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[1] We extend the class of simple offshore models that
describe large-scale bed evolution in shallow shelf seas.
In such seas, shallow water flow interacts with the seabed
through bed load and suspended load transport. For
arbitrary topographies of small amplitude we derive
general bed evolution equations. The initial topographic
impulse response (initial sedimentation and erosion pat-
terns around an isolated feature on a flat seabed) pro-
vides analytical expressions that provide insight into the
inherent instability of the flat seabed, the Coriolis-in-
duced preference for cyclonically oriented features, and
bed load transport being a limiting case of suspended
load transport. The general evolution equation can be

used to describe sandbank formation, known as the
result of self-organization. Examples of human interven-
tion at the seabed include applications to a dredged
channel and an offshore sandpit. An outlook toward
future research is also presented. Inpex Terms: 3210 Mathe-
matical Geophysics: Modeling; 1824 Hydrology: Geomorphology
(1625); 1815 Hydrology: Erosion and sedimentation; 1255 Geodesy
and gravity: Tides-ocean (4560) 4508 Oceanography: Physical: Coriolis
effects; KEyworps: morphodynamics, offshore, morphology, sand-
banks
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1. INTRODUCTION

[2] The North Sea is a tidally dominated shelf sea in
which complex morphodynamic processes take place.
This can be seen from the variety of rhythmic patterns
on different length scales that cover the North Sea bed
[Knaapen et al., 2001a; Hulscher and Van den Brink,
2001]. In addition to this natural behavior, man also uses
the seabed in various ways, for example, navigation
dredging, pipeline construction, and sand mining. The
long-term fate of such morphological intervention is
unclear, as it may interfere with natural seabed dynamics
that, despite considerable advances (see, e.g., the review
by Blondeaux [2001]), are not yet fully understood.

[3] We focus on an offshore tidally dominated envi-
ronment and restrict our study to large-scale seabed
dynamics, i.e., on horizontal length scales of the order of
kilometers. Our goal is to derive evolution equations for
arbitrary seabed topographies, such as sandbank pat-
terns, isolated sandbanks, dredged channels, or sandpits.
This can be done by studying the topographic impulse
response: the initial bed response, i.e., initial sedimen-
tation and erosion (ISE) patterns, induced by an isolated
topographic feature on an otherwise flat seabed (Figure
1). The response to an arbitrary topography, which can

be seen as a superposition of such features, follows from
the convolution integral of impulse response and topog-
raphy. The impulse response, effectively containing all
information of a linear system, turns out to provide a
link between studies into natural seabed dynamics (sand-
bank formation) and studies into the morphodynamic
impact of human intervention (dredged channel, off-
shore sandpit, etc.). We focus on the class of linear,
process-based, offshore models with a two-dimensional
horizontal flow model in combination with a sediment
transport mechanism.

[4] Past research within this class of models focused
mainly on the formation of tidal sandbanks, with a
wavelength of several kilometers, a height of up to 80%
of the water depth, and a slightly cyclonic crest orienta-
tion with respect to the tidal current [Dyer and Huntley,
1999]. Huthnance [1982a] was the first to explain their
formation as a morphodynamic instability of a flat sea-
bed subject to tidal flow. Friction-topography and Co-
riolis-topography interactions [Zimmerman, 1981;
Loder, 1980; Robinson, 1983; Pattiaratchi and Collins,
1987] over a wavy bed trigger a secondary flow, thus
causing (bed load) sediment transport, which results in
bank growth. Subsequent analyses have further elabo-
rated on this idea, considering more realistic flow con-
ditions and alternative transport mechanisms [De Vriend,
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Schematic representation of linear modeling of offshore morphodynamics and its relation to the

topographic impulse response. The arrows show how the various items can be derived from the impulse
responses and how the two impulse responses relate to each other.

1990; Hulscher et al., 1993]. Huthnance [1982a] described
the evolution of wavy bed patterns of infinite spatial
extent. In a companion paper, Huthnance [1982b] de-
scribed the evolution of a sandbank of finite horizontal
extent. He investigated the impulse response to an iso-
lated hump but neglected Coriolis effects and consid-
ered only bed load transport. More recently, the same
type of model was applied in relation to human inter-
vention at the seabed. Roos et al. [2001] used the results
of a stability analysis to describe the evolution of large-
scale offshore sandpits. Fluit and Hulscher [2002] and
Roos and Hulscher [2002] used similar models to de-
scribe the seabed evolution induced by a gas-mined
seabed depression. Recently, Van de Kreeke et al. [2002]
studied the evolution of a trench cross section subject to
an asymmetric tide (perpendicular to the trench axis),
leading to predictions of trench migration and diffusion.

[5] We will show that the various elements in the
linear modeling of offshore morphodynamics follow
from the concept of impulse response, as depicted in
Figure 1, to either the isolated ridge (a one-dimensional
impulse, as the topography depends on only one hori-
zontal coordinate) or the isolated hump (a two-dimen-
sional impulse) (Figure 1). The former represents a
novel approach, which is tailored to the analysis of
arbitrary, one-dimensional topographies, such as sand-
banks and dredged trenches. The latter, designed to
study arbitrary (two-dimensional) topographies, is an
extension of earlier results by Huthnance [1982b] by
including Coriolis effects, considering both bed load and
suspended load transport, and allowing for asymmetric
flow. The bed response consists of growth or decay of the

ridge or hump itself, possible migration effects due to
tidal asymmetry along with sedimentation, and erosion
patterns around the ridge or hump. The one-dimen-
sional impulse will be used to study sandbank formation,
reproducing the results of earlier analysis, as well as the
evolution of a dredged trench, whereas the two-dimen-
sional impulse will be used in a study of offshore sand-
pits or sandbanks of finite horizontal extent (Figure 1).

[s] Closer to the coast, sandy shelf seas like the North
Sea usually exhibit large-scale features that differ from
the offshore tidal sandbanks discussed above. For the
formation and evolution of these so-called shoreface-
connected ridges, alternative models have been devel-
oped in which the presence of a coastline and a sloping
inner shelf are crucial elements [Trowbridge, 1995; Cal-
vete et al., 2002, and references therein].

[7] In section 2 we describe the morphodynamic
model, with particular attention paid to the process of
linearization; Figure 2 explains general concepts of mor-
phodynamic modeling. In section 3 we derive the re-
sponse to an isolated ridge, use it to obtain the results of
a linear stability analysis, and discuss similarities. Section
4 focuses on the evolution of a dredged channel. We
present the response to the isolated hump in section 5.
The physical mechanisms are explained in Figure 9.
Section 6 contains its application in the study of offshore
sandpits (or sandbanks of finite horizontal extent). Fi-
nally, section 7 presents the discussion, conclusions, and
an outlook on future research, with particular attention
to comparing data and modeling as described in this
paper (Figures 13 and 14).
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Figure 2. The essential elements in morphodynamic model-
ing. They are found in the morphological loop, which we
explain here for the case of a tidally dominated offshore
environment. The separation in two timescales is important,
with a fast time ¢ for the hydrodynamics and sediment trans-
port within the tidal cycle (half a day) and a slow time 7 for the
seabed evolution (decades to centuries). After specifying an
initial topography, the next step is to solve the hydrodynamics,
i.e., to determine currents, tides, and waves. These processes
are defined on the fast time, i.e., within the tidal cycle. For
large-scale computations in a shallow water domain a depth-
averaged approach is usually suitable, and the Coriolis force
and bottom friction should be included. The tidally averaged
flow pattern, called the residual flow, can be nonzero even if
the hydrodynamic forcing itself is symmetric (Figure 9). De-
pending on flow conditions and sediment characteristics, non-
cohesive sediment can be transported in two modes: either
rolling and sliding close to the seabed, i.e., as bed load, or
picked up and carried in suspension by the flow, i.e., as sus-
pended load. Semiempirical formulas exist to model the bed
load flux and the entrainment of suspended matter, usually
expressed in terms of the bed shear stress but expressed here as
a function of the depth-averaged flow quantities. Divergences
of the bed load flux along with the difference between entrain-
ment and deposition of suspended matter cause erosion or
sedimentation throughout the domain. However, these bed
changes are so slow that only the tidal average of the sediment
transport matters. We thus end up with an updated topography
at a new level in morphodynamic time.

2. THE MODEL

2.1. Flow, Sediment Transport, and Bed Evolution

[s] We refer to Figure 2 for general concepts of
morphodynamic modeling in a tidally dominated envi-
ronment. Consider a tidal wave with maximum velocity
U* and tidal frequency o* in an offshore part of a
shallow sea of undisturbed depth H*. Unsteady flow can
be described by the depth-averaged shallow water equa-
tions, i.e., by two momentum equations and a mass
balance. In dimensional form (an asterisk denotes a
dimensional quantity) the model reads

*

P A
N at*

+u*-V*¥u* + f¥e, X u*

r*u*

+H*+zf—z}'§:0 1)
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Figure 3. Definition sketch of the model geometry.
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(2)
Here u* = (u*,v*), which are the velocity components in
the directions of the horizontal coordinates x* = (x*,y*),
respectively, and we define V* = (9/dx*,0/dy*). The z*
axis, with unit vector e, = (0,0,1), points upward with the
free surface elevation at z* =z and the bed level at z*
= —H* + z}, (Figure 3). Furthermore, g* is the gravita-
tional acceleration, effects of the Earth’s rotation are
accounted for by Coriolis parameter f*, t* is time, and
we adopt a linear friction law with parameter r*. The
boundaries of the offshore system are taken infinitely far
away.

[s] The seabed is assumed to consist of cohesionless
sediment of uniform size, which is transported as bed
load or as suspended load. The volumetric bed load
sediment flux (in m? s~ ') is described by a generalization
of an empirical relationship, which includes a slope
correction [see, e.g., Van Rijn, 1993]:

*

u
S* = a’Z|u*|B”(|u*| - A*V*zf).

3)

Three parameters appear: the proportionality parameter
aj; the power B, usually valued between 3 and 5, re-
flecting the faster than linear dependency of sediment
transport on the flow velocity; and the bed slope param-
eter \*, quantifying the downhill preference of moving
sediment. Values for these parameters, taken from
Hulscher et al. [1993], are given in dimensionless form in
section 2.2.

[10] Suspended load transport requires a different
description. The depth-averaged volumetric concentra-
tion ¢* can be described by an advection equation [De
Vriend, 1990]:

ac*

fuc >
e +uteVEeE =

* %k
= = — Y.
H* +z;—z,

(4)

The right-hand side models the exchange between bed
and fluid column due to entrainment and deposition.
Entrainment is assumed to be proportional to some
power B, of the depth-averaged flow velocity magnitude
(usually 2 [Dyer, 1986]), with a factor o). The deposition
is proportional to ¢* with factor y*. We neglect the
diffusion of suspended sediment.
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[11] The local rate of bed change is due then to both
the divergences in bed load transport and the difference
between deposition and entrainment, i.e.,

%
8Zb

(1 - €p) 31‘7*4_ V*.S* + ()L?|U*|B‘\\

—y*(H* +z¥—=z)e* = 0.

)

Here ¢, is the bed porosity (usually ~0.4). We limit our
study to offshore situations where wave effects on sedi-
ment transport, other than those incorporated in a; and
a) such as stirring, can be neglected.

2.2. Scaling Procedure and Timescales

[12] Next, the model is cast in nondimensional form,
in which we furthermore distinguish two timescales. By
introducing the scaled variables

u* . orx* z
U= S0, X= e 5T o
.k . , (6)
g*Zs S«‘ﬂ ,Y*H*C*
Zs = W7 = O(?U*Bb’ c = Ol.;kU*BS >
we arrive at the following nondimensional model:
v+ 2w va + 0, (7
zo+ 5, TuVu fe. X u 11—z " (7)
V-[(1=z)u] =0, (8)
S=| |B( L av ) )
= u|”| 77— A\Vz, |,
|ul ’
Al s ueve| = P 10
n +u-Vec| = 1-z c, (10)
daz, | Q, 6
aiT+()LhV'<S>+X<|U b= (1 _Zb)C>=0. (11)

Here V = (d/ax, d/dy). We have omitted terms propor-
tional to Fr* = U*?*/(g*H*), corresponding to a rigid lid
approach. The angle brackets denote tidal averaging.
[13] The model contains two timescales. Besides the
fast hydrodynamic timescale ¢, we have introduced a
slow morphodynamic timescale T, associated with the
strongest of the two types of sediment transport:

T= }.Lt, n = maX(OLb,O(S).

(12)

We assume that the flow and sediment transport quan-
tities evolve on both timescales ¢ and 7, whereas the
seabed z;, evolves only on the slow timescale 7. Hence the
fast bed changes within the tidal cycle (dz,/df) are ne-
glected, which effectively decouples the hydrodynamics
and sediment transport (equations (7)—(10)) from the
bed evolution (equation (11)); this is a quasi-stationary
approach. Moreover, in equation (11) only the tidally
averaged sediment transport contributes to the bed evo-
lution.
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[14] In the scaled model and the slow timescale T the
following nondimensional parameters appear:

o ITen Mo AT

) B a Ul .

6= ab—m, (13)
o a Uk

a,=— a,=

T T - HY
Here A is the ratio of the timescale of the deposition
process for suspended sediment and the tidal period.
Appropriate parameter values are r = 0.237—-2.37, f
=0.83, A = 0.0084 ,4 =001, 0, =5 X 1077 = 5 X
107° and ag = 1.5 X 10~ Note that, by definition of
T in equation (12), either &, or &, equals one. The
other is smaller and can be set to zero to isolate the
transport mechanisms from each other.

[15] We will further simplify by omitting inertial
terms, i.e., du/d¢t from the momentum equation (7) and
dc/ot from the concentration equation (10). This means
that the flow adapts instantaneously to changes in the
tidal forcing, and the sediment concentration adapts
instantaneously to changes in the flow. Huthnance
[1982a] and De Vriend [1988] have shown that neglecting
inertial terms hardly affects the stability properties of
the flat seabed.

2.3. Basic State and Linearization

[t6] The morphodynamic model consists of a set of
nonlinear equations which cannot be solved in closed
form. Hence we resort to an approximation technique.
Let

(’) = (ll, Zpy Vzw 87 C) (14)

denote the state of the system. The spatially uniform but
time-dependent state ¢, given by

(bO = (u07 07 (VZS)0> SOa Co), (15)

is a solution to the set of equations. It describes a flat
bed subject to a spatially uniform tidal flow and will be
called the basic state. For the basic flow u, one can take
various representations, such as a unidirectional current
[Huthnance, 1982a, 1982b], a sinusoidal M, component
in one direction [Huthnance, 1982a], or one with a cer-
tain ellipticity [Hulscher et al., 1993], possibly including a
residual M, component and an M, overtide [Roos et al.,
2001]. We keep the basic flow as simple as possible,
while still allowing it to mimic tidal (a)symmetry. To that
end, we propose a block flow inclined at an angle 6 with
respect to the x axis:

uy(¢t) = I(t)(cos B, —sin 0), 16)
16

I, 0=¢t/(Q2m)<3d
I(t) = { I, 83=t/2m) <1~
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Figure 4. Examples of the basic flow (equation (16)), i.e., plots of I(¢) in three cases: (a) steady current (I,
= 3 = 1), (b) symmetric block flow (I; = —I, = 1 and & = 1/2), and (c) asymmetric block flow (I, = 3/2,

I, = —3/4, and 3 = 1/3).

with I, > 0,1, < 0, and 0 = & = 1 (Figure 4). In
particular, for I, = —I, = 1 and 8 = 1/2 we recover the
symmetric block tide studied previously by Huthnance
[1982a]. He showed that in a linear stability analysis a
symmetric block tide and an M, tide give qualitatively
similar results. As we neglect inertial terms, the flow
and bed response averaged over a tidal cycle reduce to
the weighted average of the responses to two steady
currents /; and I, with weighting factors & and 1 — 8,
respectively. A uniform free surface slope (Vzy), acts
as the pressure gradient that drives the basic flow. The
basic flow induces sediment transport, i.e., nonzero S,
and c,. However, it does not trigger any bed evolution
as, in equation (11), V - S, = 0, and ¢, equals the
reference concentration [u,|®.

[17] We consider the topographies as perturbations of
the flat bed, which are small compared to the water
depth. Introducing the small nondimensional amplitude
e = €*/H*, we can define the isolated ridge and the
isolated hump (see Figure 1) by

z, = €d(x)3d(y), (17)

respectively. Here () is the Dirac function: 8(§) = 0 for
& # 0and [,3(§)dE = 1if 0 € J. As e << 1, the state
corresponding to the topographies (equation (17)) is
likely to be a small perturbation of the basic state &, i.e.,
of order e. So let us expand linearly around the basic
state according to

b =y + edy + O(e?). (18)

We neglect higher-order terms with respect to the linear
ones in ¢, so solving the problem for ¢ reduces to solving
a linear problem for ¢;. This linear problem follows
from substituting equation (18) in the model equations
and collecting terms of order e:

z, = €d(x),

Vz, +uy* Vu, — fe, X u; + r(zuy + uy) =0, (19)
V-u, —uy-Vz, =0, (20)

Sy = [ug/* Muy + (B, = Dug/*(uy - uy)uy
— MugPVz,, (21)

Auy- Ve, = Bs|“0

8572u0 Uy — Cq + CoZp1s (22)

0z R
? + &,V <S1>

A

aS —
* A (Bylugl*Pup - uy —¢; + czp) = 0. (23)

The model in this form serves as the starting point for
the further analysis.

3. ONE-DIMENSIONAL IMPULSE RESPONSE: THE
ISOLATED RIDGE

3.1. Definition and Green’s Function
[18] In this section we investigate the evolution of an
isolated ridge aligned with the y axis:

Zpy = 8(x) [T =0]. (24)

As both basic flow (equation (16)) and initial profile
(equation (24)) are independent of y, so will the topog-
raphy be as it evolves in time. Let the bed evolution
starting from equation (24) be given by z,;, = G(x, 7),
called Green’s function. Then, for an arbitrary yet y-
independent initial topography, the bed evolution fol-
lows from the convolution integral of Green’s function
and topography, i.e.,

Zp(x, 1) = f G(E7)z)"(x — §)dE. (25)

—o

However, an analytical expression for G cannot be found
in closed form. To facilitate the analysis, we therefore
restrict to the initial response, and we define (x(x)) =
dG/dt at T = 0. In this case we find analytical expressions
that give insight into the model’s behavior.

3.2. Flow Response

[19] The flow over the ridge is decelerated by conti-
nuity and deflected by friction-topography and Coriolis-
topography interactions (see also Figure 2). Indeed,
from the continuity equation (20) and the momentum
equation (19) in y direction we find
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u, = I8(x)cos 0 (26)

v, = I(rtan § — f)e <O (Ix). (27)

Here H( ) is the Heaviside function: Its value is unity for
a positive argument and zero otherwise. The exponential
decay of v, downstream of the ridge is due to advection
and bottom friction, where the parameter |Ijr'cos 6
determines the (e-folding) length of hydrodynamic influ-
ence. In the limiting case 6 = *=/2, i.e., when the basic
flow is aligned with the ridge, this length vanishes, and
the flow response reduces to u; = (0, I3(x)). The mo-
mentum equation in x direction can be used to find z,
which we do not pursue here as it does not contribute to
the bed evolution.

3.3. Bed Evolution for Bed Load Transport

[20] The perturbed bed load sediment flux S; follows
from substituting the basic flow equation (16) along with
the perturbed velocities equations (26) and (27) into the
linearized transport formula (21). Next, the bed evolu-
tion equation (23) with &, = 0 (no suspended load) leads
to an evolution equation for arbitrary topographies

Zp1 (X):

9%z,

9z 9z
Pr2 912

T P

%

+ P(0) [prozor — J’ pr3(E)zp(x — €)dE].  (28)

—o

The nonnegative p,g, pp1, Ppa> and py3(x) are specified
in Appendix A; P(6) will be specified and analyzed
below. Because of the structure of p,;(x) we cannot
solve equation (28) in a convenient closed form, ex-
cept when P(6) = 0.

[21] Neglecting the term in P(68) for the moment, the
evolution equation (28) reduces to an advection-diffu-
sion equation, leading to

—(x - pblT)z

GbO(xaT) = 4prT

————¢X . (29

\"4"TszT P { ] 29)
The migration term p,, is nonzero only in the case of
asymmetric block flow not parallel to the ridge (6 #
+m/2). The diffusion of the ridge is directly associated
with bed slope effects.

[22] The last term of equation (28) disrupts its advec-
tive-diffusive character by introducing an additional re-
distribution of sediment. The sign and magnitude of
P(8), given by

P(6) = sin 6(r sin 6 — f cos 0), (30)

determines its character and importance, respectively.
The quantity P(6) combines frictional and Coriolis ef-
fects with the basic flow angle. We identify two parts.
Evolution of the form itself is incorporated in the term
in p,g, and the sign of P(0) determines whether this is
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growth or decay. The form decays for 0 < tan 6 < f/r
(assuming f > 0, which applies to the Northern Hemi-
sphere); it is unaffected for 6 = 0 or 8 = arctan f/r and
grows otherwise. Apparently, Coriolis effects disturb the
symmetry about 8 = 0. Form decay is strongest for
0, = % arctan f/r, while form growth is maximal for
0, = % (arctan f/r — ). These properties of P(6) (depict-
ed in Figure 6a) again show up in a harmonic stability
analysis (see section 3.5). The amount of sand involved
in form growth (or decay) equals the surrounding ero-
sion (or sedimentation), given by p,;(x). Possible asym-
metry of the basic flow will cause p,5(x) to be asymmetric
inx.

3.4. Bed Evolution for Suspended Load Transport

[23] The perturbed concentration follows from substi-
tuting the basic flow equation (16) and the flow response
equations (26) and (27) into the equations for suspended
load transport equation (22) (Appendix A). Substituting
the result and the perturbed velocities into equation (23)
with &, = 0 (no bed load transport) and taking the tidal
average now results in an evolution equation for arbi-
trary topographies z,;(x):

aT

—o

Zp *
: = —psZm T J' [P(0)ps1(&) + pysa(€) Jzi(x — E)dE.

(1)

The nonnegative p,, along with p,5,(x) and p,3,(x) are
specified in Appendix A. The form now always turns
out to be decaying as p,, > 0. In contrast with the bed
load case we find neither migration nor diffusion
terms. Migratory effects are contained in the scour or
deposition function p;(x), which is more complicated
than in the bed load case. It involves terms exponen-
tially decaying determined by friction and advection of
sediment, respectively. The amount of sand released
by the form decay equals surrounding deposition,
given by the convolution term in py3,.

[24] Finally, we can link the two transport mecha-
nisms by noting that, for 8, = 8, — 1, A = 0, and in the
limit A | 0, the bed evolution equations (28) and (31)
become identical. This means that, neglecting bed slope
effects, bed load transport is a special case of suspended
load transport in the limit of zero advection.

3.5. Relation With Harmonic Stability Analysis:
Sandbank Formation

[2s] Here we will apply the general bed evolution
equations (28) and (31) to a wavy topography z,; = a(r)
cos kx. These are the eigenfunctions of the linearized
system, so we actually perform a harmonic stability anal-
ysis [Huthnance, 1982; De Vriend, 1990; Hulscher et al.,
1993]. Such an analysis, aimed at explaining the forma-
tion of tidal sandbank patterns in, for example, the
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Figure 5. Sandbank patterns in the southern part of the North Sea [Van de Meene, 1994].

North Sea (Figure 5) predicts exponential growth or
decay along with migration:

Zp(x, T) = e”"cos (kx — w;t), 0=, + iw; (32)

The growth rate o is a complex number that depends
both on the orientation 6 of the perturbation with re-
spect to the tide and on its wavelength 2m/k, as well as on
the Coriolis parameter f, friction coefficient r, sediment
transport parameters 3,, \, A, and 3, and on the char-
acteristics of the basic flow u,,. The real part determines
the growth or decay, whereas the imaginary part is
associated with migration.

[26] For a symmetric block flow (Figure 4b) the
growth rate is real and, in the case of bed load transport,
given by

(B, — 1)P(08)k? cos’* 0

_ 2
> + k*cos’ 0 A,

w, = (33)
This agrees with the results found by Huthnance [1982a]
and Fluit and Hulscher [2002]. As equation (33) is based
on a symmetric block flow, we cannot compare this
result with growth rates that correspond to alternative,
more realistic types of basic flow [Huthnance, 1982a; De

Vriend, 1990; Hulscher et al., 1993] (section 2.3). The
mode for which the real part of the growth rate is
greatest is called the fastest growing mode (FGM), de-
picted in Figure 6b. Its characteristics kg, =~ 4 and gy,
~ —60° correspond to dimensional wavelengths between
5 and 10 km and crests oriented counterclockwise at 30°
with respect to the tidal current. This agrees with the
characteristics of tidal sandbanks in the North Sea.

[27] For suspended load transport the expression for
the growth rate is more complicated:

O T k% cos’ 0 |1+ A% cos? 0

B B.P(0)k*cos> 0 [ 1+ Ar ]

Ak*cos® 0 (1 + B, cos* )
B 1+ A%?*cos* 0

(34)

We identify the following three properties of suspended
load transport (Figure 6). First, it promotes the growth
of features with crests slightly more aligned with the flow
than in the case of bed load transport [De Viiend, 1990].
Second, the absence of a diffusive bed slope mechanism
causes the lobes with positive growth rates to be un-
bounded, which is physically unrealistic. However, like
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Figure 6. Stability properties of the flat seabed in polar (k,0) plots. (a) Properties of P(6), i.e., the region
P(0) > 0 (shaded) and P(6) < 0 (open), along with the angles of maximum decay 6, and maximum growth 6,
(solid lines). Contour plots of typical growth rates for (b) bed load and (c) suspended load. Shading and solid
contours indicate positive growth rates; open areas and dotted contours indicate negative growth rates.
Parameter values are the following: r = 1, f = 0.83, B, = 3, A = 0.0084, B, = 2, and A = 0.1. The fastest

growing mode is denoted with a cross.

bed load transport, suspended load is susceptible to bed
slope effects [Parker, 1978; Talmon et al., 1995]. Indeed,
analogously to the bed load case, adding a bed slope
term to the bed evolution equation (5) would solve this
deficiency. Third, for B, = B, — 1 and A = 0, we find that

(35)

lim w, = w,,
410
again showing that bed load transport acts as a limiting
case of suspended load transport.

[28] Now let us revisit the role of the parameter P(6)
as given by equation (30). Besides controlling the dy-
namics of the ridge, it also tells us how the growth rates
(equations (33) and (34)) of wavy features depend on
their orientation 8. Indeed, in the 6 interval 0 < tan 6 <
f/r, where P(8) < 0, both the ridge and wavy perturba-
tions decay. Moreover, positive growth rates only occur
for 6 values for which the ridge grows as well, i.e., when
P(6) > 0. The parameter P(0) obviously does not incor-
porate the damping of short wavelengths by the slope
effect on bed load transport, which causes negative
growth rates for large k. Finally, the angle 6,

= % (arctan f/r — ) of maximal ridge growth turns out
to predict the angle of the FGM well (Figures 6b and
6¢).

[29] Green’s function, introduced in section 3.1, can
be expressed in terms of the obtained growth rates
equations (33) and (34) according to

Gx, 1) = j"’

e re™dk + c.c. (36)

Here c.c. means complex conjugation. However, this
integral is too complicated for further evaluation. Sec-
tion 5 will show that the same holds for Green’s function
in two dimensions.

4. APPLICATION: EVOLUTION OF A DREDGED
CHANNEL

[30] We now apply the bed evolution equation (28)
for bed load transport to investigate the morphodynamic
evolution of a dredged trench. Let us consider a Gauss-
ian cross section, i.e.,

The center of the trench is located at x = x,, while o, is
a characteristic half width: At x = x, * oy, the trench
depth is reduced by a factor e ' ~ 0.37 (Figure 7a).
[31] For a basic flow that mimics an asymmetric tide
(Figure 4c), we identify two qualitatively different kinds
of behavior. First, for P(8) > 0, the trench migrates, and
on both sides of the trench, additional humps appear,
thus forming some sort of pattern of adjacent banks.
This type of behavior closely follows the inherent insta-
bility of the flat seabed discussed in section 3.5 and
depicted in Figure 6. Second, for P(6) = 0, the trench
migrates, and diffusion causes the shape to flatten out
toward a flat bed. As a special case we consider a basic
flow perpendicular to the trench, i.e., 6 = 0 and P(0) =
0. The approximation (29) of Green’s function is now

-1
zp(x) = - \E exXp
tr

—(x —x,.)?
o

(37)
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Figure 7.

(a) Gaussian trench shape (equation (37)) with o = 1 and x. = 0. Evolution of this trench with bed

load transport, subject to the forcing of Figure 4c, directed (b) perpendicular to the ridge (6 = 0) and (c) at
an angle 6 = 0, ~ —63°. Plotted is z;,,(7) at T = 0 (solid), T = 1/2 (dashed), and 7 = 1 (dash-dotted). Parameter

values are the following: B = 3 and N = 0.0084.

exact. It predicts trench migration and diffusion, with
trench center and width developing according to

(38)

with o, the half width at 7 = 0. The Gaussian shape
equation (37) is thus preserved (Figure 7).

[32] With a model similar to the one presented here,
Van de Kreeke et al. [2002] studied the morphodynamics
of the access channel to the Port of Amsterdam. They
report observations over a period of 2.3 years showing
migration in the direction of net sediment transport at a
rate of 2-4 m yr—'. At the same time the channel widens
and becomes shallower. In the model, Van de Kreeke et
al. [2002] assumed tidal flow with M, M,, and M, com-
ponents, directed perpendicular to the trench, i.e., 6 = 0,
and used parameter values much like the ones presented
in section 2. This leads to migration estimates between
2.3 m yr ! for bed load transport and 4.5 m yr~' for
suspended load transport, along with initial rates of half
width increase of 0.4 myr~! and 2.5 m yr~ ', respectively.
Van de Kreeke et al. [2002] furthermore showed that
higher-order effects create asymmetry.

P
x(T) = ppiT, o, (1) = \/4th7 + O-tzr,0>

5. TWO-DIMENSIONAL IMPULSE RESPONSE: THE
ISOLATED HUMP

5.1. Definition and Green’s Function
[33] In this section we investigate the evolution of an
isolated hump in the horizontal plane, given by

zp = 8(x)3(y)  [r=0].

The basic flow is given by equation (16), but contrary to
the ridge case the orientation 6 has become meaningless.
Hence we choose 8 = 0, i.e., uy = (/, 0). The evolution
starting from equation (39) now depends on both hori-
zontal coordinates: z,; = G(x, y, 7). The evolution of an
arbitrary initial topography follows from the convolution
integral of topography and Green’s function, i.e.,

(39)

Zp(x, y, 7) =f f G(E ¢, mz'(x — &y — DdEdL.

—o0d —%0

(40)

As in the one-dimensional case, G(x, y, T) cannot be
found in a convenient closed form (in Appendix B we
express G in terms of the growth rates obtained in
section 3.5). We therefore restrict to the initial bed
evolution: (x(x,y)) = dG/dt at T = 0. For simplicity, we
furthermore restrict to steady basic flow and symmetric
basic flow (Figures 4a and 4b).

5.2. Flow Response

[34] It turns out that the problem can be conveniently
solved in terms of the vorticity and the stream function.
We therefore rewrite the flow equations (19) and (20) as

an, 9zp 9z
’ax”m—’(ray— ax) (41)
Vi oy = 1 42)
Yy +my ox

Here the vorticity is given by v, = dv,/dx — du,/dy, and
the perturbed stream function (s, satisfies ds,/dy = u; —
Zpiug and W /ax = —v, + z,,v, (both are order € quan-
tities).

[35] We can divide equation (41) into two different
problems, each of which can be solved with the aid of
Green’s representation theorem (Appendix B). To that
end, we write

Lbl = ‘br + l1’/: (43)

effectively distinguishing a frictionally induced contribu-
tion and one due to Coriolis effects. In the tidally aver-
aged sense the expressions read (Appendix B)

m = T]r+'n[5
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Figure 8. Perturbed stream function around a delta hump located at the origin, subject to (top) a steady
current in the positive x direction and (bottom) a symmetric block flow along the x axis. Plotted are (left)
[Huthnance, 1982b], (center) Coriolis contribution is;, and (right) the total stream function {5, = s, + ;. Solid
contours indicate clockwise circulations; dotted contours indicate counterclockwise circulations. Parameter

values are the following: r = 1 and f = 0.83.

ry 1 1

Nw::¢n£eﬂ%tx—&f+oﬁ_(x+€V+y4dg

(44)

0

(Yp) = % [IOg(x2 +y%) - % J e Hlog[(x — ) + y?]

+ log[(x + £)? +y2]}d£]- (45)

The derivation of the frictionally induced contribution to
the perturbed stream function is also given by Huth-
nance [1982b]. From equation (44), ({s,) is antisymmetric
with respect to the x and y axis, while the Coriolis-
induced contribution (ys) is fully symmetric in both x and
y. As a result, the only symmetry property of the sum ({s;)
will be a point symmetry with respect to the origin.
Hence plotting one quadrant of the (x, y) plane no
longer suffices. Figure 8 shows how Coriolis effects alter
the perturbed stream function obtained by Huthnance
[1982b]. The cyclonically oriented circulation cells are
amplified, whereas the anticyclonic ones are damped.
Physically speaking, the increased friction above the
isolated hump diverts the flow, while Coriolis effects

disturb the symmetry of this pattern (see Figure 9).

5.3. Bed Evolution for Bed Load Transport

[36] The bed evolution equation (23) with &, = 0 (no
suspended load), combined with the linearized bed load
transport formula (21), can be formulated in terms of

the stream function {s; according to

0z i 0z
07: _Bb<|I|Bh 11) ox + )\<|[|Bb>v22b1_(8h - 1)

% (w aZ
f f <\1 Bb*%(g, 0)2(x — £y — Ddk .

(46)

The first term on the right-hand side of equation (46)
vanishes for a symmetric block flow. As in the one-
dimensional case (section 3) the term in N pertains to
the downslope transport, which only acquires a mean-
ing after we integrate over a sufficiently smooth to-
pography by using equation (40). Analogous to equa-
tion (43), we write X, = X, + Xpp- Huthnance [1982b],
who neglected Coriolis effects, identified three con-
tributions to x,,: (1) amplification of the form (the
equivalent of p,, and py, in section 3), (2) exponen-
tially decaying scour downstream of the hump (the
equivalent of p,;(x) and py;(x) in section 3), and (3) a
sedimentation and erosion function, which is defined
in the horizontal plane and can be written as

iy = B Dr “e_rg{u -9l - 9 - 37
Xbr 27 [(X _ 5)2 +y2]3
(Pl + 8 — 3y’
[(x + &>+ yT

Each of these frictionally induced contributions is
symmetric with respect to the x and y axis. The con-
tribution x, due to Coriolis effects takes the following
form:

}dg. (47)
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Figure 9. Physical mechanisms that induce the residual flow and the bed evolution in the case of a
symmetrical tide. For each type of topography the three leftmost plots show the typical streamlines of the flow
for the flood and ebb phase of the tidal cycle as well as the mean, i.e., tidally averaged flow pattern [see also
Zimmerman, 1981; Robinson, 1983; Pattiaratchi and Collins, 1987; Dyer and Huntley, 1999]. In the case of a
nonzero tidally averaged (bed load) sediment flux it is indicated by horizontal arrows in the rightmost plot,
while the smaller vertical arrows indicate the corresponding bed evolution. (a) For a flat bed the flow is
spatially uniform, and the tidal average vanishes. The tidally averaged sediment transport also vanishes, such
that the seabed remains fully flat. This state is called the basic state. (b) In the case of a bank of infinite extent,
i.e., a topography varying in one direction only, the flow is deflected by three mechanisms: (1) Continuity
forces the cross-bank component of the flow to accelerate, (2) increased friction by reduced depth slows down
the along-bank flow component, and (3) Coriolis-topography effects enhance cyclonic flow deflections (i.e., to
the right on the Northern Hemisphere). The along-bank flow response is transported downstream by
advection. In contrast with the flat bed case the tidal average is now nonzero and directed parallel to the bank
contours. This residual flow can be seen as consisting of circulations around the bank, which are nonclosed
because of the assumed infinite bank length. Depending on the orientation of the bank with respect to the
flow, the friction-induced contribution to these circulations is clockwise (counterclockwise bank orientation,
see the plot) or counterclockwise (clockwise bank orientation). On the Northern Hemisphere, Coriolis effects
enhance the clockwise circulation, thus causing the flow response to be strongest for a bank with a
counterclockwise orientation (see top row). Depending on the orientation of the bank, the tidally averaged
sediment transport causes the bank either to (top) grow or (bottom) decay. (c) The same mechanisms apply
to the more realistic case of a bank of finite extent, but the two-dimensionality of the topography complicates
the picture. Increased friction diverts the flow around the bank, again with Coriolis effects enhancing
clockwise deflections (on the Northern Hemisphere) and advection transporting the flow response down-
stream. The tidally averaged pattern exhibits three circulation zones: one above the bank with clockwise
circulations, flanked by two zones with counterclockwise circulations. Clearly, the circulation cells are now
closed because of the finite bank length, while Coriolis effects determine the sense of rotation of the main cell
(clockwise on the Northern Hemisphere, counterclockwise on the Southern Hemisphere). The position, size,
and shape of the cells depend on the exact topography, flow angle, and relative strength of Coriolis and
frictional forces. The tidally averaged sediment transport pattern, more complex than in the previous cases and
therefore not displayed here, tends to elongate the bank in the direction, which coincides with the preferred
angle for one-dimensional banks.
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Initial sedimentation and erosion patterns around a delta hump located at the origin, subject to

(top) a steady current in the positive x direction (x) and (bottom) a symmetric block flow along the x axis ((x)).
Plotted are (left) x,, [Huthnance, 1982b], (center) X, and (right) the total scour function x, = X, + X
Shaded and solid contours indicate deposition zones; open areas and dotted contours indicate erosion zones.
Parameter values are the following: » = 1 and f = 0.83.
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It is easily seen that x,,, is antisymmetric with respect
to the x and y axis. The counterparts of equations (47)
and (48) for steady flow can be found in Appendix B.

[37] The Coriolis-induced preference of the system
for the formation and growth of cyclonically oriented
features is clear from the ISE patterns (Figures 8 and
10). The underlying mechanisms have been discussed
extensively in the context of wavy sandbank patterns
[Zimmerman, 1981; Robinson, 1983; Pattiaratchi and
Collins, 1987; Dyer and Huntley, 1999] (see also Figure
9), and we will do the same here for isolated features.
Friction-topography and Coriolis-topography interac-
tions generate vorticity (source terms in the vorticity
equation (41)), which is advected downstream. The fric-
tion-topography interactions pertain to transverse bed
slopes, giving rise to cells on both side sides of the hump
(i.e., above and below the x axis). Consequently, the
corresponding bed response ¥, is symmetric with respect
to the x axis. In addition, Coriolis-topography interac-
tion, dealing with streamwise bed slopes, causes cells
upstream and downstream of the hump. The resulting
Coriolis-induced bed response x; is antisymmetric with
respect to the x axis, promoting deposition in the cyclon-
ically oriented quadrants and erosion in the anticycloni-
cally oriented ones. The net result is a relatively strong
deposition in cyclonic direction, i.e., a preference for the
formation and growth of cyclonically oriented features.

[38] The qualitative picture of the ISE patterns for
steady flow (Figure 10, top left) resembles earlier results
obtained with the method of characteristics. The analysis
by De Vriend [1987a, 1987b] and the numerical experi-
ments cited therein have shown that, in the absence of
Coriolis effects, a hump subject to a steady flow develops
into a pattern resembling a three-pointed star (Figure
11). Including the Coriolis force deforms the star shape,
amplifying its cyclonic tip and weakening its anticyclonic
tip.

5.4. Bed Evolution for Suspended Load Transport

[39] Now, we will discuss the method and results for
the suspended load case. Combining the equations for
suspended load transport (equations (22) and (23)) with
&, = 0 (no bed load transport) leads to the following set
of equations, formulated in terms of the stream function:

a2 a1 (49
Cl ax - ay Zbl ax ( )
9Zp < dc, ‘ . ‘ ‘B az,,1>
o= ) (50)

An expression for the concentration ¢, can be found in
Appendix B. The bed evolution follows from equation
(50) and contains elements similar to bed load trans-
port. Analogously to the one-dimensional case, the
advection parameter 4 of suspended load transport
causes some smoothing in the x direction. However,
the qualitative picture of the bed evolution is similar
to the bed load case (already shown in Figure 10).
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Figure 11.
analysis. Reprinted from De Vriend [1987a], copyright 1987, with permission from Elsevier Science.

6. APPLICATION: OFFSHORE SANDPIT

[40] In this section we study the evolution of an off-
shore sandpit from the perspective of the two-dimen-
sional impulse response. For any topography of small
bed amplitude z,,(x, y) the convolution integral (40) can
be used to obtain the corresponding ISE. Because of the
model’s linearity in the bed amplitude the qualitative
behavior for a pit on the one hand and a sandbank of
finite horizontal extent (and of similar shape) on the
other hand are identical, except for a sign change in flow
and bed response. This means that clockwise residual
circulations become counterclockwise, sedimentation
zones become erosion zones, and vice versa.

[41] In the bed load case without Coriolis effects and
for a symmetric block flow, Huthnance [1982b] used the
two-dimensional impulse response ¥, to study the for-
mation and growth of an individual sandbank. He inves-
tigated the subsequent bank evolution numerically, and
the inclusion of nonlinear effects and some additional
elements (wind waves and limited sand) led to equilib-
rium profiles.

[42] Roos et al. [2001] considered an offshore sandpit
with a Gaussian shape in an otherwise flat bed and
expressed it as a superposition of wavy features, i.e., the
Fourier spectrum of the pit. In Fourier space, according
to the individual growth rates of a linear stability analysis
(bed load case, including Coriolis effects, and for an
arbitrary tide consisting of an M,, M,, and M,), the
individual wavy features grow (or decay) exponentially
with time. In physical space the pit evolution exhibits the
following properties (see Figure 12): pit deepening, pit
deformation, and possibly pit migration (in the case of
tidal asymmetry) along with the formation of a bank
pattern, which gradually grows, spreads, and possibly
migrates around the pit. The spreading rate (elongation
rate of the central pit or trough) is estimated at 12-120

m yr~'; the migration rate is estimated at ~ 1-7 m yr~ ..

3¢, At i~

Evolution of a single hump subject to a steady flow from left to right according to characteristics

These estimates are based on conditions that apply to
the southern part of the North Sea, comparable to those
used by Van de Kreeke et al. [2002] (see also sections 2.2
and 4).

[43] The circulation cells and ISE patterns of the
two-dimensional impulse response (section 5) resemble
those of the bank or pit case [Huthnance, 1982b; Roos et
al., 2001], except for a sign change when comparing
humps and pits. The convolution integral over the
smooth topography of a pit or bank merely smears out
the impulse response without disrupting the qualitative
pattern.

7. DISCUSSION AND CONCLUSIONS

7.1. Interpretation and Relevance of the
Topographic Impulse Response

[44] The generic value of the impulse response stems
from the general bed evolution equations (28), (31), and
(46). They govern the system’s response to arbitrary
topographies of small bed amplitude for both bed load
and suspended load transport. The solution to these
equations with an isolated ridge or hump as initial con-
dition, called Green’s function, mathematically contains
all the information of the system’s behavior. The re-
sponse to an arbitrary topography at = = 0 follows from
the convolution integrals (25) and (40). However,
Green’s function can generally not be derived in a con-
venient closed form. Only the special case P(6) = 0
leaves us with a simple advection-diffusion equation that
can be solved exactly. Otherwise, we have to resort to
numerical techniques or alternative approximations.
Therefore we have mainly focused on the initial bed
response.

[45] Finding a direct physical interpretation of the
topographic impulses (equations (24) and (39)) is awk-
ward. The concept of a finite mass being concentrated in
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Figure 12. Evolution of a Gaussian sandpit subject to an asymmetric tide in the x direction (highest
velocities from left to right) in the case of bed load transport: (top) bed evolution and (bottom) residual
currents and from left to right the evaluation times T = 0, T = 2, 7 = 4, and T = 6. Troughs are black, crests
are white, and the undisturbed seabed is shaded. Solid streamlines correspond to counterclockwise rotation,
whereas dashed ones correspond to clockwise rotation. The plotted region covers a dimensional area of about
70 X 70 km?. Parameter values are the following: r = 0.6, f = 0.83, B, = 3, and A = 0.0084 [after Roos et al.,

2001].

a single point may even tempt one into confusing geo-
metrical perceptions. Therefore one should bear in mind
that the primary role of the impulse response is that of
a tool to be used in the integrated sense according to
equations (25) and (40). However, we have seen cases in
which most of the qualitative features of the impulse
response are retained throughout this integration pro-
cedure (e.g., when going from the isolated ridge to the
stability analysis in section 3.5 or from the isolated hump
to an offshore sandpit in section 6). Apparently, the
analytical expression of the impulse response already
provides fundamental information on the system’s be-
havior.

[4s] Finally, note that the isolated ridge can be seen as
an infinite sequence of isolated humps. Hence the one-
dimensional impulse can be derived from the two-di-
mensional one by choosing z,; = 8(x) in equation (40)
(see also the leftmost arrow in Figure 1). Nevertheless,
we chose to investigate the isolated ridge separately, as it
gives more direct insight into the evolution of y-indepen-
dent topographies z,,(x).

[47] Despite their limitations, analytical solutions for
the flow and bed evolution can be useful for the verifi-
cation of numerical models. The isolated hump can be
implemented easily and, more importantly, does not
interfere with the boundaries of a finite numerical do-

main, as these can be chosen sufficiently far away. The
wavy topographies studied in a stability analysis also
permit analytical solutions, but the infinite spatial extent
of such patterns is likely to cause complications at the
boundaries of the numerical domain.

[48] In order to explain the fundamental mechanisms
the examples presented here deal mainly with idealized
geometries. However, the results also apply to arbitrary
topographies (of small amplitude), and the hydrody-
namic and morphodynamic response to such a topogra-
phy can be numerically obtained with the present
method. However, alternative numerical methods may
be more appropriate for this purpose.

7.2.  Model Assumptions and Limitations

[49] By treating the flow in a depth-averaged way, we
neglect the vertical flow structure. As such, we are un-
able to describe the mechanisms related to sand wave
formation and dynamics [Hulscher, 1996] as these orig-
inate from variations in the vertical flow structure. This
limits the applicability of the system to the horizontal
length scales of sandbanks (on the order of thousands of
meters) rather than those of sand waves (hundreds of
meters).

[s0] The model is linear in the bed amplitude. Con-
sequently, the topographies under consideration should
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Figure 13. Part of the North Sea bed (area of 10 km?) [after Knaapen et al., 2001a, Figure 4]. Here the
sandbank mode is hardly visible as the smaller-scale sand waves are quite dominant. Figure 13 shows a part
of the offshore seabed, large enough to show the topographic variations due to sandbanks and sand waves. The
latter mode is not included in two-dimensionally horizontal (2DH) models. The topography on the scales
relevant for 2DH models itself is hardly visible, which is not so surprising as nearly one wavelength fits in this
figure. Next, the 2DH modeling approach as discussed in this paper predicts a regular pattern of similarly
shaped banks (see, e.g., Figure 12). These points illustrate the question in comparing large-scale topographic
data with 2DH morphodynamic models: When may we be confident that the data are in agreement with the
2DH morphodynamic model or vice versa? Natural large-scale features as sandbanks always show large
irregularities, which may have a stochastic nature or may be due to large-scale nonlinear dynamics. Another
problem in performing such comparisons is that the current data sets are not large enough (space), long
enough (time), and accurately spaced enough to allow direct comparisons and perform statistics. See color
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version of this figure at back of this issue.

have small bed amplitudes, compared to the water
depth. Nonlinear effects should be taken into account
when bed amplitudes are no longer small with respect to
the water depth.

[51] The analysis follows a stability concept in which
the rigid lid approximation, i.e., neglecting the contribu-
tion of z to the water depth in the model equations, is
crucial. Without this assumption an analytical expression
for a spatially uniform basic state cannot be found. As
Froude numbers are small (Fr ~ 0.06), the rigid lid
approximation is indeed appropriate. In order to facili-
tate the analysis we furthermore restrict the basic state
to a block flow, and we omit inertial terms in momentum
equations.

[52] Furthermore, we neglect wind wave effects,
which limits the model’s applicability to tide-dominated,
thus offshore, conditions. For a detailed description of
wave effects in a harmonic stability analysis we refer to
De Vriend [1990].

7.3. Conclusion
[53] The present analysis shows that the concept of
topographic impulse response provides a link between

various research subjects within the class of offshore
morphodynamic models. A crucial property herein is the
inherent instability of the flat seabed, i.e., the tendency
of topographic undulations on a flat bed to develop into
a pattern of banks, with a preference for cyclonically
oriented features. Investigations into the seabed behav-
ior on the corresponding length scales (kilometers) and
timescales (decades to centuries) should include the
underlying physical mechanisms, such as Coriolis and
frictional effects. Furthermore, in predicting the mor-
phodynamic fate of large-scale human intervention, such
as navigation dredging and sand extraction, the stability
properties should be kept in mind. For instance, model-
ing a sandpit in either a flat seabed, as carried out in the
present study, or in some finite-amplitude equilibrium
topography may lead to qualitatively different behavior.
To what extent the results will differ strongly depends on
the stability properties of such an equilibrium profile as
well as on the ratio of pit depth to sandbank height.
Furthermore, the model shows that bed load transport
can be seen as a limiting case of suspended load trans-
port.
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Fourier spectrum of the bathymetry
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Figure 14. The Fourier transform of the region shown in Figure 13. Herein sandbanks are visible as a
relative concentration of energy in the small wave numbers, nearly parallel the principal direction of tidal
motion. Besides comparing data with models in the physical domain, one may shift to Fourier space. Figure
14 shows the Fourier transform of Figure 13. Now we observe quite clearly a concentration of energy in the
smaller wave numbers, corresponding to the length scale relevant for 2DH models. In this approach the main
idea is to find the (mean and deviation) wave number and orientation, which can be converted directly for
comparison to the wave vector predicted by the 2DH model; see for example, Figure 6. Besides this the
procedure can also be used to filter the smaller-scale features. A more sophisticated way to perform this is
using wavelets. See color version of this figure at back of this issue.

7.4. Outlook

[54] Further steps toward a better understanding of
large-scale offshore morphodynamics are briefly dis-
cussed now. From a modeling point of view a next step
is to investigate the morphodynamic model equations
(1)—(5) in the nonlinear regime as well. Possible equilib-
rium topographies then serve as an alternative starting
point to model the morphodynamic impact of human
intervention.

[55] Accurate data sets, extensive in both space and
time, are currently becoming available. In combining
with (non)linear models they can be used for validation
of the model or processes within the model. Knaapen et
al. [2001b] showed this for alternate bars, i.e., a large-
scale pattern in the fluvial environment. Until now,
validation was mostly based on comparing observations
with modeled characteristics such as wavelength, etc. We
recommend also including comparisons in Fourier
space; see, for example, Knaapen et al. [2001a] or wave-
let methods (Figures 13 and 14). Combining data with
nonlinear models may result in locally tuned morphody-
namic models as shown by Knaapen and Hulscher [2002]
for the case of the smaller-scale sandwaves. Data assim-

ilation is not likely to enable a similar study of sandbank
dynamics as was carried out for alternate bars [Knaapen
and Hulscher, 2003], since the data sets are quite limited
compared with the morphodynamic timescale. To ex-
plore these aspects, a data set comprising more than 100
years of North Sea sandbank observations is currently
under investigation.

[s6] Sandbanks show irregularities that, so far, deter-
ministic depth-averaged modeling has not reflected. The
underlying reasons for observed spatial or temporal vari-
ations of amplitudes and wavelengths are not under-
stood, neither from a theoretical nor from an observa-
tional point of view. This aspect could be investigated by
a cellular automata model, as was done for beach cusps
by Coco et al. [2001], or by reflecting the stochastic
nature of specific parameters (e.g., individual storms,
meteorological tide, and sediment properties). A second
option is that these deviations from regularity are due to
longer-term and/or larger-scale periodicity in hydrody-
namic forcing (e.g., variation of the astronomical tide
and seasonal or climatological variations). The latter
idea is based on the analogy of this morphodynamic
system with the coupled atmosphere-ocean system. The
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separated scales of dynamics have been shown to result
in intermittency, periods of regular behavior separated
by periods of chaos [Van Veen et al., 2001; L. Van Veen,
Baroclinic flow and the Lorenz-84 model, preprint 1210,
Department of Mathematics, University of Utrecht,
Utrecht, Netherlands, 2002]. The behavior within these
“regular” periods was not necessarily the same. Deter-
mining the origin of the irregularities will spawn a better
understanding and subsequently a better predictability
of the effects of human intervention.

[57] In estuaries and rivers, biology and morphody-
namics interact to a large degree. Organisms influence
sediment characteristics, and hence seabed morphology,
directly and indirectly (e.g., trawler nets ploughing the
seabed in chase of bed-resident fish), whereas depth and
sediment composition are important habitat parameters
for these organisms. It is unknown whether and to what
extent biogeomorphology is an issue in the offshore
environment. If so, these interactions have to be in-
cluded for correct modeling of large-scale morphody-
namics. Furthermore, the influences of graded sediment
on the morphodynamics of offshore features (see, e.g.,
Walgreen [2003] for the case of shoreface-connected
ridges or Blom [2003] for the case of dunes in rivers) are
worth being investigated.

[58] Komarova and Newell [2000] have shown that
nonlinear interaction between smaller-scale rhythmic
features, initiated by vertical flow circulations, might
lead to topographic features on the spatial scales of tidal
sandbanks. As their two-dimensionally vertical model
was limited to one horizontal orientation, the character-
istic sandbank orientation could not be verified. There-
fore, at the moment, it is unknown to what extent this
mechanism interferes with the depth-averaged morpho-
dynamic modeling as reviewed in this paper. We recom-
mend investigating its impact and, if relevant, the possi-
bilities of modeling this mechanism in a simpler way so
that it can be incorporated or simulated in two-dimen-
sionally horizontal models.

[59] Gas mining has been shown to be able to cause
the formation of tidal sandbanks [Fluit and Hulscher,
2002; Roos and Hulscher, 2002]. This type of human
intervention was modeled as a dish-like depression, sub-
siding at a constant rate. Other forms of offshore human
intervention, large enough to have an impact on sand-
bank scales, are windmill farms and artificial islands.
However, it is yet unclear how the morphodynamic im-
pact of such large-scale intervention can be modeled.

APPENDIX A: DERIVATION OF THE ONE-
DIMENSIONAL IMPULSE RESPONSE

[s0] The quantities ppg, Pp1> Pr2> and pps(x) in the bed
evolution equation (28) for bed load transport are given
by

pro = (B — 1)<|I|Bb>, (Al)
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pp1 = cos B[ 1 + (B, — 1)cos” OJ(|1|*~'I), (A2)
pr2 = MI|™), (A3)
(B, — Dr
- Br—1,—rx/(Icos 6)
Py = oo (MIPTTe H(Ix)). (A4)

The perturbed concentration is given by
1+ B, cos* 0
A cos 6

B.P(0)
+ |I|BA(1 — Ar) cos 0

c, = |I|Brl efx/(IA cos B)H(Ix)

(e—x/(IA cos ) __ e—n(/(lcos e))H(]x),

(AS)

with P(8) from equation (30). The quantities py, py31(X),
and py3,(x) in the bed evolution equation (31) for sus-
pended load transport are given by

1+ B, cos’ 0

po=— (A6)

psa1(X)
B Bs[<|1 Baefx/(IA cos MH(IX)) _ Ar<|I Bxe*m/(lcose)H(Ix)”
B A(1 —Ar) cos 0 ’
(AT)

1+ B, cos’0
e — Bs—1,—x/(I4 cos 6)

Pesa(X) = gz g e H(Ix)).  (A8)

APPENDIX B: DERIVATION OF THE TWO-
DIMENSIONAL IMPULSE RESPONSE

[61] Green’s function in two dimensions, expressed in
terms of the growth rates obtained in section 3.5, reads
as follows:

w2 (o
G(x,y, T) — J J em(k,ﬁ)'reik(xcoseer sin O)k dk d@ + c.c.

—7/2

—

(B1)

Green’s representation theorem in two dimensions is
given by [Gradshteyn and Ryzhik, 2000]

1
G(x) :24 f VG(®)log[x — gldg,  (B2)

with § = (§,0). In order to find the frictionally induced
stream function ¥, in equation (43) we follow Huthnance
[1982b], who employed the transformation m, = d¢/dy
and s, = 9G/dy. Next, G ensues from Green’s represen-
tation theorem (60), which, in turn, leads to an expres-
sion for s,

¢ = Ire ™H(Ix)3(y), (B3)
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G = {log (2 +?
—ﬂ{og(x Ty
J m H(Ig)e "log [(x — §)* +y’ldg},  (B4)
G —-Iy 1 » H(IE)e
by T ey Lu—ewdﬁ |
(BS)

The Coriolis-induced contribution can be found by using
the transformation m; = d¢/dx. Then, the derivation is
given by

¢ = —Ife "H(Ix)3(y), (BO)

d
n =50 = fe (D) ~ (016G, (BY)

Yy = % [log(x* + y?) — rJ’ H(Ig)e " log[ (x — £)°

—o

+y’ldg]. (BS)

The frictionally induced and Coriolis-induced ISE pat-
terns for steady flow and bed load transport are given by

(B~ DIx [ 22— 3y

Xbr = . (xz 4 y2)3
™ _ 2 3 2
+r f H(Ig)e ™ m dg;, (BY)
B Dy 1
Xof = T (xz + y2)2

3 —1Irg
— f HUIE)e (B10)

e r

respectively. We write the perturbed concentration as
the sum of two terms ¢; = cg + ¢y, for which we find

s ” d 1
co = % f e-ﬁ/“f“;; (x — & y)dé

—©

+ H(Ix)e ™3 (y) |, (B11)

e P
<CB>:2814 f e ¥ albyl(x_gvy)

=1
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- ‘2‘;1 (x + & y) dé + e M3(y) L. (B12)

I=—1

The derivation of ¢, requires an additional transforma-
tion ¢, = dQ/ax, leading to

Q = —Ale ™ H(Ix)3(y), (B13)

a0 _
Ca= = [H(Ix)e ™ — A8(x)]8(y), (B14)
(e =5 e HB(y) ~ AB(DG).  (BIS)
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Figure 13. Part of the North Sea bed (area of 10 km?) [after Knaapen et al., 2001a, Figure 4]. Here the
sandbank mode is hardly visible as the smaller-scale sand waves are quite dominant. Figure 13 shows a part
of the offshore seabed, large enough to show the topographic variations due to sandbanks and sand waves. The
latter mode is not included in two-dimensionally horizontal (2DH) models. The topography on the scales
relevant for 2DH models itself is hardly visible, which is not so surprising as nearly one wavelength fits in this
figure. Next, the 2DH modeling approach as discussed in this paper predicts a regular pattern of similarly
shaped banks (see, e.g., Figure 12). These points illustrate the question in comparing large-scale topographic
data with 2DH morphodynamic models: When may we be confident that the data are in agreement with the
2DH morphodynamic model or vice versa? Natural large-scale features as sandbanks always show large
irregularities, which may have a stochastic nature or may be due to large-scale nonlinear dynamics. Another
problem in performing such comparisons is that the current data sets are not large enough (space), long
enough (time), and accurately spaced enough to allow direct comparisons and perform statistics.
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Figure 14. The Fourier transform of the region shown in Figure 13. Herein sandbanks are visible as a
relative concentration of energy in the small wave numbers, nearly parallel the principal direction of tidal
motion. Besides comparing data with models in the physical domain, one may shift to Fourier space. Figure
14 shows the Fourier transform of Figure 13. Now we observe quite clearly a concentration of energy in the
smaller wave numbers, corresponding to the length scale relevant for 2DH models. In this approach the main
idea is to find the (mean and deviation) wave number and orientation, which can be converted directly for
comparison to the wave vector predicted by the 2DH model; see for example, Figure 6. Besides this the
procedure can also be used to filter the smaller-scale features. A more sophisticated way to perform this is

using wavelets.
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