
How does the brain orchestrate perceptions, thoughts and

actions from the spiking activity of its neurons? Early single-

neuron recording research treated spike pattern variability as

noise that needed to be averaged out to reveal the brain’s

representation of invariant input. Another view is that

variability of spikes is centrally coordinated and that this brain-

generated ensemble pattern in cortical structures is itself a

potential source of cognition. Large-scale recordings from

neuronal ensembles now offer the opportunity to test these

competing theoretical frameworks. Currently, wire and micro-

machined silicon electrode arrays can record from large

numbers of neurons and monitor local neural circuits at work.

Achieving the full potential of massively parallel neuronal

recordings, however, will require further development of the

neuron–electrode interface, automated and efficient spike-

sorting algorithms for effective isolation and identification of

single neurons, and new mathematical insights for the analysis

of network properties.

Input–output analysis of neuronal networks is complicated because

the brain does not simply represent the environment in a different

format1. Features of the physical world do not inherently convey

whether, for a brain, a situation is familiar or novel or whether a

stimulus is pleasant or repellent2. These attributes are added to the

information conveyed by the sensory inputs by a process referred to

as cognition3. The longer the elapsed time from the onset of an event,

the further its influence spreads in the brain, involving an ever-

increasing population of co-active neurons. Ensemble activity of

neurons therefore reflects the combination of some selected physical

features of the world and the brain’s interpretation of those features.

Even if the stimulus is invariant, brain state is not. The longer the

synaptic path length from the periphery, the more activity of single

neurons is expected to be determined by the activity of their peers

and the less it is determined by the features of the environment.

Spike threshold and pattern variability have been traditionally

viewed as an indication of the brain’s imperfection, a noise that

should be averaged out to reveal the brain’s true attitude toward the

input4. Alternatively, we may hypothesize that the ‘noise’, that is, the

mismatch between the physical input and neuronal response, reflects

self-organized patterns in the brain, and it is this centrally coordi-

nated activity of cortical neurons that creates cognition3,5. Extracting

the variant (brain-generated) features, including the temporal rela-

tions among neuronal assemblies and assembly members from the

invariant features represented by the physical world might provide

clues about the brain’s perspective on its environment. How should

one proceed to test these competing frameworks?

Let us simplify the task and imagine that our goal is to understand

the operation and function of an orchestra, without knowing much

about the role of strings, woodwinds, brass or percussion instruments

and the way they sound. The first available method is to record the

total noise generated by the orchestra but without the ability to dis-

tinguish the instruments and musicians. The dynamics of the contin-

uous time-variable signal can be analyzed by various mathematical

means in the time and frequency domains, but these methods can

reveal little about orchestration. This ‘temporally integrated field’

method is analogous to recording with electroencephalography

(EEG) or magnetoencephalography (MEG) in the brain. A second

method can take infrared pictures of the orchestra. This will measure

the heat generated by the musicians’ muscle activity. Given the orderly

arrangement of the instruments, the pictures taken during some pas-

sages of the melody can identify spots of dominant activity, an

approach analogous to functional magnetic resonance imaging

(fMRI) or positron emission tomography (PET) snapshots taken

from the living brain. Unfortunately, this ‘spatial mean field’ approach

fails to capture the essence of music: temporal dynamics. A third

method can sense the sound pressure generated by any one of the

instruments and send a pulse to the observer whenever the pressure

exceeds a certain threshold, analogous to recording of action poten-

tials (spikes) emitted by single neurons in the brain. By monitoring

different but single musical instruments of the same or even different

orchestras over many successive performances and pooling the meas-

urements as if they were recorded simultaneously, one can recon-

struct some essential feature of the score6,7. This independent

‘single-cell’ approach has yielded significant progress in neuro-

science8. However, this method would fail when applied to a jazz

ensemble where the tune is created by the dynamic interactions

among the musicians ‘on the fly’ and which interactions vary from

performance to performance. It also largely fails when applied to cen-

tral brain circuits where myriad ensembles are at work at multiple

temporal and spatial scales.

Field potential analysis, imaging of energy production in brain struc-

tures and single-cell recording techniques are the principal instruments

in the arsenal of contemporary cognitive-behavioral neuroscience for

the study of the intact brain. Even their combined, simultaneous appli-

cation in behaving subjects falls short of the goal of explaining how a

coalition of neuronal groups make sense of the world, generate ideas

and goals, and create appropriate responses in a changing environment.

In the brain, specific behaviors emerge from the interaction of its con-
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stituents: neurons and neuronal pools. Studying these self-organized

processes requires simultaneously monitoring the activity of large

numbers of individual neurons in multiple brain areas. Recording from

every neuron in the brain is an unreasonable goal. On the other hand,

recording from statistically representative samples of identified neu-

rons from several local areas while minimally interfering with brain

activity is feasible with currently available and emerging technologies

and indeed is a high-priority goal in systems neuroscience. Many other

methods, such as pharmacological manipulations, macroscopic and

microscopic imaging and molecular biological tools, can aid this task,

but in the end all these indirect observations should be translated back

into a common currency—the format of neuronal spike trains—to

understand the brain’s control of behavior.

Massive parallel recording from multiple single neurons

Action potentials produce large transmembrane potentials in the vicin-

ity of their somata. These output signals can be measured as a voltage

difference by placing a conductor, such as the bare tip of an insulated

wire, in close proximity to a neuron9. If there are many active (spiking)

neurons in the vicinity of the tip, the electrode records from all of them

(Fig. 1). Because neurons of the same class generate identical action

potentials (all first violins sound the same), the only way to identify a

given neuron from extracellularly recorded spikes is to move the elec-

trode tip closer to its body (<20 µm in cortex) than to any other neu-

ron. To record from another neuron with certainty, yet another

electrode is needed. The important advances made by the one elec-

trode/one (few) neuron method10–14 are high-

lighted by Chapin (p. 452–455 in this issue)15.

Because electrical recording from neurons is

invasive, monitoring from larger numbers of

neurons inevitably increases tissue damage.

Furthermore, understanding how the cooper-

ative activity of different classes of neurons

gives rise to collective ensemble behavior

requires their separation and identification.

Because most anatomical wiring is local, the

majority of neuronal interactions, and thus

computation, occur in a small volume16. In

the neocortex, the ‘small volume’ corresponds

to hypothetical cortical modules (for example,

mini- and macro-columns, barrels, stripes,

blobs), with mostly vertically organized layers

of principal cells and numerous interneuron

types. Thus, improved methods are needed for

the simultaneous recording of closely spaced

neuronal populations with minimal damage

to the hard wiring.

The recent advent of localized, multi-site

extracellular recording techniques has dra-

matically increased the yield of isolated neu-

rons7,17,18. With only one recording site,

neurons that are the same distance from the

tip provide signals of the same magnitude,

making the isolation of single cells difficult.

The use of two or more recording sites allows

for the triangulation of distances because the

amplitude of the recorded spike is a function

of the distance between the neuron and the

electrode (Fig. 1)17–19. Ideally, the tips are sep-

arated in three-dimensional space so that

unequivocal triangulation is possible in a vol-

ume. This can be accomplished with four spaced wires (∼ 50 µm

spread; dubbed ‘tetrodes’)18–20. Wire tetrodes have numerous advan-

tages over sharp-tip single electrodes, including larger yield of units,

low-impedance recording tips and mechanical stability. Because the

recording tip need not be placed in the immediate vicinity of the neu-

ron, long-term recordings in behaving animals are possible.

Cortical pyramidal cells generate extracellular currents that flow

mostly parallel with their somatodendritic axis. Nevertheless, elec-

trodes can ‘hear’ hippocampal CA1 pyramidal cells as far away as 

140 µm lateral to the cell body, although the extracellular spike ampli-

tude decreases rapidly as a function of distance from the neuron19. A

cylinder with a radius 140 µm contains ∼ 1,000 neurons in the rat cor-

tex19,21, which is the number of theoretically recordable cells by a sin-

gle electrode (Fig. 1). Yet, in practice, only a small fraction of the

neurons can be reliably separated with currently available probes and

spike sorting algorithms5,7,22. The remaining neurons may be dam-

aged by the blunt end of the closely spaced wires, or may be silent or

too small in amplitude. Thus, there is a large gap between the num-

bers of routinely recorded and theoretically recordable neurons.

An ideal recording electrode has a very small volume, so that tissue

injury is minimized. However, a very large number of recording sites

is ideal for monitoring many neurons. Obviously, these competing

requirements are difficult to satisfy. Micro-Electro-Mechanical

System (MEMS)-based recording devices can reduce the technical

limitations inherent in wire electrodes because with the same amount

of tissue displacement, the number of monitoring sites can be sub-
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Figure 1 Unit isolation quality varies as a function of distance from the electrode. Multisite electrodes

(a wire tetrode, for example) can estimate the position of the recorded neurons by triangulation.

Distance of the visible electrode tips from a single pyramidal cell (triangles) is indicated by arrows.

The spike amplitude of neurons (>60 µV) within the gray cylinder (50 µm radius), containing ∼ 100

neurons, is large enough for separation by currently available clustering methods. Although the

extracellularly recorded spike amplitude decreases rapidly with distance, neurons within a radius of

140 µm, containing ∼ 1,000 neurons in the rat cortex19,21, can be detected. Improved recording and

clustering methods are therefore expected to record from larger number of neurons in the future.

(Data are derived from simultaneous extracellular and intracellular recordings from the same

pyramidal cells from ref. 19.)
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stantially increased23–25. Whereas silicon probes have the advantages

of tetrode recording principles, they are substantially smaller in size.

Furthermore, multiple sites can be arranged over a longer distance,

thus allowing for the simultaneous recording of neuronal activity in

the various cortical layers26. Currently available multi-shank probes

can record from as many as a hundred well-separated neurons 

(Fig. 2). Importantly, the geometrically precise distribution of the

recording sites also allows for the determination of the spatial rela-

tionship of the isolated single neurons27,28 (Fig. 3). This feature is a

prerequisite for studying the spatiotemporal representation and

transformation of inputs by neuronal ensembles. The principal limi-

tation of increasing the numbers of recording sites is the width of the

interconnection between the recording tips and the extracranial con-

nector (Fig. 3; 2 µm-wide connections with 2-µm space)23,25. It

should be noted, though, that industrial production presently uses

0.18 µm line features, and multiple levels of metal and much thinner

interconnect lines are expected to become standard in coming years.

Isolation and identification of neurons by extracellular signatures

An indispensable step in spike-train analysis is the isolation of sin-

gle neurons on the basis of extracellular features. Spike sorting

methods fall into two broad classes. The first class attempts to sepa-

rate spikes on the basis of amplitude and wave form variation11–15

on the assumption that neighboring neurons generate invariant

spike features. This assumption is difficult to justify in most

cases17–19. The second general approach, triangulation, is based on

the tacit assumption that the extracellularly recorded spikes

emanate from point sources17,18 rather than from the complex

geometry of neurons. This is obviously a simplistic idea, because

every part of the neuronal membrane is capable of generating

action potentials29. The extent of the somatodendritic back-propa-

gation of the action potential varies as a function of the excitatory

and inhibitory inputs impinging on the neuron30. Because the

extracellular spike is a summation of the integrated signals from

both soma and large proximal dendrites31, the extracellularly

recorded spike parameters depend on the extent of spike backprop-

agation and on other state- and behavior-dependent changes of the

membrane potential32,33 (Fig. 4). These changes can affect the esti-
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Figure 2 High-density recording of unit activity

in the somatosensory cortex of the rat.

(a) Placement of an eight-shank silicon probe in

layer 5. The eight iridium recording sites at the

edges of the tip (inset) are connected to the

extracranial electronics via 2-µm

interconnects27,28. (b) A short epoch of raw

recording, illustrating both field and unit activity

(1–5 kHz). Note the presence of spikes on

several sites of the same shank (color-coded) and

lack of spikes across the different shanks,

indicating that electrodes placed ≥200 µm

laterally record from different cell populations.

(c) Two-dimensional views of unit clusters (out of

28 possible views from an eight-site probe) from

one shank. Clusters are color-coded. The success

of cluster separation is quantified by measuring

the Mahalanobis distance from a given cluster

center within which as many points belong to

other clusters as belong to the specified

cluster35. The larger values of ‘isolation distance’

(right) correspond to progressively better neuron

isolation. This figure was modified from ref. 28

with permission from the APS (American

Physiological Society). 

Figure 3 Functional topography within the recorded population in the

somatosensory cortex of the rat. Filled symbols, participating pyramidal

cells (red triangles) and interneurons (blue circles). Empty symbols,

neurons not connected functionally. Red line, monosynaptic excitation;

blue line, monosynaptic inhibition. Note that interneurons (e.g., 3 and 40)

are activated by large numbers of pyramidal cells41–43, and an interneuron

inhibits several local and distant pyramidal cells42. The relative positions of

the neurons was determined by calculating the ‘center of mass’ of spike

amplitude recorded from multiple sites. Recording sites are spaced 20 µm

vertically. The shanks were 200 µm apart, but for illustration purposes they

are placed closer in the figure. Cross-correlograms between an interneuron-

pyramidal cell pair (35–25) and reciprocally connected pair (3–4) are

shown in white. Large-scale recordings and network analysis offer an

opportunity for identifying network and behavior-dependent variation of cell

assemblies3,5,21. This figure was modified from ref. 28 with permission

from the APS (American Physiological Society). 
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mation of the neuron’s virtual ‘point source’ location and may place

the same neuron at different locations, resulting in omission errors

of unit isolation. The spike amplitude variation is most substantial

during complex spike burst production, with as much as 80%

amplitude reduction32,34 (Fig. 4) because of Na+ channel inactiva-

tion30. Improved spike sorting methods therefore analyze not only

the amplitude but also wave shape variation of spikes22,35.

Another problem with the point-source assumption for action

potentials is that the somatic origin is not always resolvable with dis-

tant recording sites. For example, in the rat neocortex, extracellular

spikes can be recorded from the apical shaft of layer-5 pyramidal neu-

rons as far 500 µm from the cell body26. As a consequence, a single

electrode tip, or a tetrode, placed in layer 4 can equally record from

layer-4 cell bodies or apical dendrites of deeper neurons. Such mis-

classification errors are especially serious in the primate brain where

spikes can be recorded from several hundred micrometers away from

the cell bodies of large pyramidal cells. These sources of unit sorting

errors can be circumvented by recording at multiple sites parallel with

the axodendritic axis of the neurons. Importantly, such multiple-site

monitoring can be exploited for the study of behavior-dependent

intracellular features19 and for resolving temporally superimposed

spikes of different neurons36.

The amplitude and waveform variability of the extracellularly

recorded spike is the major cause of unit isolation errors.

Triangulation methods visually analyze two-dimensionally projected

datasets at a time. With multiple site-recorded data, successive com-

parisons of the various possible projections generate cumulative errors

of human judgment. Cumulative human errors can be eliminated by

automatic clustering methods of high-dimensional data35–37. A fur-

ther difficulty is that no independent criteria are available for the

assessment of omission and commission errors of unit isolation. As a

result, improvement of spike sorting algorithms17,18,22,35,36 is not

guided by objective measures. In the absence of quantitative criteria

for unit isolation quality, inter-laboratory comparison is difficult and

makes interpretation controversial38. A recent study19 involving simul-

taneous intracellular and extracellular recording from the same

pyramidal neurons resulted in a new database that allows for the

objective assessment of spike classification errors, as well as the devel-

opment of a semiautomatic clustering algorithm that is superior to

manual clustering35 (software can be down-

loaded from http://klusters.sourceforge.net

or http://klustakwik.sourceforge.net).

After most or all instruments of the

orchestra are isolated, the next step is the sep-

aration of strings from woodwinds and then

oboes from clarinets. This is an important

step because brain networks consist of sev-

eral neuronal classes, each with a specific

computation task. Paradoxically, current

neurophysiological practice rarely distin-

guishes among the various neuron classes.

Unit classes are typically generated post hoc,

as they relate to behavior, without reference

to the types of neurons that give rise to them.

However, the potential conclusion from an

experiment reporting that all cortical pyram-

idal cells did one thing and all interneurons

something else is qualitatively different from

the conclusion that can be drawn from the

information that 80% of all (unclassified)

cells behaved differently from the rest. To

understand the contribution of different neuron types to network

activity, they have to be identified.

In the hippocampus, several features, such as spike duration, firing

rate and pattern, spike waveform and the relationship to field pat-

terns, can be used to separate pyramidal cells from interneurons and

some interneuron classes from each other22,39. Similar classification
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Figure 4 Behavior and network-dependent variability of spike amplitude and waveform is the most

important source of unit classification errors. (a) Amplitude variability of a well-isolated CA1

pyramidal cell as the rat repeatedly visits the receptive field of the neuron (red arrows). Note large

(≥50%) amplitude reduction of the extracellularly recorded spikes within the place field. Insets,

spikes outside of place field with low level of activity (top) and in the middle of field with maximum

activity (bottom), respectively. (b) In vivo intracellular recording from the proximal apical dendrite of a

CA1 pyramidal cell. Place field-associated synaptic excitation was mimicked by intracellular injection

of a 3-second long cosine wave. Note reduction of spike amplitude reduction with increasing level of

depolarization and discharge frequency. (c) Attenuation of spike backpropagation during a complex

spike burst. Note progressive amplitude change at dendritic recording sites (arrowheads). 

(a) Reprinted from ref. 34 with permission from Elsevier. (b) Unpublished data from D.A. Henze and

G.B. (c) Modified from ref. 33.

Figure 5 Coordination of assembly patterns in the hippocampus. 

(a) Examples of the spike sequences from a single tetrode (neurons 0 to 3)

during wheel running and sleep sessions, with neuron 0 as the sequence

initiator. Different colors indicate different patterns. Note time-compressed

sequences during sleep. (b) Cell assembly activity in a population.

Neuronal spikes during a 1-s period of spatial exploration (left) are arranged

in order of physical position of the recording silicon probe within the CA1

pyramidal layer (top). Vertical lines: troughs of theta waves (bottom trace).

Right, the same spike rasters as seen at the left, but reordered by

stochastic search over all possible orderings. Cell assembly organization is

now visible, with repeatedly coordinated firing of certain subpopulations

(circled). Reprinted from ref. 49 (a) and ref. 5 (b).
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criteria are not yet available in the neocortex40. Large-scale, high-

density recording of neurons, however, can facilitate the classification

process. This is because a small percentage of cell pairs show robust,

short-timescale correlations, indicative of monosynaptic connec-

tions21,28,40-42 (Fig. 3). Monosynaptic excitation and inhibition can

thus identify excitatory and inhibitory neuronal classes, respectively.

In turn, the extracellular features of the identified minority can be

used as a template for classifying the remaining population.

Separation within the excitatory and inhibitory families of neurons is

the next critical step, and this task will benefit from a cooperation of

various complementary methods, including in vivo and in vitro juxta-

cellular and intracellular labeling and molecular biological tools42–44.

Local field activity

A necessary requirement for understanding the transformation of

inputs by a neuron or neuronal assemblies is information about both

their input and output. In contrast to recording spike output with

high precision, no method is available for monitoring all inputs at the

resolution of dendrites and spines of single neurons. Large-scale

monitoring of spike patterns of presynaptic cell assemblies to a single

neuron is a potential strategy (for example, neuron 3 in Fig. 3). An

alternative compromise is measuring the extracellular current flow

that reflects mainly the linearly summed postsynaptic potentials from

local cell groups45. Recording the voltage gradients by geometrically

arranged sites of silicon probes allows current densities to be calcu-

lated for an estimation of the mean input to the neuron group in the

recorded volume45. High-density recording with silicon probes there-

fore can be used not only to monitor the spike output from neuronal

groups, but also to estimate their summed input. High spatial resolu-

tion of extracellular currents together with spiking activity of neurons

from which these currents emanate provides a means for assessing

input–output relations of neuronal coalitions.

New insights from large-scale recording of neuronal populations

Recording from large numbers of neurons will reduce the number of

animals, their maintenance costs and the variability inherent in record-

ing data over multiple sessions46,47. However, the main goal of large-

scale recording of neuronal activity is to reveal information available

only from the interaction of the constituents of neuronal ensembles.

Brain networks are strongly interconnected, and firing patterns of single

neurons are influenced by the activity of their peers, not unlike the way

that members of a jam session influence each other. Such emergent

qualities can be revealed only by observing statistically representative

groups of the population. For example, hippocampal pyramidal cells

during rest and sleep produce strongly coherent ensemble bursts

believed to be critical in transferring information to the neocortex.

Although robust at the population level, no amount of sequential single-

cell recording could reveal such cooperative patterns48. As in music, the

temporal sequence of neuronal spikes conveys information2,3. Using

large-scale recordings, researchers can follow complex patterns for

extended time periods and determine whether their modification by

experience will influence self-generated patterns in the absence of envi-

ronmental inputs. Spike sequences, imposed upon the network by

behavioral manipulations, recur spontaneously during subsequent sleep

episodes49–51 (Fig. 5a), indicating that neurons organize themselves into

preferred cell assemblies, and the seeds of emergence stem from experi-

ence-related activity. A postulated signature of the cell assembly is that

its participants show a higher probability of spiking together than with

members of other assemblies, even in the absence of external inputs52.

Testing this long-standing hypothesis required recordings from large

pools of local neurons and novel mathematical tools. Interactions

among hippocampal neurons recorded in parallel revealed the dynami-

cal emergence of assemblies that lasted long enough to have a maximum

impact on their targets. The spike time variability of assembly members

poorly correlated with environmental inputs but could be predicted

from the activity of the simultaneously active neurons5 (Fig. 5b). Such

internally driven, self-organized assemblies may reflect mechanisms that

give rise to cognitive phenomena53,54.

This idea is further supported by the lifetime of cell assemblies,

which matches the cycle period of gamma oscillation. Using two-

dimensional silicon probe mapping covering three connected regions

of the hippocampus, it is now possible to establish the coupling of two

independent gamma oscillators, their synaptic mechanisms and brain

state-dependent coupling strength41. In other studies, ensemble

recording from anatomically interconnected structures allowed for

monitoring the spatio-temporal evolution of input-dependent func-

tional connections15,55,56. These global, region-coupling studies now

can be analyzed at the level of monosynaptically connected neuron

pairs, along with the identification of the participating neurons 

(Fig. 3). The fast-growing field of neuronal assembly control in motor

behavior and prosthetic machine coordination is reviewed by Chapin

(p. 452–455 in this issue)15.

Outlook

Progress in large-scale recording of neuronal activity depends on the

development of three critical components: the neuron–electrode inter-

face, methods for spike sorting/identification and tools for the analysis

and interpretation of parallel spike trains. In addition to increasing the

numbers of recording sites on silicon probes, the development of on-

chip interface circuitry is another priority. On-chip amplification, fil-

tering and time-division multiplexing25 will not only dramatically

decrease the number of wires between the behaving animal and elec-

tronic equipment but may also eliminate the need for large numbers of

expensive amplifiers by directly feeding the multiplexed digital signal

into a computer processor. Programmed microstimulation through the

recording sites57 and, potentially, real-time signal processing not only

will facilitate basic research but also is a prerequisite for efficient, fully

implantable neural prosthetic devices10–13,58.

Current spike sorting procedures are time-consuming and subjec-

tive. The importance of these issues is illustrated by the recent surge

of novel spike isolation algorithms22,35,36,59–64. This area of research

can enormously benefit from innovative mathematical tools and

neuron-spike modeling studies31 that will provide error estimates of

spike isolation quality and, therefore, allow comparison across labo-

ratories. These initial steps, including physiological classification of

units that correspond to anatomically defined neuronal divisions, are

indispensable for meaningful analysis of massive data sets recorded

in parallel. Large-scale recorded spike trains create new challenges

for data management, visualization and analysis65. In contrast to the

tradition of classic neurophysiology with minimal statistical analysis,

the large data bases require extensive ‘data mining’, a task that may

involve several laboratories. Sharing and pooling databases are logi-

cal steps of progress, but care should be taken that the necessary stan-

dardization procedures will not compromise experimental design

and innovations. The stakes are high because high-density recording

of neuronal activity may be the engineering tool for getting into the

inner works of the brain.
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