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ABSTRACT Large scale deployment of Internet of Things (IoT) devices poses challenges in resource

allocation. In this paper, alternating direction method of multipliers (ADMM) is adopted to solve such

large scale resource allocation problems. Based on this, three optimization problems are investigated in a

hierarchical IoT network. Considering ADMM could not solve a non-convex optimization problem directly,

a non-convex fractional programming problem i.e., energy efficiency maximization problem for IoT region

server, is formulated. Faced with this problem, we introduce the Dinkelbach algorithm to transfer the energy

efficiency maximization problem into an equivalent convex optimization problem. Then the classic ADMM

with two blocks is employed to solve the equivalent convex optimization problem. On the other hand,

the classic ADMMwith two blocks could not satisfy the convergence speed demands of the high-dimensional

convex optimization problems any more. Thus, the network latency minimization problem for controller is

designed and then solved by the Jacobian-ADMMalgorithm in parallel. It is hard to satisfy controller and IoT

region servers’ objectives at the same time. Given this, an incentive mechanism on the basis of Stackelberg

game is designed. Thus a game-based resource allocation problem is proposed to deal with the contradiction

between the centralized objective of the controller and the individual objectives from the IoT region servers.

Based on the Dinkelbach algorithm and Jacobian-ADMMalgorithm, a two-layer iterative resource allocation

algorithm is posed to solve the game-based resource allocation problem. Last but not least, the convergence

of the proposed algorithms are analyzed with numerous simulation results.

INDEX TERMS IoT network, large scale resource allocation, ADMM, convex optimization.

I. INTRODUCTION

The Internet of Things (IoT) is an emerging technology that

proffers to connect massive smart devices together and to

the Internet [1]. IoT technology has been widely used in the

construction of smart city and smart grid, due to the advan-

tages of ubiquitous sensing, universal networking, intelligent

information processing, and real-time control. For example,

tremendous amount of devices are deployed to monitor the

physical world in people’s daily lives in real time by col-

lecting and uploading their local sensed contents such as

images, videos, and textual data.With the ongoing worldwide

The associate editor coordinating the review of this manuscript and
approving it for publication was Takuro Sato.

development of IoT, more than 50 billion IoT devices are

predicted to be connectedwith the expanding IoT by 2020 [2].

The IoT network is thirsty for an efficient resource allocation

scheme which could adapt the increasing expansion of IoT

network [3]–[5].

Convex optimization is an indispensable tool for resource

allocation due to the ability of flexible formulations and

efficient global optimization. In addition, convex relax-

ation approach is powerful to deal with the problems with

complicated variables, such as the joint channel selec-

tion and resource allocation problems which include both

discrete and continuous variables [6]. Importantly, convex

relaxation approach provides a principled way of develop-

ing polynomial-time algorithms for non-convex or NP-hard
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FIGURE 1. The hierarchical architecture of IoT network.

problems [7]. For example, group-sparsity penalty relaxation

is utilized for the NP-hard mixed-integer nonlinear program-

ming problems in [8] and [9]. Furthermore, [10] applies

the general iterative successive convex approximation (SCA)

approach to solve a mixed-integer non-convex resource allo-

cation problem encountering high computational complexity.

However, performance optimization problems are entering

a new era characterized by a high dimension and a large

number of constraints because of the drastically increasing

size of IoT network [11]. The general convex programming

will no longer apply to the scaled up resource allocation

problems. At this opportunity, alternating directionmethod of

multipliers (ADMM) algorithm has attracted wide attentions

for its distributed and parallel implementation, as well as the

capability of scaling to large scale problems. ADMMhas also

been modified to solve many other mathematical optimiza-

tion problems in more complicated and specific forms, such

as multiagent ADMM with Gaussian back substitution for

more than two variables [12], proximal Jacobian ADMM on

parallel programming [13], and the asynchronous distributed

ADMM [14]. ADMM has provided a powerful methodology

to solve large-scale high-dimensional data processing and

control optimization problems. Thus, ADMM has already

been successfully applied in distributed energy management,

machine learning, and image recognition [15], [16].

On the other hand, a generic hierarchical IoT architecture

shown in Figure 1 is taken into account in this paper [17].

Such hierarchical architecture plays an irreplaceable role in

cloud computing [18], access control [19] and data schedul-

ing [20] for IoT network. In such a system, controller and

IoT region servers usually have their own processing resource

objectives [21]. In most cases, there are conflicts for the

optimization objectives between controller and IoT region

servers. Thus, an incentive mechanism which could balance

the relationship between controller and IoT region servers is

expected.

Last but not least, once the IoT network expands rapidly,

the coupling relationship between the controller and IoT

region servers will become complicated and changeable.

On this occasion, ADMM is expected to be employed to

deal with the increasing number of optimization variables

and constraints. However, how to deal with the relationship

between ADMM and incentive mechanism remains an open

issue.

Motivated by this, three optimization problems are formu-

lated. They are the energy efficiency maximization problems

for IoT region servers, the network latency minimization

problem for controller and the game-based resource allo-

cation problem. Correspondingly, ADMM-and-Dinkelbach-

based resource allocation algorithm, Jacobian-ADMM-based

resource allocation parallel algorithm and game-and-

Jacobian-ADMM-based two-layer iterative resource allo-

cation algorithm are proposed to solve these formulated

three problems. The major contributions of this paper are

summarized as follow:

• Three optimization problems are formulated in a large

scale hierarchical IoT system. Taking the increasing

energy consumption caused by the seamless deploy-

ment of IoT devices into consideration, a non-convex

energy efficiency maximization problem is proposed

for each IoT region server. For the controller, a net-

work latency minimization problem is formulated to sat-

isfy the demand of real-time transmission. Importantly,

an incentive mechanism based on the Stackelberg game

is introduced. Then a game-based resource allocation

problem is designed.

• The energy efficiency maximization problem for each

IoT region server is formulated as a non-convex

fractional optimization problem, which could not be

solved by ADMM algorithm directly. Faced with this,

the ADMM-and-Dinkelbach-based resource allocation

algorithm is proposed. First, the Dinkelbach algorithm

is employed to transform the formulated energy effi-

ciency maximization problem into an equivalent convex

optimization problem. Then, the new equivalent convex

optimization problem is solved by the classic ADMM

with two blocks.

• The network latency minimization problem for con-

troller is formulated as a high dimension convex

optimization problem with a large number of variables

constraints. The classic ADMM with two blocks is no

longer applied to such a large scale resource allocation

problem. Based on this, we propose a distributed parallel

algorithm which is named as Jacobian-ADMM-based

resource allocation parallel algorithm. Under this algo-

rithm, controller’s computing tasks are offloaded to IoT

region servers.

• It is considered that the controller only focuses on its

own objective, and the IoT region servers are self-

ish to achieve their own objectives. To address this

issue, the Stackelberg game is introduced. Under the

Stackelberg game architecture, the controller acts as
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the leader and the IoT region servers play the roles of

followers. Then the leader will incentivize the followers

with payments to compensate their losses. The detailed

works include

– First, in order to encourage the IoT region servers to

schedule the resource to accomplish the controller’s

objective, an incentive function is designed for IoT

region servers. The incentive function includes the

controller’s objective information, the IoT region

server’s objective part, and the incentive part.

– Second, the incentive function will be optimized

instead of the original energy efficiency maximiza-

tion problem. Then, a game-based resource alloca-

tion problem is designed.

– In order to solve the game-based resource alloca-

tion problem with a tractable method, we propose

a game-and-Jacobian-ADMM-based two-layer iter-

ative resource allocation algorithm. In the inter

loop, the followrs’ problems are solved based on

Dinkelbach algorithm and Jacobian ADMM. More

importantly, after the inter loop iteration ends, the

optimized resource allocation results will be sent

to the leader. In the outer loop, the leader obtains

the response information from inter loop and then

updates the incentive parameter. The incentive

parameter will feed back to the followers. The iter-

ative process will not stop until the Stackelberg

equilibrium is achieved.

• At last, we analyze the performance of the three pro-

posed algorithm from theory and simulations. The

easily ignored convergence performance is verified

and guaranteed. Specially, the proposed algorithms

with rapid-convergence and strong-scalability could be

applied in a large scale IoT network well.

The remained paper is organized as follows. Section II

presents the system model. In Section III the Dinkelbach

algorithm and classic ADMM are introduced to solve the

energy efficiency maximization problem. In Section IV,

the network latency minimization problem is presented and

solved by the proposed Jacobian-ADMM-based resource

allocation parallel algorithm. Then a game-based resource

allocation problem is formulated to balance the controller’s

objective and IoT region servers’ objectives in Section V,

which is solved by the game-and-Jacobian-ADMM-based

two-layer iterative resource allocation algorithm. The simu-

lation results are shown in Section VI and conclusions are

drawn in Section VII.

II. SYSTEM MODEL

In this paper, we consider an uplink scenario in a centrally

controlled system, i.e., the three hierarchical architecture of

IoT network, as shown in Figure 1. The top layer is a central

controller, which is responsible for system initialization, IoT

device registration and so on. In the lowest layer, there are

several IoT regions distributed. A number of heterogeneous

mix of IoT devices, such as vehicles, human devices and

smart city IoT devices, are deployed in these IoT regions.

The second layer is consisted of IoT region servers, which are

used to cache, compute, transmit data, and send the control

information to IoT devices from itself or controller. The IoT

region servers which are combined with base stations are

functioned with power control. Moreover, the IoT region

servers could not directly communicate with each other. The

coordination between IoT region servers depends on the

central controller.

In addition, each IoT region servers specially provides

services to its own IoT region. Assuming that there are N

IoT regions, correspondingly there are N IoT region servers

which are indexed as N = {1, 2, · · · , n, · · · ,N }. Moreover,

there are Kn IoT devices deployed in the n − th IoT region,

these IoT devices are indexed asKn = {1, 2, · · · , i, · · · ,Kn},

∀n ∈ N .

Regarding to channel models of this system, both fast fad-

ing and slow fading that are caused by multipath propagation,

shadowing and path loss are taken into consideration. The

channel gain from the i− th IoT device to its n− th IoT region

server is given by

gn,i = ̟βn,iζn,id
−α
n,i (1)

where̟ is the path loss constant, βn,i is the fast-fading gain

with exponential distribution, ζn,i is the slow fading gain with

log-normal distribution, α is the path loss exponent, and dn,i
is the transmission distance between the i− th IoT device and

its n− th IoT region server.

Each device is allocated with an orthogonal link with the

bandwidth of w Hz. The achievable data transmission rate

from i − th IoT device to its n − th IoT region server is

calculated as

Rn,i(pn,i) = wlog2
(

1 + pn,ihn,i
)

(2)

hn,i is the signal-to-noise ratio (SNR) which is given by
gn,i

σ 2
. σ 2 is the white Gaussian noise power and pn,i is the

transmission power of the i− th IoT device in the n− th IoT

region.

IoT network will be the leading energy guzzler in informa-

tion and communications technology, which inspires the IoT

region servers to focus on the energy efficiency in order to

build a green IoT network [22]. So the energy efficiency of

the n− th IoT region is evaluated by

ηn =

Kn
∑

i=1

Rn,i(pn,i)

Kn
∑

i=1

pn,i

(3)

Assume that the arriving data packets with the length of Ln,i
bits of device i follow the Poisson point distribution process,

so the transmission latency τn,i from i− th IoT device to the
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n− th IoT region server is given by

τn,i(pn,i) =
Ln,i

Rn,i(pn,i)
(4)

So transmission latency of the n− th IoT region is calculated

as

τn(pn) =

Kn
∑

i=1

τn,i(pn,i) (5)

where pn = {(pn,1), (pn,2), . . . , (pn,Kn )}
T is a column vector.

In this system the transmission latency of IoT network is

given by

µ(p) =

N
∑

n=1

τn(pn) (6)

Here p = {pT1 ; pT2 ; . . . ; pTN }T .

III. ENERGY EFFICIENCY MAXIMIZATION PROBLEMS

FOR IoT REGION SERVERS

In this section, an energy efficiency maximization problem is

formulated. As a nonlinear fractional programming problem,

the energy efficiency maximization problem is transferred

into an equivalent convex optimization problem by Dinkel-

bach algorithm. Then the classic ADMM with two blocks

is introduced to solve the equivalent convex optimization

problem efficiently.

A. ENERGY EFFICIENCY MAXIMIZATION PROBLEMS

FORMULATIONS AND TRANSFORMATIONS

Based on (3), the energy efficiencymaximization problem for

each IoT region server is formulated as

P1′ : maximize
pn

ηn

s.t.

Kn
∑

i=1

pn,i ≤ pmax
n n ∈ N , i ∈ Kn (C1)

pn,i ≤ pmax
n,i n ∈ N , i ∈ Kn (C2) (7)

where C1 is the upper bound of the energy consumption for

the n− th IoT region. pmax
n is the maximum available power

of the n− th IoT region. C2 is employed to limit the power of

single IoT device. pmax
n,i is the maximum consumed power for

single IoT device.

We can find that P1′ is a non-convex fractional program-

ming problem, where the numerator is a convex function of

qn and the denominator is an affine function of qn. Such

non-convex fractional programming problems could be trans-

formed into a series of convex optimization problems with

Dinkelbach algorithm. The Dinkelbach algorithm is widely

adopted to solve such fractional programming problems [11],

especially in green communication networks. So the objective

of P1′ is equivalent to minimizing the following function

f (pn, qn) = −

Kn
∑

i=1

Rn,i(pn) + qn

Kn
∑

i=1

pn,i (8)

where f (pn, qn) is a strictly monotonic increasing function

of qn. Further, f (pn, qn) could be proved to be a convex

function of pn by deriving the Hessian matrix.

Mathematically, p∗
n = {(p∗

n,1), (p
∗
n,2), · · · , (p

∗
n,Kn

)}T is

denoted as the optimal power allocation results when the

n− th IoT region server obtain the optimal energy efficiency

q∗
n. Therefore, the following theorem could be proved.

Theorem 1: The optimal energy efficiency result could be

obtained by the n − th IoT region server, if and only if

f
(

p∗
n, q

∗
n

)

= −

Kn
∑

i=1

Rn,i(p
∗
n) + q∗

n

Kn
∑

i=1

p∗
n,i = 0.

Proof: The detailed proof of Theorem 1 could be found

in [23].

According to Theorem 1, the original optimization prob-

lem P1′ could be transformed as

P1 : minimize
pn

f (pn, qn)

s.t. C1,C2 (9)

B. ADMM-AND-DINKELBACH-BASED RESOURCE

ALLOCATION ALGORITHM

P1 is a convex optimization problem with Kn, n ∈ N

variables. When the number of IoT devices in n − th IoT

region increases, tremendous time will be taken to solve P1

using the conventional convex optimization approach. Thus,

we develop an ADMM-and-Dinkelbach-based resource allo-

cation Algorithm. Then, the detailed algorithm is shown as

follow.

First, the resource allocation variable pn is divided into

two parts, i.e., x = {(pn,1), (pn,2), · · · , (pn,m)}
T and

z = {(pn,m+1), (pn,m+2), · · · , (pn,Kn )}
T . Thus, P1 could be

rewritten as

∼

P1 : minimize
x,z

Ŵ (x)+9 (z)

s.t. Exx + Ezz = pmax
n (10)

where x ∈ Rm×1, z ∈ R(Kn−m)×1, Ex ∈ R1×m, and Ez ∈

R1×(Kn−m). Ex and Ez are unit vectors.

Ŵ(x) and 9(z) are list as

Ŵ (x) = −

m
∑

i=1

Rn,i(pn,i) + qn

m
∑

i=1

pn,i (11)

9 (z) = −

Kn
∑

i=m+1

Rn,i(pn,i) + qn

Kn
∑

i=m+1

pn,i (12)

Thus, the augmented Lagrangian associated with
∼

P1 is shown

as

Lρ (x, z, y) = Ŵ (x)+9 (z)+
ρ

2
‖r+µ‖22 −

ρ

2
‖µ‖22 (13)

where r = Exx+Ezz−p
max
n is the primal residual. ρ > 0 rep-

resents the penalty parameter. Let y be a vector of Lagrange

multipliers. µ =
y

ρ
is the scaled dual variables.
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Then, we can iteratively update both primal and dual variables

as

xj+1 = argminŴ
(

xj
)

+
ρ

2

∥

∥

∥
Exx

j + Ezz
j − pmax

n + µj
∥

∥

∥

2

2
(14)

zj+1 = argmin9
(

zj
)

+
ρ

2

∥

∥

∥
Exx

j+1 + Ezz
j − pmax

n + µj
∥

∥

∥

2

2
(15)

µj+1 = µj+Exx
j+1 + Ezz

j+1 − pmax
n (16)

where j denotes the index of iteration.

The primal residual rp and the dual residual rd are

expressed as

rp
j+1 = Exx

j+1 + Ezz
j+1 − pmax

n (17)

rd
j+1 = ρEx

TEz

(

zj+1 − zj
)

(18)

The termination criteria for ADMM is defined as
∥

∥

∥
rp
j+1
∥

∥

∥

2
≤ ǫpri and

∥

∥

∥
rd

j+1
∥

∥

∥

2
≤ ǫdual (19)

where ǫpri > 0 and ǫdual > 0 denote feasibility tolerances

with respect to primal conditions and dual conditions.

On the other hand, qn will update its value during every

iteration and finally reach the optimal q∗
n according to

Dinkelbach algorithm. q
j+1
n could be updated at j iteration as

qj+1
n =

Kn
∑

i=1

Rn,i

(

(

(xj+1)
T
, (yj+1)

T
)T
)

Exxj+1 + Ezzj+1
(20)

The termination criteria for Dinkelbach algorithm is denoted

as

π j+1 =

∣

∣

∣
Ŵ

(

xj+1
)

+9

(

zj+1
)

−Ŵ

(

xj
)

−9

(

zj
)∣

∣

∣
≤ ε (21)

Here ε is a positive constant that approaches to zero.

Based on the above work, the proposed ADMM-and-

Dinkelbach-based resource allocation algorithm for IoT

region servers will stop iteration until (19) and ( 21)

are satisfied at the same time. The detailed ADMM-and-

Dinkelbach-based resource allocation algorithm is shown as

Algorithm 1.

IV. NETWORK LATENCY MINIMIZATION PROBLEM

FOR CONTROLLER

In this section, a network latency minimization problem is

formulated, which is a convex problem with

N
∑

n=1

Kn variables

and

N
∑

n=1

Kn+N constraints. Then the Jacobian-ADMM-based

resource allocation parallel algorithm is proposed to solve the

network latency minimization problem.

Algorithm 1ADMM-and-Dinkelbach-Based Resource Allo-

cation Algorithm

1: Initialize: j, x, z, µ, qn, ρ, ǫ
pri, ǫdual , ε and π .

2: output: x, z, qn.

3: while
∥

∥rp
j
∥

∥

2
> ǫpri or

∥

∥rd
j
∥

∥

2
> ǫdual or π j > ε do

4: Update xj+1 according to (14);

5: Update zj+1 according to (15);

6: Update µj+1 according to (16);

7: Update
∥

∥rp
j+1
∥

∥

2
according to (17);

8: Update
∥

∥rd
j+1
∥

∥

2
according to (18);

9: Update q
j+1
n according to (20);

10: Update π j+1 according to (21);

11: Update j → j+ 1;

12: end while

A. NETWORK LATENCY MINIMIZATION

PROBLEM FORMULATIONS

Notably, many envisioned applications of IoT, such as indus-

trial automation [24], vehicle-to-everything (V2X) networks,

smart grids, and remote surgery, have stringent transmis-

sion latency and reliability requirements. Thus, the network

latency minimization problem for controller is formulated as

P2 : minimize
p

µ(p)

s.t.

Kn
∑

i=1

pn,i ≤ pmax
n ∀n ∈ N (C3)

pn,i ≤ pmax
n,i ∀n ∈ N , ∀i ∈ Kn (C4) (22)

where C3 and C4 are the energy consumption constraints for

all IoT regions and all IoT devices, respectively.

B. JACOBIAN-ADMM-BASED RESOURCE

ALLOCATION PARALLEL ALGORITHM

P2 can be proved as a convex optimization problem by ver-

ifying its corresponding second-order derivative. The clas-

sic ADMM with two blocks used in Algorithm 1, is no

longer suitable for convex optimization problems with high

dimensional variables such as P2. We prefer to extending the

ADMM framework to solve P2, especially when Kn or N is

large. A natural extending is to simply replace the two-block

alternating minimization scheme by a sweep of Gauss-Seidel

update. However such Gauss-Seidel ADMM has a disadvan-

tage, i.e., the blocks are updated one after another which is

not amenable for parallelization [13]. To overcome this dis-

advantage, we will introduce a Jacobian-type scheme which

updates all the blocks in parallel.

On one hand, the controller achieves its goal by coordi-

nating the resource allocation schemes from N IoT region

servers. On the other hand, comparedwith large-scale central-

ized computing, the controller ismore inclined to decentralize

computing tasks to IoT region servers. Thus we will partition

the matrix of resource allocation variables into N parts, i.e.,

x1 = {(p1,1), (p1,2), . . . , (p1,K1
)}T
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x2 = {(p2,1), (p2,2), . . . , (p2,K2
)}T

...

xn = {(pn,1), (pn,2), . . . , (pn,Kn )}
T

...

xN = {(pN ,1), (pN ,2), . . . , (pN ,KN )}
T

Then P2 is rewritten as

∼

P2 : minimize
X

N
∑

n=1

G (xn)

s.t.

N
∑

n=1

Anxn = C ∀n ∈ N (C5) (23)

where X = {xT1 ; xT2 ; . . . ; xTN }
T
, An ∈ RN×Kn . Let C =

{pmax1 , pmax2 , . . . , pmaxN }T . G (xn) satisfies

G (xn) =

Kn
∑

i=1

τn,i(pn,i) (24)

The augmented Lagrangian associated with
∼

P2 is shown as

Lρ (X, λ) =

N
∑

n=1

G (xn)− λT (

N
∑

n=1

Anxn − C)

+
κ

2

∥

∥

∥

∥

∥

N
∑

n=1

Anxn − C

∥

∥

∥

∥

∥

2

2

(25)

κ > 0 represents the penalty parameter of the quadratic.

λ is the Lagrange multiplier which is a column vector. Then,

we can iteratively update primal variables as

x l+1
1 = argminG (x1)

+
κ

2

∥

∥

∥

∥

∥

A1x1 +

N
∑

n=2

Anx
l
n − C −

λl

κ

∥

∥

∥

∥

∥

2

2

...

x l+1
n = argminG (xn)

+
κ

2

∥

∥

∥

∥

∥

∥

n−1
∑

a=1

Aax
l
a + Anxn +

N
∑

a=n+1

Aax
l
a − C −

λl

κ

∥

∥

∥

∥

∥

∥

2

2

...

x l+1
N = argminG (xN )

+
κ

2

∥

∥

∥

∥

∥

AN xN +

N−1
∑

n=1

Anx
l
n − C −

λl

κ

∥

∥

∥

∥

∥

2

2

(26)

Further, the dual variables are updated as

λl+1 = λl − κ

(

N
∑

n=1

Anxn − C

)

(27)

where l denotes the index of iteration.

According to [13] and [25], the termination criteria is

defined as

χ l+1 =

∣

∣

∣
Lρ

(

Xl+1, λl+1
)

− Lρ

(

Xl, λl
)∣

∣

∣
≤ ε (28)

Consequently, the Jacobian-ADMM-based resource alloca-

tion parallel algorithm is summarized in Algorithm 2.

Remark 1: If the n − th IoT region server can get the

information related to the controller’ objective, i.e., G(xn)

and the constraint C5, the update progress of xn,∀n ∈ N

could be completed by the n − th IoT region server referred

to (26). Then the updated xn,∀n ∈ N will be sent to the

controller. The work of the controller is reduced to update

dual variables and send the updated λ to IoT region servers.

That is to say the proposed Algorithm 2 succeeds to decen-

tralize the computing tasks of controller to N IoT region

servers.

Algorithm 2 Jacobian-ADMM-Based Resource Allocation

Parallel Algorithm

1: Initialize: l, X, λ, κ , ε and χ .

2: output: X.

3: while χ l > ε do

4: Update Xl+1 according to (26);

5: Update λl+1 according to (27);

6: Update χ l+1 according to (28);

7: Update l → l + 1;

8: end while

V. GAME-BASED RESOURCE ALLOCATION PROBLEM

The key goal of this section is to efficiently utilize the limited

energy resources, while guarantee the real-time transmis-

sion of data. That is to say we expect an optimal resource

allocation scheme which satisfies the controller’s and IoT

region servers’ objectives simultaneously. However, it is

challenging to find such an optimal resource allocation

scheme.

First, the controller could not accomplish the resource

allocation without the help of IoT region server. Because

the IoT devices’ resources are handled by the IoT region

servers directly. Second, IoT region servers are selfish and

prefer to achieve its own objectives, unless the controller

provides incentives for IoT region servers [26], i.e., paying

token/money for additional consumed energy to IoT region

servers. Third, asmentioned in Section IV, large scale central-

ized computing puts tremendous pressures on the controller

and the computing tasks are expected to offloaded to IoT

region servers.

Accordingly, we formulate a game-based resource alloca-

tion problem, where the controller is modeled as a leader and

the IoT region servers act as followers. Then a game-and-

Jacobian-ADMM-based two-layer iterative resource alloca-

tion algorithm is developed to solve this problem in a

distributed and parallel way.
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A. GAME-BASED RESOURCE ALLOCATION

PROBLEM FORMULATIONS

Based on the above discussions, the following rules are con-

sidered to design the incentive function for IoT region servers.

• The controller’s objective information is better to be

included in the incentive function. So that the IoT region

servers can clarify controller’s optimization direction to

schedule resources.

• Though the incentive function will be optimized instead

of the original objective listed in P1, the original objec-

tive of IoT region server must not be ignored.

• The gain part which follower gets from leader to make

up for the energy efficiency losses is the non-negligible.

Therefore, the incentive function 8n (fn (pn, qn) , θn) of the

n− th follower is illustrated as

8n (fn (pn, qn) , θn) = Ln (pn,3n)+ Hn (pn, qn, θn) (29)

where

Ln (pn,3n) = τn(pn) −3nAnpn (30)

Hn (pn, qn, θn) = fn (pn, qn)− θnpn (31)

where θn = {(θn,1), (θn,2), . . . , (θn,Kn )} is the incentive

parameter vector, which represents the unit price of energy.

3n is the Lagrange multiplier. Ln (pn,3n) is a segmental

Lagrangian function related to controller. Hn (pn, qn, θn) is

calculated by subtracting the gain from the n− th follower’s

objective. θnpn is the gain obtained by n − th IoT region

server.

Remark 2: The incentive function could be understood as

• Controller divides its Lagrangian function associated

with µ (p) into N parts according to ADMM the-

ory, which could be referred to (25). Then the part

Ln (pn,3n) related to the n − th IoT region is fed back

to the n− th IoT region server.

• After receiving the objective information of controller,

the n − th IoT region server will take on the task of

optimizing Ln (pn,3n) with obtaining the payment of

θnpn from controller.

• At the same time, the n − th follower’ original opti-

mization objective fn (pn, qn) is also optimized. Actually,

Hn (pn, qn, θn) indicates the utility of the n− th follower.

In proceed, the n − th IoT region server will optimize

8n (fn (pn, qn) , θn) instead of fn (pn, qn). So a Stackelberg

game is formulated as

P3 : Leader : minimize
p

µ(p)

Follwer : minimize
pn,qn

8n (fn (pn, qn) , θn)

s.t. C4,C5 (32)

For leader’s objective, each part τn(pn) is a strongly

convex function of pn. Furthermore, the followers objec-

tive fn (pn, θn) is a strongly convex function of pn. Thus,

8n (fn (pn, qn) , θn) is a strongly convex function of pn. Con-

sidering the tremendous amount of variables and constrains,

P3 is encouraged to be computed in parallel. So a game-and-

Jacobian-ADMM-based two-layer iterative resource alloca-

tion algorithm is designed as follows.

B. GAME-AND-JACOBIAN-ADMM-BASED TWO-LAYER

ITERATIVE RESOURCE ALLOCATION ALGORITHM

At the beginning, the leader transmits the form of Ln (pn,3n)

to the n − h follower, ∀n ∈ N . Define υ as the iteration

times of outer loop. At each step υ, the followers update the

resources allocation scheme pn{υ},∀n ∈ N to minimize their

incentive functions, while the given incentive factors from the

leaders, θn {υ} ,∀n ∈ N , are taken into account. At the next

step υ + 1, leader will adjust the incentive factors based on

the updated resource allocation pn{υ},∀n ∈ N [27]. Then,

the followers will reach a new optimal resource allocation

scheme pn{υ + 1},∀n ∈ N , with the adjusted incentive

parameter θn (υ + 1) ,∀n ∈ N .

Based on the above discussion, the process to achieve

pn{υ},∀n ∈ N at each step υ is called the inner loop, and the

one to update θn{υ + 1},∀n ∈ N from step υ to step υ + 1 is

called the outer loop. t is defined as the iteration times for the

inner loop. The detailed updating processes of the inter loop

and outer loop are presented as follows.

1) INTER LOOP

Parallelly follower’s update:

pt+1
n {υ} = argminLn

(

ptn{υ},3t
n{υ}

)

+Hn

(

ptn{υ}, qt+1
n {υ}, θn{υ}

)

+
ρ

2

∥

∥

∥

∥

∥

N
∑

n=1

Anp
t
n{υ} − C

∥

∥

∥

∥

∥

2

2

(33)

Leader’s dual update:

3t+1{υ} = 3t {υ} − ρ

(

N
∑

n=1

Anp
t
n{υ} − C

)

(34)

Here 3 = {31,32, . . . , 3n, . . . , 3N }T .

qn update based on Dinkelbach algorithm:

qt+1
n {υ} =

Kn
∑

i=1

Rtn,i(p
t
n,i){υ}

Kn
∑

i=1

ptn,i{υ}

(35)

18{υ} =

∣

∣

∣
8n

(

fn

(

pt+1
n {υ}, qt+1

n {υ}

)

, θ t+1
n {υ}

)

−8n

(

fn
(

ptn{υ}, qtn{υ}
)

, θ tn{υ}
)

∣

∣

∣
(36)
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Inter loop termination criteria: The termination criteria

of inter loop is defined as (36), as shown at the bottom of

the previous page, when 18{υ} ≤ ε the inter loop will stop

iteration.

2) OUTER LOOP

a: INCENTIVE PARAMETER UPDATE

After the inner loop, each follower feeds back its marginal

cost ∇ptn{υ}Hn
(

ptn{υ}
)

to the leader. The leader then changes

its strategy as the adjustment of incentive parameters, to set

the price θn{υ + 1}, as the current marginal cost of each

follower, i.e.,

θn{υ + 1} = ∇ptn{υ}Hn
(

ptn{υ}
)

(37)

Then, the leader and followers can reach a new optimal point

{pn,3n} at the next step υ + 1.

b: OUTER LOOP TERMINATION CRITERIA

The outer loop ends when the Lagrangian function of the

leader satisfies a primal stopping criterion1L{υ} ≤ ε,1L{υ}

is given by

1L{υ}

= L
(

ptn{υ + 1},3t
n{υ + 1}

)

− L
(

ptn{υ},3t
n{υ}

)

(38)

The augmented Lagrangian function L (pn,3n) is the sum of

segmental Lagrangian functions, i.e., Ln (pn,3n) ,∀n ∈ N

plus a second-order norm of the constraint, which is given by

L
(

ptn{υ},3t
n{υ}

)

=

N
∑

n=1

Ln
(

ptn{υ},3t
n{υ}

)

+

N
∑

n=1

3np
max
n

+
ρ

2

∥

∥

∥

∥

∥

N
∑

n=1

Anp
t
n{υ} − C

∥

∥

∥

∥

∥

2

2

(39)

Based on the above work, the proposed game-and-Jacobian-

ADMM-based two-layer iterative resource allocation algo-

rithm is shown as Algorithm 3.

C. PERFORMANCE ANALYSIS

1) Convergence

Theorem 2: Algorithm 3 is guaranteed to linearly con-

verge into a Stackelberg equilibrium. Mathematically, given

any small scaler ε0, when the primal residue of the augmented

Lagrangian function is less than ε0,1L{υ} ≤ ε0, the iteration

time ϒ has the following upper bound, ϒ ≤
ϒ0

ε0
, where ϒ0

is a positive constant.

Proof: The proof of Theorem 2 could be found in

Appendix.

2) OPTIMALITY

In Algorithm 3, the followers’ optimization problems, i.e.

8n (fn (pn, qn) , θn) ,∀n ∈ N , are guaranteed to be solved by

the Jacobian-ADMMandDinkelbach algorithm at any step υ.

According to Theorem 2, the outer loop of Algorithm 3

linearly converges. Thus the leader’s optimization problem

is also been solved.

Algorithm 3Game-and-Jacobian-ADMM-Based Two-Layer

Iterative Resource Allocation Algorithm

1: Initialize: υ, θn, and ε.

2: Output: p∗
n, 3

∗, θ∗
n , ∀n ∈ N .

3: Outer loop:

4: while 1L{υ} > ε do

5: Inter loop:

6: Initialize: t , pn, 3, ρ and θn{υ}.

7: Output: pn{υ}.

8: while 18{υ} > ε do

9: Update pn
t+1{υ} according to (33);

10: Update 3t+1{υ} according to (34);

11: Update qt+1
n {υ} according to (35);

12: Update 18{υ} according to (36);

13: Update t → t + 1;

14: end while

15: Update θn{υ} according to (37);

16: Update 1L{υ} according to (38);

17: Update υ → υ + 1;

18: end while

TABLE 1. Simulation parameters.

3) SCALABILITY

Through the proof of Theorem 2 in Appendix, we can find

that the iteration time only depends on the selection of the

initial point. It is indicated that the convergence speed of

Algorithm 3 is independent of the number of followers or

devices i.e.,N or Kn. Thus, Algorithm 3 is scalable and adapt-

able to the large scale resource allocation problem.

VI. SIMULATION RESULTS

In this section, we verify the performances of the proposed

algorithms through simulation results. The parameters are

listed in Table 1.

Figure 2 demonstrates the convergence speeds under Algo-

rithm 1 for each IoT region server. As above mentioned,

Algorithm 1 stops iteration when (19) and (21) are satis-

fied at the same time. From Figure 2, we can find the pri-

mal residual and dual residual demands i.e., (19), are met

first for every IoT region server. Then Algorithm 1 keeps

on updating for searching the optimal solution until (21)

is satisfied. Moreover the objectives for IoT region servers

are 0.009985, 0.005027, 0.002682,−0.002665 which are

approaching to zero. That is to say the fn(p
∗
n, q

∗
n) = 0 is valid

and the optimal solution p∗
n and q

∗
n found by Algorithm 1 are
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FIGURE 2. Convergence of the Algorithm 1.

FIGURE 3. qn, ∀n ∈ N versus iteration times j .

the demanded solution. The original optimization problem
∼

P1

could obtain the optimal objective q∗
n by Algorithm 1.

Figure 3 shows the detailed updating process of qn,

∀n ∈ N . The small picture in Figure 3 is a detailed enlarged

picture from j = 20 to j = 60. It is observed that the

numerical value of qn,∀n ∈ N fluctuates greatly when

j < 20. However, the numerical value of qn,∀n ∈ N is

gradually stable and converges to a constant.

FIGURE 4. Network latency versus iteration times.

Figure 4 shows the iteration processes of Algorithm 2

and Algorithm 3. Compare the convergence speeds of

Algorithm 1 and Algorithm 2. Then we can find that Algo-

rithm 1 has iterated for more than 20 times before the primal

residual and dual residual are satisfied, but Algorithm 2 stops

iteration when l = 13. In addition, Algorithm 1 solves an

optimization problem with Kn × 1 variables but Algorithm 2

solves an optimization problem with N × Kn variables. It is
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FIGURE 5. Comparison of qn, ∀n ∈ N under Algorithm 1 and Algorithm 3.

FIGURE 6. Gain θnqn obtained by each IoT region server under
Algorithm 3.

verified that the Jacobian ADMM ismore adaptable to solve a

large scale optimization problems for IoT network, compared

to the classic ADMM.

Second, the outer loop of Algorithm 3 stops iteration when

υ = 14. Algorithm 3 effectively converges into the mini-

mum point of leader’s objective. Compared with the obtained

objective of Algorithm 2, Algorithm 3 may get the same

optimal objective. That is to sayAlgorithm 3 succeeds finding

the optimal objective for leader under the Stackelberg game

architecture.

Figure 5 uses the bar graphs to present the optimal energy

efficiency obtained by Algorithm 1 and Algorithm 3. More-

over, the solid circles are used to show the energy efficiency

losses 1qn ,∀n ∈ N . 1qn is calculated by subtracting the

optimal objective of Algorithm 3 from the optimal objec-

tive of algorithm Algorithm 1. Compared with Algorithm 1,

followers lost 0.45%, 0.61%, 0.49% and 0.57% energy effi-

ciency respectively under the game architecture. Thus, it is

considered the optimal q∗
n,∀n ∈ N obtained by Algorithm 3

is almost equal to the optimal q∗
n,∀n ∈ N obtained by

Algorithm 1.

Furthermore, Figure 6 illustrates the every IoT region

server’s gain θn × pn,∀n ∈ N . The small picture in Figure 6

is a detailed enlarged picture from υ = 2 to υ = 14.

When υ = 1, θ is set up as 0, so the gains of IoT region

are equal to 0. Combining Figure 4, Figure 5, and Figure 6,

we can conclude that the followers drive Algorithm 3 to

achieve leader’s goal by getting compensation from leader

under the Stackelberg game architecture. With the incentive

mechanism based on the Stackelberg game, not only the

leader could obtain the optimal network latency, but also the

followers could get the acceptable energy efficiency.

VII. CONCLUSION

In this paper, we investigate the large scale resource allocation

problems in a centrally controlled hierarchical architecture.

First, ADMM-and-Dinkelbach-based resource allocation

algorithm is developed to solve a non-convex fractional opti-

mization problem, i.e., energy efficiency maximization prob-

lem for IoT region server. Second, Jacobian-ADMM-based

resource allocation parallel algorithm is used to solve a con-

vex optimization problem with high dimensional variables,

i.e., network latency minimization problem for controller.

Last, a two-layer iterative resource allocation algorithm based

on the Dinkelbach algorithm and Jacobian-ADMMalgorithm

is proposed to solve the game-based resource allocation prob-

lem. The game-based resource allocation problem aims at

overcoming the conflicts between controller’s objective and

IoT region servers’ objectives. Through the simulation results

the scalability and convergence speeds of the proposed three

algorithms are verified.

APPENDIX

Before proving the Theorem 2, some lemmas are given first.

Lemma 1: The original objective function of each follower

satisfies a uniform Lipschitz gradient condition [26], there

exits ς > 0, for each fn(pn, qn), given any pn ≺=
∼
pn, we have

∇∼
pn
fn

(

∼
pn, qn

)

− ∇pn fn (pn, qn) ≺= ς

(

∼
pn −pn

)

(40)

where D ≺=
∼

D indicates that each element of the vector D is

less than or equal to that of the vector
∼

D. The Lipschitz gradi-

ent condition usually indicates that the first order gradient of

a function cannot change too fast, where the speed is below ς .

Lemma 2: For any p{υ} and 3{υ}, we have

∥

∥∇pnL (pn{υ},3n{υ})
∥

∥

2

2

≥ 2ϕ
[

L (pn{υ},3n{υ})− L
(

p∗
n,3

∗
n

)]

(41)

According to ADMM and Dinkelbach algorithm, the inner

loop in Algorithm 3 can reach a current optimal point, then

we have the following equation for any index n,

0 = ∇pnLn (pn {υ + 1} ,3n {υ + 1})

+ ∇pnHn (pn {υ + 1} ,3n {υ + 1} , θn {υ + 1})

= ∇pnLn (pn {υ + 1} ,3n {υ + 1})

+ ∇pn fn (pn {υ + 1} ,3n {υ + 1})− θn {υ + 1}

= ∇pnLn (pn {υ + 1} ,3n {υ + 1})

+ ∇pn fn (pn {υ + 1} ,3n {υ + 1})

− ∇pn fn (pn {υ} ,3n {υ}) (42)
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L (pn {υ} ,3n {υ})

≥ L (pn {υ + 1} ,3n {υ + 1})+ ∇pnL (pn {υ + 1} ,3n {υ + 1})× (pn {υ} − pn {υ + 1})

≥ L (pn {υ + 1} ,3n {υ + 1})

+

N
∑

n=1

[

(

∇pnL (pn {υ + 1} ,3n {υ + 1})
)T 1

ς

(

∇pn fn (pn {υ} ,3n {υ})− ∇pn fn (pn {υ + 1} ,3n {υ + 1})
)

]

= L (pn {υ + 1} ,3n {υ + 1})+
1

ς

∥

∥

(

∇pnL (pn {υ + 1} ,3n {υ + 1})
)∥

∥

2

2

≥ L (pn {υ + 1} ,3n {υ + 1})+
2ϕ

ς

[

L (pn {υ + 1} ,3n {υ + 1})− L
(

p∗
n,3

∗
n

)]

(43)

Then, based on Lemma 1 and Lemma 2, (43), as shown at the

top of this page, could be derived.

Subtracting L
(

p∗
n,3

∗
n

)

on (43), we have

L (pn {υ} ,3n {υ})− L
(

p∗
n,3

∗
n

)

≥

(

1 +
2ϕ

ς

)

[

L (pn {υ + 1} ,3n {υ + 1})− L
(

p∗
n,3

∗
n

)]

(44)

This shows the step size between two steps υ and υ + 1.

We denote

ψ =
L (pn {υ + 1} ,3n {υ + 1})− L

(

p∗
n,3

∗
n

)

L (pn {υ} ,3n {υ})− L
(

p∗
n,3

∗
n

)

=
1

(

1 +
2ϕ
ς

) (45)

That is to say, ψϒ
[

L (pn {0} ,3n {0})− L
(

p∗
n,3

∗
n

)]

≤ ε0 is

guaranteed, where L (pn {0} ,3n {0}) is the current optimal

point at step 0. In particular, we draw the relationship between

the step ϒ and ε0 as below

ϒ ≤
log

[

L (pn {0} ,3n {0})− L
(

p∗
n,3

∗
n

)]

ε0 log
(

1
/

ψ

) (46)

The log-linear convergence of ϒ indicates that there exists a

constant ϒ0, where ϒ ≤
ϒ0

ε0
. That is to say, the price model

converges linearly.
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