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Large-scale SARS-CoV-2 molecular testing coupled with whole genome sequencing in
the diagnostic laboratories is instrumental for real-time genomic surveillance. The
extensive genomic, laboratory, and clinical data provide a valuable resource for
understanding cases of reinfection versus prolonged RNA shedding and protracted
infections. In this study, data from a total of 22,292 clinical specimens, positive by
SARS-CoV-2 molecular diagnosis at Johns Hopkins clinical virology laboratory between
March 11th 2020 to September 23rd 2021, were used to identify patients with two or more
positive results. A total of 3,650 samples collected from 1,529 patients who had between
2 and 20 positive results were identified in a time frame that extended up to 403 days from
the first positive. Cycle threshold values (Ct) were available for 1,622 samples, the median
of which was over 30 by 11 days after the first positive. Extended recovery of infectious
virus on cell culture was notable for up to 70 days after the first positive in
immunocompromised patients. Whole genome sequencing data generated as a part of
our SARS-CoV-2 genomic surveillance was available for 1,027 samples from patients that
had multiple positive tests. Positive samples collected more than 10 days after initial
positive with high quality sequences (coverage >90% and mean depth >100), were more
likely to be from unvaccinated, or immunosuppressed patients. Reinfections with viral
variants of concern were found in 3 patients more than 130 days from prior infections with
a different viral clade. In 75 patients that had 2 or more high quality sequences, the
acquisition of more substitutions or deletions was associated with lack of vaccination and
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longer time between the recovered viruses. Our study highlights the value of integrating
genomic, laboratory, and clinical data for understanding the biology of SARS-CoV-2 as
well as for setting a precedent for future epidemics and pandemics.
Keywords: SARS-CoV-2, variants, prolonged infection, prolonged shedding, reinfection
INTRODUCTION

The molecular detection of SARS-CoV-2 has been the gold
standard for COVID-19 diagnosis since the beginning of the
pandemic. The infrequency of diagnostic tests in March 2020
that limited testing to symptomatic patients under investigation
was quickly replaced with large scale screening for both
symptomatic and asymptomatic individuals (Anonymous and
Centers for Disease Control and Prevention). Although a single
positive result is sufficient for making a COVID-19 diagnosis,
repeated testing of patients with positive test results has been a
notable practice since the beginning of the pandemic.
Hospitalized positive patients were re-tested to make infection
control related decisions (Gniazdowski et al., 2020). In addition,
re-testing is common in immunocompromised patients with
symptoms, patients scheduled for certain procedures, as well as
patients who develop new symptoms after resolution of COVID-
19 (Dong et al., 2021).

Repeat testing revealed that detection of SARS-CoV-2 RNA can
be prolonged for up to several months after the start of symptoms
(Fontana et al., 2021). The significance of prolonged RNA shedding
is dependent on the patient population and the clinical context. In
patients with severe disease, the median duration of RNA shedding
was longer than mild/asymptomatic cases (Liu et al., 2020; Xu et al.,
2020; Zheng et al., 2020). Most cases of prolonged RNA shedding
were associated with non-infectious viral recovery. Recovery of
infectious virus from patients with extended RNA shedding was
mainly reported from immunocompromised patients (Avanzato
et al., 2020; Aydillo et al., 2020; Choi et al., 2020; Baang et al., 2021;
Tarhini et al., 2021; Truong et al., 2021). A few cases of confirmed
reinfections were reported; however, those cases are difficult to
differentiate from prolonged infections or RNA shedding without
whole genome sequencing. The Centers for Disease Control and
Prevention (CDC) has defined the criteria of probable reinfections
to either (a) a repeat positive molecular test 90 days after the initial
infection regardless of symptoms; or (b) a repeat positive molecular
test 45 days after the initial infection in the presence of symptoms
consistent with COVID-19 (CDC. Centers for Disease Control
and Prevention).

The Johns Hopkins clinical virology Laboratory started
molecular testing for SARS-CoV-2 on March 11th 2020, and
SARS-CoV-2 whole genome sequencing for understanding the
genomic diversity started with the diagnosis of the first positives
(Uhteg et al., 2020; Thielen et al., 2021). As of October 9th, 2021,
the laboratory has tested a total of 555,983 specimens, identified
a total of 28,904 positives, and sequenced a total of 8,027
genomes. In this study, we identified patients who had more
than one positive result in our laboratory. The time between the
first and subsequent tests, cycle threshold (Ct) values, clinical
gy | www.frontiersin.org 2
data, and genomic data were examined in addition to cell culture
of selected samples to differentiate cases of prolonged RNA
shedding, persistent infection, and reinfections. The impact of
vaccination and immune suppression on prolonged shedding
was evaluated.
MATERIALS AND METHODS

Ethical Considerations and Data
Availability
Ethical approval for this study was obtained from the Johns
Hopkins Institutional Review Board (IRB00221396) with a
waiver of consent. Whole viral genomes were made publicly
available at GISAID.

Data and Sample Selection
Molecular diagnosis for SARS-CoV-2 at Johns Hopkins diagnostic
laboratory is performed by different assays that include the
NeuMoDx (Qiagen) (Mostafa et al., 2020a; Mostafa et al.,
2020b), cobas (Roche) (Mostafa et al., 2020a), Aptima (Hologic),
the Xpert Xpress SARS-CoV-2/Flu/RSV (Cepheid) (Mostafa et al.,
2020c), the ePlex respiratory pathogen panel 2 (Roche) (Jarrett
et al., 2021), the Accula (Hogan et al., 2020), and the RealStar
SARS-CoV-2 assays (altona diagnostics) (Uhteg et al., 2020).
Testing was performed in accordance with the manufacturer
instructions and the Johns Hopkins laboratory’s validated
protocols. Patients with more than one positive result were
identified via the laboratory information system (SOFT). Only
Ct values collected from the NeuMoDx assay were used in analysis
as the majority of testing is performed using this system (target
used, NSP2 gene). Samples with whole genome sequencing data
were identified through our surveillance database. Whole genome
sequencing and genomic data analysis were performed as we
described previously (Morris et al., 2021; Thielen et al., 2021).

Post Consensus Analysis of Genomes
High quality genomes were defined as genomes with >90%
coverage and a mean depth of >100. For analysis of acquired
substitutions and deletions, only high-quality genomes were used
and genomic areas with poor coverage were excluded. Manual
reviews were performed on the acquired substitutions and
deletions using the integrated genomic viewer.

Cell Culture
Aliquots of swab specimens were cultured on Vero-TMPRSS2
cells as previously described for VeroE6 cells (Gniazdowski et al.,
2020). Cultures with cytopathic effect were confirmed for the
presence of SARS-CoV-2 by reverse transcriptase PCR.
April 2022 | Volume 12 | Article 809407
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Clinical Data Analysis
Clinical data for the cohort were retrieved via bulk extraction
from a data warehouse that contains all encounter-related
information from hospital and outpatient visits to any Johns
Hopkins Medical Institutions Facilities in addition to manual
reviews of electronic medical charts. Codes associated with
immunosuppression are listed in Table S1.

Statistical Analysis
Chi squared or Welch’s t-tests were performed to show
associations depending on type and number of results
evaluated. Linear regression was performed with Scipy and
visualized with Seaborn (Waskom, 2021).
RESULTS

Repeat Positives From March 11th 2020 to
September 23rd 2021
In the time frame between March 11th 2020 and September 23rd

2021, a total of 542,948 samples were tested at the Johns Hopkins
clinical virology laboratory, of which 28,521 tested positive with a
total positivity rate of 5.3%. A total of 1,529 patients had more
than one SARS-CoV-2 positive result for during this timeframe,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
for a total of 3,650 samples (7% of the total positives, Figure 1).
Repeat positive samples were collected between 0 and 403 days
from the original positive sample (Figure 2A). a total of 943 of
the 2,057 repeat samples were tested within the first 10 days of
the first positive sample. The majority of the rest were testing that
was primarily repeated between 11-20 days (N = 528) after the
first positive and only 63 were tested 100 days or more after the
first positive (Figure 2A).

As SARS-CoV-2 continued RNA positivity during the first 10
days of symptoms is expected (Sethuraman et al., 2020), and to
exclude repeat testing that was performed for some patients in
the same day, we limited the majority of our analysis to repeat
positive samples that occurred more than 10 days from the
original positive. Ct values were available for 589 of the 1,115
repeat samples > 10 days from the initial positive result (52%;
Figures 2B, C). Although Ct values were lower prior to 11 days
from the initial sample (data not shown), the majority of samples
collected after 11 days from the first positive showed CT values
greater than 30 (Figures 2B, C). The majority of samples were
collected prior to 100 days, and only two Ct values were available
for samples collected 300 days after the first positive (Figure 2B).

Of the 1,151 repeat samples more than 10 days from the
initial positive, whole genome sequencing was attempted on 222
samples collected from 173 of the 795 patients from this cohort
FIGURE 1 | Flow chart of the patients and samples included in the study and analysis.
April 2022 | Volume 12 | Article 809407

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Morris et al. SARS-CoV-2 Prolonged Shedding and Reinfections
(Figure 2C). Of the sequenced samples in this cohort, 69.8% did
not meet the quality cut-off scores (155 of 222) (Table 1). The
mean Ct values of samples with high quality sequences was 22.1
in contrast to a mean Ct of 30.4 for those with low quality (data
detailed in Table S2 and summarized in Table 1).

Prolonged Shedding Versus Reinfections
To differentiate cases of prolonged shedding from reinfections
based on viral genomics analyses, genomes from the same
patients were compared. For this analysis, we focused primarily
on the 40 patients in our cohort who had at least two positive
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
SARS-CoV-2 PCR tests >50 days apart and with at least one high
quality genome (Table S3). Patients from this group tested
positive between 2 and 16 times and the time between the first
and last positive tests was between 51 and 372 days. In total, there
were 162 positive samples of which 109 were sequenced and all
available genomes were analyzed regardless of time from initial
positive. Despite low quality sequences of genomes frommany of
the samples collected at later time points, 14 of these patients
showed evidence of prolonged shedding of RNA, consistent with
the initial infecting virus, and only 3 showed genomic evidence of
reinfection (Table 2 and Table S3). Two were initially infected
A B

D

C

FIGURE 2 | Repeat positives from March 11th 2020 to September 23rd 2021. (A) Count plot of total numbers of repeat positives >10 days from the initial positive
and the relation to the time after the first positive (N = 1115): 528 (11-20), 237 (21-30), 127 (31-40), 67 (41-50), 92 (51-100), 49 (101- 200), 9 (201-300), 6 (301-
400). (B) Boxplot for Ct values in repeat positive samples and the relation to the time after the first positive (N = 589): 306 (11-20), 140 (21 -30), 60 (31- 40), 34 (41-
50), 40 (51-100), 4 (101-200), 3 (201- 300), 2 (301-400). (C) Scatterplot of sequenced repeat samples >10 days from initial positive overlying kernel density estimate
(KDE plot) of the same information. Hue indicates quality of sequences. N=222 Total, 155 failed quality metrics, 67 High quality genomes. (D) Histogram of days
from initial positive sample in continued infection (Red, N = 40) or reinfection (Blue, N = 3).
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with one clade, [20G or 20I (Alpha)], followed by a later infection
with the Delta variant. The third patient was considered a
reinfection because the second infection was with the Delta
variant which was not circulating when the patient first tested
positive 372 days earlier (Table 2). The earliest positive test from
a reinfection occurred 133 days following the initial infection
(Figure 2D), and Continued RNA detection was noted as far as
139 days following the initial positive.

Of the 14 patients with genomic evidence of prolonged
shedding, Cell culture was attempted for 28 samples from this
cohort to assess prolonged active infection versus prolonged
RNA shedding. Three immunocompromised patients showed
prolonged recovery of infectious virus on cell culture (Table 2,
patients 10, 12, and 16) for 53, 60, and 70 days after the first
positive, indicating persistent infection. Notably, three additional
immunocompromised patients had prolonged shedding
(patients 15, 19, and 20, Table 2) with a notable low Ct values
or recovery of complete genomes for up to 117, 61, and 31 days
after the first positive. The rest of the 14 patients from this cohort
had extended shedding at higher Ct values, and 6 patients had
negative cell culture results suggesting protracted RNA shedding
rather than persistent infection (Table 2).

Impact of Vaccination on Prolonged
Viral Shedding
To study the impact of vaccination on prolonged viral shedding,
we compared the genomic data of samples from vaccinated
compared to unvaccinated patients. We limited this analysis to
sequenced samples that were positive 11 to 130 days from the
initial positive test (in order to remove possible repeat infections,
as repeat infections started to be seen at 130 days). Patients who
had received the full vaccination series at least 2 weeks prior to the
first positive test were classified as vaccinated in this cohort. Only
21 samples from vaccinated patients with repeated positive tests
met these criteria (Figure 3A) compared to 159 repeat positive
samples from unvaccinated patients. Only 5 of 21(23%) genomes
within this timeframe met our quality scores in vaccinated patients
compared to 55 of 159(35%) in unvaccinated patients, despite
older median age in the vaccinated patients (64 compared to 55,
p=0.00065) (Figure 3B), and lower median days from the initial
test for all samples where sequencing was attempted (17 days
vaccinated, 32 days unvaccinated, p=0.0003, Figure 3C).In
general, genomes of repeat positives from vaccinated patients
after 20 days from the first positives were very few which caused
a notable trend of a decrease in coverage with time when
compared to the unvaccinated group (Figure 3D).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Impact of Immunosuppression on
Prolonged Viral Shedding
To evaluate the impact of immunosuppression the coverage of the
SARS-CoV-2 genome in 74 samples from patients without
immunosuppression were compared to 114 samples from
patients with immunosuppression (greater than 10 days and
less than 130 days from the initial positive). High quality
genomes were more represented at a higher percentage in
Immunosuppressed compared to non-immunosuppressed
patients (43% compared to 20%, p-value 0.0009, Figure 4A).
Immunosuppressed pat ients were older than non-
immunosuppressed patients (median years 60 compared to 40.5,
p-value >0.0001, Figure 4B). However, high quality genomes were
recovered for similar mean days between immunosuppressed and
non-immunosuppressed patients (33.1, compared to 31.5 days,
Figure 4C) with similar coverage over-time (Figure 4D).
Additional analysis was performed to see how vaccination
impacted Immunosuppressed patients. Of the sampled from
immunosuppressed patients, 13 were from vaccinated and 94
were from unvaccinated patients. The percentages of samples
that passed quality control from vaccinated and unvaccinated
immunosuppressed were similar, but high-quality genomes were
obtained for shorter periods of time in samples from vaccinated
compared to unvaccinated patients (16.6 days compared to 35.7
days, p=0.009) (data not shown).

Prolonged Viral Shedding and
Genomic Changes
In order to study the development of new substitutions or
deletions within the genome of SARS-CoV-2 over-time, within
the same patient, we identified all patients for whom we had at
least 2 high quality genomes from different samples and whose
genomic data was consistent with prolonged shedding or
persistent infection but not reinfection. This analysis was not
limited to a specific timeframe between positive samples. We
identified 75 patients that met these criteria. The timeframe
between the initial and subsequent high-quality genomes was
between 0 and 117 days (detailed in Table S4). A total of 48
amino acid (AA) substitutions or deletions developed in 17 of
these patients (Table 3). Of the 17 patients that acquired
substitutions or deletions, 16 were unvaccinated and 14 were
immunosuppressed. The substitutions and deletions which
developed and the number of instances in our cohort can be
seen in Table S5, along with information on how many times
these specific substitutions or deletions have been seen among all
the genomes sequenced in our laboratory and lineages associated
TABLE 1 | Samples with whole genome sequencing data in our cohort of repeats collected 11 days or more after the first positive.

Days after the first positive Genomes with high quality Genomes with low quality p value

Number Average Ct Stdev Number Average Ct Stdev

11- 20 28 21.1 5.7 43 31.2 2.3 0.00006
21-50 25 21.1 5.7 46 30.4 6.5 0.02
51+ 14 19.3 4.9 66 31.4 2.3 0.0009
total 67 20.24 5.4 155 31.24 4.2 1.00E-09
April 2022 | Volume 12 | Artic
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TABLE 2 | Prolonged shedding, persistent infections, versus reinfections.

PID Vaccinated Immunosuppressed Days from the first positive HPID Cell culture Ct % Coverage Depth Lineage Clade

Reinfections
1 Yes No 0

372 HP08786 18.7 98.68 400.00 B.1.617.2 21A (Delta)
13 Yes Yes 0 HP05124 99.60 400.00 B.1.2 20G

11 HP04658 17.73 98.60 385.09 B.1.2 20G
144 HP08875 86.10 172.40 AY.7.1 21A (Delta)

28 Yes No 0 HP05001 98.87 333.78 B.1.1.7 20I (Alpha, V1)
133 HP09101 95.54 381.78 B.1.617.2 21A (Delta)

Persistent infection
10 No Yes 0 24.19

27 23.65
33 HP13078 Positive 23.83 0.00 3.00 None Attempted
38 HP13068 Negative 23.93 97.25 349.00 A.3 19B
53 Positive 20.69
81 HP13137 Negative 95.50 378.49 A.3 19B

12 No Yes 0
6 HP13142 Positive 16.99 99.60 400.00 B.1 20C
42 HP13143 Positive 13.93 2.69 9.15 None Attempted
46
60 HP13074 Positive 17.71 98.73 400.00 B.1 20C
73 HP13075 Negative 19.28 98.75 400.00 B.1 20C
84 22.47

16 No Yes 0 HP13076 Positive 16.5 99.01 400.00 B.1.520 20C
39 HP13144 Positive 99.59 400.00 B.1.520 20C
65
70 HP13077 Positive 16.95 99.57 400.00 B.1 20C

Prolonged shedding
15 No Yes 0 HP12091 Positive 18.62 0.00 400.00 B.1.1.434 20B

20
26 HP12092 Positive 24.1 0.00 378.28 B.1.1.434 20B
33 HP12093 Negative 235.88 B.1.1.434 20B
38 HP12094 Negative 400.00 B.1.1.434 20B
103 HP02090 19.27 99.57 400.00 B.1.1.434 20B
117 HP02480 98.59 142.00 B.1.1.434 20B
126 HP02621 64.60 63.50 None 20B
132 HP03033 32.65 23.28 None 20B
139 HP03236 9.04 5.85 None Attempted

19 Yes Yes 0 HP02155 13.69 99.60 400.00 B.1.409 20A
19
57 HP01654 99.59 400.00 B.1.409 20A
61 HP01599 99.59 400.00 B.1.409 20A
77 HP02479 13.62 9.00 None Attempted

20 No Yes 0 19.15
1 HP03788 14.16 99.60 400.00 B.1.526 21F (Iota)
7 15.31
14 HP04418 14.52 98.60 400.00 B.1.526 21F (Iota)
19 HP04748 17.78 99.60 400.00 B.1.526 21F (Iota)
21 HP04804 98.60 400.00 B.1.526 21F (Iota)
25 HP04922 15.41 99.60 400.00 B.1.526 21F (Iota)
28 HP05155 18.78 97.75 400.00 B.1.526 21F (Iota)
31 HP05251 26.11 97.89 354.79 B.1.526 21F (Iota)
35
39
64 HP06212 32.91 56.72 172.78 None 21F (Iota)

3 No 0 HP13038 Positive 20.22 99.60 400.00 B.1 20A
50 25.13
50 HP10152 87.25 165.00 B.1 20A
54 HP13039 Negative 30.61 89.76 102.34 B.1 20A

4 No Yes 0 HP13053 Positive 21.41 99.60 400.00 B.1.494 20C
36 29.45
37
64 HP13054 Negative 76.25 40.85 B.1.446 20C
124 31.53

(Continued)
Frontie
rs in Cellular an
d Infection Microbiology
 | www.frontiersin.org
 6
 Apr
il 2022 | V
olume 12 |
 Article 809407

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Morris et al. SARS-CoV-2 Prolonged Shedding and Reinfections
TABLE 2 | Continued

PID Vaccinated Immunosuppressed Days from the first positive HPID Cell culture Ct % Coverage Depth Lineage Clade

11 No No 0 HP13040 Negative 25.43 99.60 400.00 B.1.369 20C
38 31.51
53 HP13041 Negative 31.21 90.19 227.39 B.1.369 20C

27 No No 0 HP13044 Positive 14.47 99.60 400.00 B.1.369 20C
25 33.14
51 HP13045 Negative 30.73 67.59 227.37 None 20C

29 Yes Yes 0 HP02004 99.60 400.00 B.1.2 20G
3 HP02005 15.53 99.60 400.00 B.1.2 20G
12 HP02006 99.60 387.00 B.1.2 20G
17 HP02007 98.60 400.00 B.1.2 20G
23
24 20.48
30 21.19
37 HP02008 29.34 37.73 26.00 None 20C
44 HP02009 81.92 117.00 B.1.2 20G
51 HP02010 30.48 4.47 4.00 None Attempted

34 Yes No 0 HP13046 Negative 29.6 99.60 400.00 B.1 20C
92 HP13047 Negative 46.98 52.01 None 20C

35 Yes No 0 HP13036 Negative 32.86 99.59 212.41 B.1.110 20A
16 29.14
57 HP13037 Negative 87.83 64.10 B.1 20A

37 Yes Yes 0 HP02713 Positive 99.60 400.00 B.1.2 20G
23 HP03492 99.60 368.98 B.1.2 20G
38
39
45 HP04440 21.11 98.60 387.16 B.1.2 20G
50 HP04626 28.69 31.43 18.08 None 20G
57 HP04882 29.1 94.15 314.68 B.1.2 20G
Frontie
rs in Cellular an
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PID, patient identifier; HPID, identification of samples with whole genome sequencing; Ct, cycle threshold.
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FIGURE 3 | Impact of Vaccination on prolonged viral shedding. Genomes from repeat positive samples within the first 130 days after the initial positives (N = 21 Vax
“vaccinated” and 159 Unvax “unvaccinated”). (A) Quality of genomes in samples from vaccinated and unvaccinated patients. (B) Boxplot of Patient Age in samples
from vaccinated (Median 64 years) and unvaccinated (median 55 years). (C) Barplots with overlayed strip plots of the recovery of high-quality genomes compared in
relation to days after the first positive. (D) Implots of genome coverage compared to days from the initial positive. ***p < 0.0001.
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with these changes in multiple instances. Of the 48 substitutions
or deletions noted, three spike protein deletions (L141del,
G142del, and V143del) and one spike protein substitution
(E484K) occurred in two instances. Each of these substitutions
or deletions that occurred more than once in this dataset was a
part of disparate lineages, especially S:E484K which was seen in
at least 19 lineages by our group (Table S5). The most common
protein to develop substitutions or deletions was the Spike
protein (Figure 5A) A correlation between AA changes and
days between recoverable genomes was noted (Figure 5B, p <
0.00001). Recoverable genomes over 24 days from the original
positive showed a minimum of two non-synonymous
substitutions or deletions (Table 3).

We next examined the impact of vaccination and immune
suppression on the accumulation of nonsynonymous mutations.
Of the 75 patients that had multiple recoverable genomes, 17
were vaccinated (Figures 6A–C). Only one vaccinated patient
developed nonsynonymous mutations (Table 3). Although
vaccinated patients that had multiple recoverable genomes
showed a lower mean time of recoverable genomes, and a
lower mean number of developed mutations, this did not reach
significance (Figures 6A–C). Immunocompromised status was
associated with longer periods between the recoverable genomes
(Figure 6D, p=0.022) and a higher number of substitutions or
deletions (Figures 6E, F, p=0.022).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
DISCUSSION

In this study, we combined large scale laboratory diagnostic data
with whole genome sequencing data for surveillance to analyze
prolonged SARS-CoV-2 shedding and reinfections. Clinical data
analysis was performed to study the impact of vaccination and
immunocompromised status on genomic changes over-time.
Cell culture was performed in certain cases with extended viral
shedding combined with low Ct values to characterize cases of
prolonged active infection. Our data showed that the majority of
patients with prolonged positive SARS-CoV-2 molecular tests
have their subsequent positives collected within the first 50 days
of the initial positive with Ct values that are likely higher than 30.
Prolonged shedding after 50 days was largely associated with low
quality genomes reflecting low viral loads except in 17 patients,
14 of whom had subsequent genomes matching the initial,
indicating prolonged shedding and 3 had a second genome of
a different clade, indicating reinfection. Vaccination reduced the
likelihood of the recovery of good quality genomes but
immunocompromised status contributed to the increased
duration of viral RNA shedding and the accumulation of
genomic changes. The spike gene was the region of the
genome most prone to nonsynonymous changes in our cohort,
but overall, the development of nonsynonymous mutations and
AA changes was infrequent.
A

B D

C

FIGURE 4 | Impact of Immunosuppression on prolonged viral shedding. Genomes from repeat positive samples within the first 130 days after the initial positives
(N = 114 immunosuppressed and 74 non-immunosuppressed). (A) Quality of genomes in samples from immunosuppressed and non-immunosuppressed patients.
(B) Boxplot of patient age in samples from immunosuppressed (Median 60 years) and non-immunosuppressed (median 40.5 years). (C) Barplots with overlayed strip
plots of the recovery of high-quality genomes compared in relation to days after the first positive. (D) Implots of genome coverage compared to days from the initial
positive in immunosuppressed and non-immunosuppressed patients. ***p < 0.00001.
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TABLE 3 | Prolonged viral shedding and genomic changes.

mber
uired

ubs/
els

Acquired AA
substitutions/deletions

Vaccinated Immunosuppressed Monoclonal
antibody

Convalescent
Plasma

4 S:G142del,S:V143del,S:
Y144del,S:L141del

No Yes Yes

1 S:H146Q No Yes Yes
1 NSP8:F6L No Yes Yes
1 NSP14:D126Y No Yes
2 NSP2:E490K,S:E484K No
1 E:V70F No Yes Yes
3 NSP4:H313Y,N:F307L,S:

R102G
No Yes Yes

2 S:G446V,S:E406Q Yes Yes Yes
2 S:L270F,NSP2:T85I No
7 S:R190S,S:L244del,

NSP4:F317S,S:T1006I,
NSP3:F1646I,NSP4:
G232V,S:A243del

No Yes

8 S:T95I,S:G142del,
NSP13:T115K,S:
V143del,S:L141del,S:
E484Q,NSP8:T123I,S:
W152R

No Yes

2 NSP5:Q192stop,N:T271I No
2 S:E484K,NSP6:L37F No Yes Yes
2 NSP8:I156L,NS6:E13K No Yes Yes Yes
4 NSP8:T148I,S:P1079S,

NSP3:T820I,N:P326L
No Yes

2 NSP6:M86I,N:T205I No Yes
4 NSP2:K534R,S:N334K,

NSP13:D56G,S:S939F
No Yes Yes

ed as sequences with coverage >90% and a mean depth of >100. Subs/dels, substitutions/deletions; AA, amino acid.
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PID Positives Sequenced HQ
Genomes

Days
between
first and

last
positives

Days
between
first and
last HQ

Genomes

First HQ
genome
lineage

last HQ
genome
lineage

Nu
Ac
s
d

PIDVWVGDCM 2 2 2 5 5 B.1.2 B.1.2

PIDWUGBIZH 5 4 3 14 7 B.1.637 B.1.637
PIDCXIYIPP 6 5 4 20 9 B.1.243 B.1.243
PIDLUEEQYV 5 4 2 13 13 B.1.1.7 B.1.1.7
PIDEAUSZWF 2 2 2 15 15 B.1.2 B.1.2
PIDRSHNQNS 12 8 5 51 17 B.1.2 B.1.2
PIDGBIBYYQ 7 4 4 24 24 Q.4 Q.4

PIDBXQZZLV 5 4 4 26 26 B.1.526 B.1.526
PIDLCYVIUV 2 2 2 37 37 B.1.564 B.1
PIDFTUQFAV 7 3 2 81 43 A.3 A.3

PIDSDHALQC 5 4 4 49 49 B.1.637 B.1.637

PIDHCPHTBW 3 2 2 53 53 B.1.369 B.1.369
PIDXTTUNJN 9 5 4 57 57 B.1.2 B.1.2
PIDNXQFFZG 6 4 3 77 61 B.1.409 B.1.409
PIDHNGFDXK 7 4 3 84 67 B.1 B.1

PIDLYROPCD 4 3 3 70 70 B.1.520 B.1
PIDLVBEHYS 11 9 6 139 117 B.1.1.434 B.1.1.434

PID, patient identifier; HPID, identification of samples with whole genome sequencing; HQ, High quality genomes were defin
q
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Prolonged SARS-CoV-2 shedding was shown to extend to
multiple months after the onset of symptoms (Fontana et al.,
2021). Prolonged shedding though might not correlate with
prolonged infectiousness or recovery of viable virus. Previously
we showed that shedding of infectious virus can extend to more
than 3 weeks after the initial positive (Gniazdowski et al., 2020).
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In this study, we show the recovery of infectious virus for up to
70 days after the first positive in a subset of immunocompromised
patients. This data is consistent with previous reports that showed
prolonged SARS-CoV-2 replication and infectiousness in
immunocompromised patients (Aydillo et al., 2020; Baang et al.,
2021; Tarhini et al., 2021). In general, the recovery of infectious virus
A B

FIGURE 5 | Genomic changes in prolonged viral shedding. (A) Frequency of amino acid changes (substitutions and deletions) per protein in a cohort of 75 patients
with two or more complete genomes from samples collected 0 - 117 days after the first positive. (B) Amino acid changes as a factor of time between collected
positive samples.
A B

D E F

C

FIGURE 6 | Genomic changes in prolonged viral shedding by vaccination and immune status. Substitutions and deletions in 75 patients by status: vaccinated
(N =17, A–C) and immunosuppressed (N=44, D–F). (A, D) Barplots with overlayed strip plots of mean time of prolonged shedding of complete genomes in each
group, (B, E) Barplots with overlayed strip plots of amino acid change frequency in each group, (C, F) Scatterplots of the correlation of amino acid change and the
days after the first positive in each group. *p < 0.05. Unvax, unvaccinated; Vax, vaccinated.
April 2022 | Volume 12 | Article 809407

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Morris et al. SARS-CoV-2 Prolonged Shedding and Reinfections
correlated with lower Ct values consistent with higher viral loads
(Basile et al., 2020; Bullard et al., 2020; Gniazdowski et al., 2020).
The value of differentiating prolonged shedding from prolonged
infection include controlling the transmission of infection in
patients with actively replicating virus as well as optimizing
antiviral intervention strategies. Our data is consistent with
previous reports that show that prolonged active infection is
remarkably less frequent than prolonged shedding of viral RNA
and are primarily associated with immunocompromised
patient populations.

Reinfection with SARS-CoV-2 was previously reported and a
time frame of 45 days was proposed to suggest possible
reinfections when a positive test is associated with symptoms
consistent with COVID-19. Genomic sequencing is the only
method that can conclusively characterize reinfection cases when
the initial genomes are compared to subsequent positives. When
initial isolates are not available, it might be possible to
characterize reinfections if the lineage identified is an emerging
variant that was not circulating when the patient was previously
diagnosed. Interestingly, in the time frame when the Delta
variant became predominant (Morris et al., 2021), we only
identified three patients who had a previous positive in our
institution. Even though this data might be largely impacted by
the availability of other testing sites outside of the Johns Hopkins
system, within the population of patients tested in our
laboratory, we identified breakthrough cases after vaccination
in rates that were much higher than reinfections (Luo
et al., 2021).

The evolution of SARS-CoV-2 variants associated with
increased transmissibility or escape from vaccine induced or
natural immune responses has been globally concerning. Specific
variants showed significant reduction in neutralization by
monoclonal antibodies and convalescent plasma (Hoffmann
et al., 2021; Planas et al., 2021). Those variants attracted the
attention to specific changes within SARS-CoV-2 genome that
could be of therapeutic concern. Certain spike changes were
shown to impact the action of monoclonal antibodies and
convalescent sera including L452R, E484K, K417N, and K417T.
In our cohort, the spike changes that we observed more than once
included the E484K and the deletions 141-143. The E484K in
particular was previously reported to reduce the neutralization
efficacy and was identified as an escape change the could develop
after treatment with certain monoclonal antibodies or
convalescent plasma (Baum et al., 2020; Weisblum et al., 2020;
Greaney et al., 2021). The deletions 141-144 are within the NTD
and were reported to reduce binding to the monoclonal antibody
4A8 (recovered from the convalescent plasma of patients with
COVID-19) as do deletions 243-244 (which occurred once in our
cohort) (McCarthy et al., 2021). Other changes we detected in our
cohort are within epitopes or associated with escape from
convalescent sera including W152R, F157S, and G446V (Liu
et al., 2021; Suryadevara et al., 2021). Although 9 of the 17
patients in our cohort whom infecting virus developed
nonsynonymous mutations received monoclonal or convalescent
sera treatments (Table 3), associations between those treatments
and the rate of developing mutations were not performed due
to the incompleteness of this data in some of the clinical charts.
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In our cohort, the accumulation of genomic changes associated
with the prolonged shedding time that was most remarkable in
immunosuppressed individuals.

A main finding in our study was the correlation between
vaccination and a lower likelihood of prolonged shedding or
recovery of good quality genomes after the first 20 days of the
initial positive result. Even though, vaccine breakthrough
infections correlated with a bias to genomes carrying the S:
E484K (Feder et al., 2021; Mostafa et al., 2021), a limited
infectious virus shedding was notable when samples from
patients were longitudinally analyzed (Ke et al., 2021). SARS-
CoV-2 genomic diversity was also shown to decline after
widespread vaccination (Niesen et al., 2021). The selected
cohort for our analysis was restricted to individuals who had
an initial positive when fully vaccinated. This data indicate that
vaccination is interrupting the extended prolonged shedding
observed since the start of the pandemic with unvaccinated
individuals. Our data also show that vaccinated individuals are
less likely to accumulate significant genomic changes over time.

In summary, the COVID-19 pandemic challenged the
diagnostic laboratories to not only ramp up testing, but to also
assist with the nationwide genomic surveillance. The diagnostic
laboratories are capable of providing real-time epidemiological
and clinical data that are essential for a better understanding of
the biology of SARS-CoV-2. Diagnostic laboratories with limited
resources can also assist by coordinating sharing real-time
positive samples with public health laboratories for
surveillance. The workflow of diagnosis, surveillance, and basic
research we established at Johns Hopkins laboratory for
characterizing SARS-CoV-2 provides a template for other
evolving pathogens of concern and emphasizes the power of
generating real-time data amid a quickly evolving pandemic.
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