Similarly, 

well-known drugs, such as the antihistamine terfenadine, have been withdrawn because of 

they caused arrhythmias and death, which have been attributed to their off-target inhibition 

of the hERG potassium channel.8,9 Prediction of unknown off-target drug interactions might 

prevent such disastrous drug toxicities, which are often detected only after fatalities in the 

clinic, and might allow safer molecules to be prioritized for pre-clinical development. 

Methods to systematically predict off-targets, and associate these with side effects, have thus 

attracted intense interest,10–16 frequently in the form of either chemical genomics17,18 or 

informatics19–26 approaches.

Whereas the informatics methods have never been tested systematically on a large scale, in 

principle they can be deployed against thousands of targets. Here we present a large-scale, 

prospective evaluation of safety target prediction using one such method, the Similarity 

Ensemble Approach (SEA).25–27 SEA calculates whether a molecule will bind to a target 

based on the chemical features it shares with those of known ligands, using a statistical 

model to control for random similarity. Because SEA relies only on chemical similarity, it 

can be applied systematically and, for those targets that have known ligands, 

comprehensively. For 656 drugs approved for human use (Supplementary Table S1), targets 

were predicted from among 73 proteins (Supplementary Table S2, Supplementary Methods) 

with established association of ADRs,22,28 for which assays were available at Novartis. 

Encouragingly, many of the predictions were confirmed, often at pharmacologically relevant 

concentrations. This motivated us to develop a guilt-by-association metric that linked the 

new targets to the ADRs of those drugs for which they are the primary or well-known off-

targets, creating a Drug-Target-ADR network. The applicability and the limitations of this 

approach will be considered.

Testing the predictions

The 656 drugs were computationally screened for their likelihood to bind to 73 targets 

(Supplementary Table S2) using SEA.25–27 The targets belong to the Novartis in vitro safety 

panels based on their association with ADRs.22,28 Here we insisted that they also be 

described in ChEMBL,29 enabling correspondence with SEA predictions (Supplementary 

Table S2). ChEMBL annotates over 285,000 ligands modulating over 1,500 different human 

targets with affinities better than 30 μM. SEA calculated the similarity of each drug versus 

each set of ligands for the 73 targets, comparing the overall set similarity to a model of such 

expected at random. For instance, the sodium channel blocker aprindine loosely resembled 

the set of histamine H1 ligands; though no single H1 ligand was strongly similar to the drug 

(Table 1), the overall similarity of the set was much above that expected at random, leading 

to a highly significant SEA expectation value (E-value) of 5×10−26 between aprinidine and 

H1 receptor ligands. Only 1,644 of the over 47,000 possible drug-target pairs had significant 

E-values. Of these, 403 were already known in ChEMBL, and so were trivially confirmed; 

we do not consider these further. Of the remaining 1,241 predictions, 348 (28%) were 
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unknown to ChEMBL, but could be found in proprietary ligand-target databases that were 

unavailable to SEA (Methods). The remaining 893 predictions represented previously 

unexplored drug-target associations.

Of these predictions, 694 were tested at Novartis. For 478, activity was less than 25% at 30 

μM; these were considered disproved. For another 65 predictions, activity was between 25 

and 50% at 30 μM; these were considered ambiguous. Finally, for 151 of the new drug-

target predictions IC50 values of less (better) than 30 μM were measured in concentration-

response curves (Figure 1a, Supplementary Figure S1). In 125 cases, the drugs had an IC50 

value better than 10 μM and in 48 activities were sub-micromolar (Table 1, Supplementary 

Table S3, Supplementary Figure S1). In summary, of the 1,042 predictions that were tested 

(694 by assay, 348 by databases), 48% were confirmed either in proprietary databases, 

unknown to the method and to those undertaking the SEA calculation, or in Novartis assays 

in full concentration response, and just under 46% were disproved (Figure 1a).

In assessing these results, one would like to compare the true- to the false-positive and to the 

false-negative predictions. Whereas this work offers guidance on the first question, we can 

only address false negatives for a few compounds (Supplementary Results). Among these 

was astemizole, which had affinities ranging from 0.1 to 9 μM on the 5-HT2A, 5-HT2B and 

5-HT2C, H2 and D2 receptors, as measured in other projects at Novartis. These targets were 

missed owing to a charge post-filter, separate from SEA itself, which excluded compounds 

with net charge dissimilar from the reference ligands.30 Astemizole was improperly 

assigned31 a charge of +2, wrongly differentiating it from the known ligands; the SEA E-

values linking astemizole to these targets were themselves between 10−25 to 10−27. Other 

failures could be attributed to SEA itself. For instance, promazine bound to the histamine H1 

and H2 receptors with low to mid-nanomolar affinities, but the SEA E-values at 10−4 to 10−3 

were below our significance cutoff. This work was undertaken with ChEMBL2 as a source 

of ligand-target association; had we used the more recent ChEMBL10, H1 would have been 

predicted with an E-value of 10−9 (see http://sea.bkslab.org), and had we used ChEMBL12 

and a newer version of SEA both targets would have been predicted. Clearly, with its 

reliance on topology and on inference from known ligand-target associations, SEA will have 

false negatives.

A key question is whether the new predictions were in any way surprising. One way to 

evaluate this is to compare the similarity of drugs predicted for new targets to the closest 

previously known ligand for that target. We used Tanimoto coefficients (Tc), which 

compare the groups in common between two molecules, here represented by ECFP_4 

fingerprints. Tc values between nearest molecules were small, often less than 0.432; visual 

inspection of these pairs confirms the dissimilarity suggested by the low Tc values (Table 1). 

More systematically, SEA may be compared to a method that predicts targets based only on 

one nearest neighbor (a 1NN model) (Figure 1b). For close analogs (Tc values > 0.7, Figure 

1c), the fraction of true positives was comparable between 1NN and SEA (Figure 1b). But 

across most similarity thresholds, SEA substantially outperformed 1NN, and by nearly two-

fold in the low similarity range. Thus, for the Rho kinase inhibitor fasudil, SEA predicted 

only the adrenergic α2A receptor, with an E-value of 1.1×10−7, which was experimentally 

confirmed (IC50 = 4 μM). This occurred despite the low similarity of the closest known α2 

Lounkine et al. Page 3

Nature. Author manuscript; available in PMC 2012 December 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://sea.bkslab.org


ligand, which had a Tc value of 0.37 to fasudil. Conversely, at this similarity threshold the 

1NN model predicted nine targets, only three of which were confirmed (Supplementary 

Table S4). For chlorotrianisene, two of the three targets predicted by SEA were confirmed; 

conversely, at its 0.31 Tc for cyclooxygenase-1 (COX-1) the 1NN model predicted ten 

targets, only two of which were confirmed.

We also investigated how often the new off-target would have been obvious based on 

sequence similarity of the targets.25,26,33 We calculated the BLAST sequence similarity of 

predicted targets to any known target of a drug (Table 1, Supplementary Table S3). Of the 

151 new off-target predictions, 39 (26%) had BLAST E-values greater (worse) than 10−5, 

suggesting the previously known targets shared no sequence similarity with the new off-

targets (Table 1, Supplementary Table S3, Figure 1d). For example, the anesthetic dyclonine 

was shown to bind the histamine H2 receptor (HRH2), while the closest known target was 

the Nav1.8 channel (SCN10A), which has no significant sequence similarity (BLAST E-

value > 1) and is functionally unrelated to H2. Similarly, the anti-nausea drug alosetron 

antagonized the 5-HT2B receptor with an IC50 of 18 nM, though 5-HT2B has no sequence 

similarity to the ion channel targets of this drug (Table 1). Chlorotrianisene potently inhibits 

the enzyme COX-1, which is unrelated by sequence to the primary nuclear hormone 

receptor of this drug, the estrogen receptor (Table 1).

Associating in vitro targets with ADRs

To systematically assess the potential clinical relevance of the discovered targets, we 

developed a quantitative score that associated in vitro activity with patient adverse drug 

reactions. We enumerated all possible target-ADR pairs for 2,760 drugs with available 

adverse event annotations, expressing as an enrichment score the co-occurrence of pairs that 

were more common than expected by chance. (Supplementary Table S5). For example, 

“abdominal pain upper” has been reported for 45 drugs that interact with COX-1. The ADR 

“abdominal pain upper” was linked with 6,046 drug-target pairs, while COX-1 was linked 

with 2,188 drug-ADR pairs; there were a total of 681,797 target-ADR pairs overall. Thus the 

pair “abdominal pain upper” – “COX-1” was enriched 2.3-fold above random (Methods), 

with a χ2 p-value of 9.9×10−9. A total of 3,257 significant target-ADR associations were 

identified (Supplementary Table S5).

Having identified new off-targets for the drugs, and linked these with observed ADRs, we 

sought Drug-Target-ADR connections that illuminate the clinical relevance of the 

predictions. Of the 151 confirmed new drug-target associations tested at Novartis, 82 were 

significantly associated with one or more ADRs, resulting in a total of 247 Drug-Target-

ADR links. In 116 cases, the enrichment factor of the new Drug-Target-ADR link was 

stronger than that for any previously known target (Table 2, Supplementary Table S6). For 

example, prenylamine was found to bind the histamine H1 receptor (HRH1), which we 

associate with a sedation ADR (ef = 4.9). By contrast, none of prenylamine’s known targets 

was associated with this side effect. For other cases, known targets represented an 

alternative explanation for an ADR. For instance, we found that diphenhydramine binds to 

the dopamine transporter (SLC6A3, Table 2), which is associated with tremor.34 Though 

tremor was also associated with one of diphenhydramine’s known targets, sodium channel 
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SCN10A (ef = 1.9),35 its association with the dopamine transporter was higher (ef = 2.02), 

indicating a possible mechanistic link with the new off-target. Conversely, 

diphenhydramine’s “dry mouth” side effect was better explained by its known antagonism 

of the M3 muscarinic receptor (CHRM3, ef = 2.45, Supplementary Table S5).

We asked whether the drug’s affinity for its predicted ADR-target was relevant given its 

pharmacology, comparing the predictions against other drugs with similar 

pharmacodynamics and pharmacokinetics (Table 2). This was possible for 36 Drug-Target-

ADR links (Supplementary Table S6). For instance, cyclobenzaprine was shown to bind to 

the histamine H1 receptor at 21 nM, while its median Cmax in plasma was 61 nM; nine other 

drugs binding H1 in the nanomolar range with comparable Cmax values were found (Table 

2). Though some of the measured drug-target affinities were modest, the PK often confirmed 

that they were nevertheless relevant. For instance, the affinity of ranitidine (Zantac) for the 

M2 muscarinic receptor, which we associate with its constipation ADR, is only 5.6 μM. 

Nevertheless, with an AUC of 5.7 to 122 μM*h in plasma, this association seems plausible. 

Similarly, diphenhydramine has an IC50 of only 4.3 μM against the dopamine transporter, a 

target that we associate with the drug’s tremor side effect. Nevertheless, diphenhydramine’s 

AUC of 2.6 to 3.4 μM*h supports the relevance of its modest IC50.

Drug-Target-ADR networks

Network graphs help visualize the new and known drug-target links, and the adverse events 

with which they are associated (Figure 2a–c). For example, the estrogen receptor (ESR1) 

modulator chlorotrianisene was found to inhibit PTGS1 (COX-1), indeed with an affinity 

substantially better than its affinity for ESR1. Drugs that modulate the two proteins can 

share two of chlorotrianisene’s adverse reactions, “erythema multiforme” and “oedema”, but 

“rash” and “abdominal pain upper” link only to drugs inhibiting COX-1, and both of these 

are associated with chlorotrianisene almost uniquely among the estrogen receptor 

modulators (Figure 2a, Supplementary TableS5). For prenylamine, a new G protein-coupled 

receptor (GPCR) cluster (HRH1, OPRM1, ADRB2) emerges that is unrelated to the drugs 

primary ion channel activity but uniquely link to its sedative and myocardial infarction 

ADRs (Figure 2a). For domperidone, its known activity at dopamine receptors is associated 

with a Parkinsonism-like phenotype (“hyperprolactinaemia” and “extrapyramidal disorder”), 

while “somnolence” only associates with the newly discovered opioid activity (Figure 2b).

Several of these Drug-Target-ADR associations that emerged were surprising. Among them 

were the association of the muscle relaxant cyclobenzaprine with somnolence, the H2 

antagonist ranitidine with constipation, and chlorotrianisene with upper abdominal pain 

(Table 2). Cyclobenzaprine caught our attention because even its mechanism of action target 

for muscle relaxation has not been characterized, and its association with the off-target 

discovered here, the H1 receptor (IC50 20 nM), precedes the identification of its primary 

target. The central nervous system H1 receptor is strongly associated with somnolence, 

consistent with the drug’s ADR, and supported by its pharmacokinetics. Similarly, the 

constipation effect of ranitidine is consistent with its activity on the M2 muscarinic receptor. 

Though its affinity for M2 is modest at 5.5 μM, its pharmacokinetics make this affinity 

relevant to this ADR.
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Perhaps the most compelling demonstration of a Drug-Target-ADR association is one in 

vivo, or in an accepted in vivo biomarker. The observation that chlorotrianisene was a potent 

COX-1 (PTGS1) inhibitor seemed a reasonable explanation for the upper abdominal pain 

(epigastralgia) side effect provoked by the drug, and one that lent itself to direct testing in an 

accepted biomarker. Epigastralgia is a well-known ADR of non-steroidal anti-inflammatory 

drugs (NSAIDs), which inhibit the cyclooxygenase enzymes COX-1 and COX-2. COX-1 

has housekeeping effects in the gastric mucosa,36 and its inhibition can lead to mucosal 

thinning and to gastroduodenal ulceration, leading to upper gastric pain and indeed the 

thousands of annual hospitalizations that associated with NSAID use.37 NSAIDs also inhibit 

platelet aggregation by direct inhibition of their endogenous COX-1 enzyme.38 Intriguingly, 

this effect is unreported for other synthetic estrogens, which, to the contrary, are more likely 

to promote platelet aggregation.39,40 A widely accepted model for platelet aggregation may 

be run ex-vivo, in whole blood, allowing one to test for target engagement of COX-1 in this 

effect.

Accordingly, collagen-induced platelet aggregation was measured in freshly drawn human 

blood from six healthy volunteer donors. Acetylsalicylic acid, the active ingredient in 

aspirin, inhibited platelet aggregation by 42 to 48% at 250 μM. The more potent NSAID 

indomethacin inhibited platelet aggregation by 50% at 50 μM. Chlorotrianisene inhibited 

platelet aggregation in whole blood with a potency almost indistinguishable from that of 

indomethacin, and more potently than acetylsalicylic acid (Figure 2d). These results are 

consistent with an in vivo inhibitory activity of chlorotrianisene on COX-1, and with the 

epigastralgia that is among its common side effects.

Drug and target promiscuity

To investigate overall patterns of drug and target promiscuity, we integrated the 

experimental results from this and other Novartis studies. The most promiscuous target was 

the voltage-gated sodium channel (SCN5A), to which 70 of 126 tested drugs bound (56%) 

(Figure 3a). From a target family standpoint, however, this was an exception, as most other 

promiscuous targets were small molecule-recognizing GPCRs; of non-GPCRs, only SCN5A 

and the ion channel hERG (KCNH2) were targeted more than average (>13% of drugs 

tested). Transporters had mid-range promiscuity; enzymes, nuclear receptors, and ligand-

gated ion channels were less promiscuous, while peptide-recognizing receptors were hit 

least of all (Supplementary Tables S2, S7).

Inverting this analysis, the most promiscuous drug, chlorhexidine, hit 34 (64%) out of 54 

targets against which it was tested, and another nine drugs were active on over 50% of their 

tested targets (Figure 3b, Supplementary Table S8). Twenty-five drugs bound to proteins 

from among all major target classes. Highly promiscuous drugs often were lipophilic and 

cationic at physiological pH (Figure 3b).41,42

Predicting off-targets & adverse events

This study begins to quantify drug polypharmacology at scale: the 656 drugs considered 

here each modulated an average of seven safety targets, sometimes across multiple classes, 

and more than 10% of drugs acted on nearly half (45%) of the 73 targets (Figure 3b). It is 
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sobering that this promiscuity is observed for approved human drugs, which have typically 

already been optimized to minimize toxicity. For lead molecules that are progressing toward 

the clinic, this level of off-target promiscuity might be higher still.28 Anticipating these off-

targets is difficult, as they can be unrelated in sequence and structure to the primary targets 

of a drug, and even known target-ADR associations are not always straightforward. Two 

results of this study speak to these challenges. First, of the 1,042 predicted drug-target 

associations that were tested, 48% were confirmed (Figure 1a). With 46% of the predictions 

disproved, the method remains imperfect, but this rate nevertheless may be high enough to 

prioritize compound classes and targets for testing. Second, a guilt-by-association metric can 

link off-targets with ADRs. A three-way association between drugs, molecular targets, and 

ADRs may be systematically calculated and interpreted (Figures 2a–c).

Surprisingly, drugs often modulated off-targets unrelated to their primary target. Of the 151 

off-targets that were confirmed by new experiment, 39 were unrelated by sequence to any of 

the drug’s known targets (Figure 1d). For example, the antitussive clemastine and the 

antihistamine diphenhydramine (an active ingredient in Tylenol PM and several other 

products), both of which act on the histamine H1 GPCR, also modulate the serotonin 

transporter (5-HTT, SLC6A4), to which the primary target is unrelated by sequence or 

structure. Conversely, the SERT inhibitor sertraline acts on the histamine H2 GPCR. The 

activity of drugs on targets that are unrelated by sequence or structure to their primary 

targets can seem capricious and certainly makes prioritization of likely targets more 

difficult. A ligand-based approach offers an orthogonal view of target relationships and so 

can illuminate similarities that are opaque from a molecular biology perspective. The 

converse is also true, and the two views will often be complementary.

The association between chlorotrianisene, COX-1, and epigastralgia illustrates the potential 

of the approach. The therapeutic target of chlorotrianisene, the estrogen nuclear hormone 

receptor, bears no sequence or structural similarity to the COX-1 enzyme, but the likelihood 

of cross-activity between the two targets is articulated by ligand similarity (Table 1). 

Correspondingly, the linking of abdominal pain and COX-1 only emerges when one 

quantitatively compares the ADRs of known COX-1 inhibitors to what one would expect at 

random. The potent inhibition of platelet aggregation by chlorotrianisene in whole blood 

(Figure 2d) is consistent with the systemic, in vivo activity of this drug at relevant 

concentrations on COX-1.

Certain shortcomings of the method should not escape the reader’s attention. Almost 46% of 

the predicted drug-target associations were disproved, and the method, which is inference-

based, undoubtedly has important false negatives. As such, SEA cannot replace compound-

target testing. What it can do is identify compounds early in development for possible 

liabilities that would ordinarily be identified only much later in drug progression. Similarly, 

the guilt-by-association method is inference-based and mechanism-naïve, and so will miss 

some target-ADR associations and make others that are invalid. Also, only some side effects 

fall into the remit of this approach, which assumes an off-target mechanism. Side effects, 

like other pharmacological events, have a strong exposure component, and can result from 

complex interactions with regulatory networks.43 Thus, topical drugs like econazole or 

chlorhexidine, though promiscuous in vitro, have fewer ADRs than expected because they 
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never achieve sufficient systemic exposure in vivo. Conversely, a drug like tacrolimus might 

be relatively selective in vitro, but is associated with multiple side effects owing to its broad 

immunosuppressant effects.

These caveats should not obscure the potential of this approach to predict and understand 

drug side effects. The method was deployed automatically at scale, without human 

intervention. Whereas its predictions were sometimes disproved, they were just as often 

confirmed. If some of the targets it suggested required no imaginative leap—as when a 

steroid was predicted for a new nuclear hormone receptor—a quarter of the confirmed 

targets were unrelated by sequence or structure to any of the known targets of the drugs 

(Figures 1c, 1d, Tables 1 and S2). Pragmatically, the ability to calculate Drug-Target-ADR 

networks provides a tool to anticipate liabilities among candidate drugs being advanced 

toward the clinic, or yet earlier, for prioritization of chemotypes in preclinical series. If such 

networks cannot replace direct experimentation, they can usefully prioritize off-targets for 

consideration. As we struggle to develop new therapeutics, this and related 

approaches11,19,21–24,44,45 can identify molecules with liabilities early in their development, 

and so focus effort on those candidates that are least subject to them.

Method summary

A collection of on-hand 656 FDA-approved drugs was computationally screened against a 

panel of 339 molecular targets representing the species-specific expansion of 73 target 

assays used in Novartis safety panels. Each of the 339 target proteins was represented by its 

set of known ligands, as extracted from the ChEMBL_2 database. The two-dimensional 

structural similarity of a drug to a target’s ligand set was quantified as an E-value using the 

SEA, then subjected to a molecular charge filter. Predictions were tested retrospectively 

using proprietary databases including GeneGo Metabase, Thompson Reuters Integrity, 

Drugbank and GVKBio; novel predictions were tested prospectively in Novartis in vitro 

assays. Binding assays, and, when available, functional assays were performed including 

scintillation proximity, fluorometric imaging, filtration, fluorescence polarization, patch 

clamp, time-resolved fluorescence resonance energy transfer (TR-FRET), and homogenous 

time-resolved fluorescence (HTRF) assays. Concentration-response curves were calculated 

using XLfit (v.2 or v.4, IDBS, Guildford, UK) or a corresponding in-house software. All 

curves were redrawn using GraphPad PRISM v.5. Adverse drug reaction data were extracted 

from the world drug index (WDI) and encoded using the Medicinal dictionary for regulatory 

affairs (MedDRA). Using target annotations from GeneGo Metabase, Integrity, Drugbank, 

ChEMBL, and GVKBio, target-ADR pairs for all drugs were enumerated. 

Disproportionality analysis in conjunction with a Chi-squared test for association was 

carried out for all drug-target pairs. False discovery rate was controlled using the Benjamini-

Hochberg correction for multiple hypothesis testing. Pharmacokinetic data were extracted 

from Integrity. For target and drug promiscuity analysis, combined external and internal 

target annotations were used. The computational workflow apart from SEA was 

implemented in Pipeline Pilot version 8 and statistical analyses were performed in R. 

Platelet aggregometry was performed in human blood for chlorotrianisene and indomethacin 

with acetylsalicylic acid as a positive control.
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Methods

Virtual target profiling of drugs

We assembled a set of 656 drugs (Supplementary Table S1) available for internal 

prospective testing together with 73 assay targets for which Novartis safety panel assays28 

were available. To compare activity annotations across databases, each target was mapped to 

human genes using Entrez gene and ChEMBL target identifiers (Supplementary Table S2). 

For target prediction, the 73 targets were represented by 339 orthologous proteins from 

human, rat, mouse, bovine, and sheep, using ChEMBL_2 database (released 3/25/2010); 

ligands for these targets with affinities ≤1 μM were grouped into sets for the SEA 

calculation.

We computationally screened the 656 drugs against the 339-target panel, using 1024-bit 

folded ECFP_446 and 2048-bit Daylight47 fingerprints independently, with the Tanimoto 

coefficient (Tc) as the similarity metric. Tc values lie between 0 and 1, where 1 corresponds 

to perfect overlap of two fingerprints. Where both fingerprints yielded the same SEA 

prediction, we took the prediction with the lower (i.e., stronger) E-value, unless otherwise 

noted. The maximum pair-wise Tc value was used in the 1-nearest neighbor (1NN) model.

Predictions with E-values <10−4 were retained. As a final step we subjected the SEA 

predictions to a pass/no-pass charge filter, to de-prioritize those predictions where the drug’s 

total charge did not match the charges calculated for at least 5% of the predicted target’s 

known ligands.30,31 This resulted in 4,195 drug-ChEMBL target pairs that were 

subsequently mapped to the 73 target panel, resulting in 1,644 unique predictions (the 

difference reflects the orthologous redundancies).

Testing predictions

Many SEA predictions could be confirmed by interrogation of proprietary databases, 

available at Novartis but unavailable in San Francisco where the calculations were 

performed. These included the Thompson Reuters Integrity (accessed January 2011, http://

thomsonreuters.com/products_services/science/science_products/a-z/integrity), GeneGo 

Metabase (version 6.2, http://www.genego.com, accessed January 2011), and GVKBio (at 

http://www.gvkbio.com/, accessed January 2011). In addition, we also compared predictions 

to the ChEMBL_1129 and Drugbank 3.048 databases. For comparison across data sources, 

compounds were represented using the non-stereo specific part of InChiKeys.49

For prospective evaluation of the remaining predictions we used binding and functional 

assay data from internal Novartis profiling efforts, carried out in parallel to the SEA study. 

For some targets, functional assays were also available. Full concentration-responses curves 

were plotted for any compound with at least 50% inhibition or activity at the maximal tested 

concentration (30 μM, Supplementary Figure S1). For detailed assay descriptions, see 

Supplementary Methods and Supplementary Table S2.
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Comparison to a 1NN model

We evaluated two 1NN models, using either ECFP_4 or Daylight fingerprints. Each drug 

was compared to all reference ligands of a target. The highest Tc value resulting from that 

comparison was assigned to the drug-target pair. For each drug, we identified the lowest Tc 

value that yielded valid SEA predictions using the respective fingerprint and collected all 

drug-target pairs with Tc scores above that threshold, irrespective of the SEA E-value. We 

counted the predictions confirmed in the proprietary databases or by experiment at Novartis. 

We calculated an adjusted hit rate:

Equation 

1

The additional count for both numerator and denominator distinguishes cases where no 

predictions were confirmed, but one method or the other predicted fewer targets. For 

example, SEA predicted four targets for bezafibrate, none of which were confirmed 

(Supplementary Table S4). However, at the corresponding Tc threshold of 0.37, the ECFP_4 

1NN model identified 12 potential targets, none of which were confirmed. The adjusted 

fraction for SEA is 0.2 (= (0+1)/(4+1)), while the adjusted fraction for the 1NN model is 

0.077 (1/13). We monitored the average adjusted hit rate for ten similarity threshold bins 

ranging from 0 to 1.

BLAST Target comparison

To investigate how closely the predicted targets were related to already known primary or 

off-targets, we calculated a target similarity matrix for all known and predicted targets found 

in our study. Amino acid sequences of all targets were assembled from UniProt.50 

Sequences were compared in a pair-wise manner using BLASTp as implemented in Pipeline 

Pilot (version 8, http://www.accelrys.com).51 Target sequence similarity was quantified 

using BLAST E-values. Target pairs with values smaller than 10-5 were considered related 

by sequence.

Target and drug promiscuity

Targets were classified using ChEMBL’s target taxonomy, which consists of eight levels. 

The first three levels were used here in order to distinguish between small molecule and 

peptide GPCRs, as well as voltage and ligand gated ion channels (Supplementary Table S5). 

In-house and literature drug-target annotations were combined and annotations with IC50 

<30 μM were counted as hits. Lipophilicity of drugs was assessed by calculating AlogP 

values in Pipeline Pilot. Negative values correspond to hydrophilic, and positive values to 

lipophilic compounds.

Associations between targets and adverse drug reactions

Adverse drug reactions were extracted from the World Drug Index (WDI, http://

thomsonreuters.com/products_services/science/science_products/a-z/world_drug_index/, 

accessed March 2011) and mapped to preferred terms from the Medicinal Dictionary for 

Regulatory Affairs (MedDRA).52 MedDRA organizes adverse reaction terms in a hierarchy 

reaching from low-level terms to system organ classes at the highest level. Original WDI 
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terms were first mapped to low-level terms in the MedDRA hierarchy using text mining 

components in Pipeline Pilot (version 8). Low-level terms serve as synonyms for preferred 

terms in MedDRA. These preferred terms were used to uniquely identify each adverse event. 

For example, the low-level terms “dry mouth” and “xerostomia” both map to the preferred 

term “dry mouth”. This resulted in 1,685 unique ADR terms, 2,760 unique drug structures 

with ADR annotations, and a total number of 51,101 drug-ADR pairs. Using drug-target 

associations from databases used for testing predictions, we enumerated all target-ADR 

pairs (681,797 total). The assessment was done separately for binding, antagonist, and 

agonist annotations. Assuming that each ADR could potentially occur due to any of the 

targets hit by the drug, we enumerated all possible target-ADR pairs for each drug. Target-

ADR pairs occurring more than ten times were retained. The number of observations for 

each unique pair was then compared to the expected number of observations given the 

overall distribution of activity and adverse effect annotations. An enrichment score was 

calculated for each target-ADR pair:

Equation 2

Where p is the co-occurrence of target X and ADR Y, A is the number of times ADR Y was 

linked to any drug-target pair, T is the number of times target X was linked with any drug-

ADR pair, and P is the total number of target-ADR pairs.

To assess the statistical significance of found associations, we applied the Chi-square test for 

association based on contingency tables calculated for each unique target-ADR pair with an 

ef score greater than one. The false discovery rate was controlled using Benjamini-Hochberg 

correction in R (version 2.12, http://www.r-project.org).53 P-values and q-values (i.e. p-

values corrected for multiple hypothesis testing), as well as the X2 statistic were calculated 

using the R statistical package. 3,257 associations with a q-Value of < 0.05 were retained 

(Supplementary Table S5).

Adverse reactions associated with predicted targets

Enrichment factors of predicted target-ADR pairs were compared to association of ADRs 

with any known targets of each drug. We prioritized adverse reactions that were stronger 

associated with the predicted than with any known target (i.e., had a higher ef score). In 

order to further prioritize adverse reactions likely due to the newly predicted target we 

extracted pharmacokinetic data from Thompson Reuters Integrity. Maximal plasma 

concentration (Cmax) and cumulative concentration (AUC) values measured in humans were 

assembled. Activity data were assembled from quantitative sources (ChEMBL_11 and 

GVKBio) for drugs that were not part of the predictions, but shared ADRs with the 

prediction drugs. Drugs were identified for each prediction and associated ADR that 

satisfied following three criteria: 1. They shared the ADR with the prediction drug. 2. They 

were not more than ten times more active at the predicted target. 3. Their Cmax value and/or 

AUC value was not more than ten times higher than for the prediction drug.
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Platelet aggregation inhibition

Human blood samples from 6 healthy volunteer male donors were used to perform platelet 

aggregometry with a Multiplate® impedance aggregometer (Dynabyte Medical, Munich, 

Germany) as follows: Chlorotrianisene or indomethacin were added to whole blood at final 

concentrations of 0.5, 5 and 50 μM, and incubated at room temperature for 10 min; platelet 

aggregation was induced with collagen (1μg/mL) and measured at 37°C for 15 min; control 

aggregations were measured with vehicle only, and with acetylsalicylic acid (250 μM). 

Statistical analysis was performed using two-tailed t-tests and p ≤0.05 was considered 

significant. A detailed description can be found in the Supplementary Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Predicting off-targets, and their novelty
(a) Success of SEA predictions. Known: predicted off-targets confirmed via proprietary 

databases. Confirmed: predictions tested in vitro achieving IC50 <30 μM; Ambiguous: 

predictions with 25–50% activity at 30 μM. Inactive: <25% activity. (b) SEA enriched for 

non-trivial similarity. Drugs were binned (grey) by lowest Tc yielding valid SEA 

predictions. Hit rates of SEA (red) and 1NN (blue) with s.d. (c) Non-intuitive 

(chlorotrianisene) and straightforward (medrysone) SEA predictions, with Tc to closest 

references. Chlorotrianisene is only marginally similar to indomethacin, but is (correctly) 

predicted for COX-1. (d) Sequence similarities of each confirmed drug off-target to drug’s 

closest known targets.
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Figure 2. Off-target networks
(a–c) Off-target networks for three drugs. Known targets of the drugs are grey while newly 

predicted targets are blue; the adverse events associated with each are orange and red, 

respectively. Red adverse events are significantly (ef > 1, q-Value < 0.05) associated with 

the new off-targets. Targets related by sequence are connected by grey edges. (d) 

Chlorotrianisene inhibits platelet aggregation. Two independent experiments (red and blue) 

shown for chlorotrianisene and indomethacin. Vehicle: negative control; ASA: 

Acetylsalicylic acid (positive control). Asterisks indicate significant (*: paired student t-test 

p-Value < 0.05) and highly significant (**: p-Value < 0.01) differences to vehicle control 

with s.d.
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Figure 3. Target and drug promiscuity
(a) Target promiscuity. Targets are sorted based on the percentage of drugs hitting the target 

below 30 μM (indicated by numbers next to target names). Colors code for seven distinct 

target classes. (b) Promiscuous drugs are often hydrophobic and cationic. Each point 

represents one drug. Ionization at pH 7.4 and ALogP values were calculated from drug 

structures. Hit rate: percentage of targets the drug binds below 30 μM.
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