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Abstract

We propose an adaptive multi-resolution formulation of se-

mantic 3D reconstruction. Given a set of images of a scene,

semantic 3D reconstruction aims to densely reconstruct

both the 3D shape of the scene and a segmentation into

semantic object classes. Jointly reasoning about shape and

class allows one to take into account class-specific shape

priors (e.g., building walls should be smooth and vertical,

and vice versa smooth, vertical surfaces are likely to be

building walls), leading to improved reconstruction results.

So far, semantic 3D reconstruction methods have been

limited to small scenes and low resolution, because of their

large memory footprint and computational cost. To scale

them up to large scenes, we propose a hierarchical scheme

which refines the reconstruction only in regions that are

likely to contain a surface, exploiting the fact that both high

spatial resolution and high numerical precision are only

required in those regions. Our scheme amounts to solving

a sequence of convex optimizations while progressively

removing constraints, in such a way that the energy, in

each iteration, is the tightest possible approximation of the

underlying energy at full resolution. In our experiments the

method saves up to 98% memory and 95% computation

time, without any loss of accuracy.

1. Introduction

Geometric 3D reconstruction and semantic interpretation

of the observed scene are two central themes of computer

vision. It is rather obvious that the two problems are not

independent: geometric shape is a powerful cue for seman-

tic interpretation and vice versa. As an example, consider

a simple concrete building wall: the observation that it is

vertical rather than horizontal distinguishes it from a road

of similar appearance; on the other hand the fact that it is a

wall and not a tree crown tells us that it should be flat and

vertical. More generally speaking, jointly addressing 3D re-
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Figure 1: Semantic 3D model of the city of Enschede gener-

ated with the proposed adaptive multi-resolution approach.

construction and semantic understanding can be expected to

deliver at the same time better 3D geometry, via category-

specific priors for surface shape, orientation and layout; and

better segmentation into semantic object classes, aided by

the underlying 3D shape and layout. Jointly inferring 3D

geometry and semantics is a hard problem, and has only

recently been tackled in a principled manner [17, 25, 36].

These works have shown promising results, but have high

demands on computational resources, which limits their ap-

plication to small volumes and/or a small number of images

with limited resolution.

We propose a method for joint 3D reconstruction and se-

mantic labeling, which scales to much larger regions and

image sets. Our target application is the generation of inter-

preted 3D city models from terrestrial and aerial images, i.e.

we are faced with scenes that contain hundreds of buildings.

Such models are needed for a wide range of tasks in plan-

ning, construction, navigation, etc. However, to this day

they are generated interactively, which is slow and costly.

The core idea of our method is to reconstruct the scene

with variable volumetric resolution. We exploit the fact that

the observed surface constitutes only a 2D manifold in 3D

space. Large regions of most scenes need not be modeled at
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high resolution – mostly this concerns free space, but also

parts that are under the ground, inside buildings, etc. Fine

discretization and, likewise, high numerical precision are

only required at voxels1 close to the surface.

Our work builds on the convex energy formulation of

[17]. That method has the favorable property that its com-

plexity scales only with the number of voxels, but not with

the number of observed pixels/rays. Starting from a coarse

voxel grid, we solve a sequence of problems in which the

solution is gradually refined only near the (predicted) sur-

faces. The adaptive refinement saves memory, which makes

it possible to reconstruct much larger scenes at a given tar-

get resolution. At the same time it also runs much faster.

On the one hand the energy function has a lower number

of variables; on the other hand low frequencies of the solu-

tion are found at coarse discretization levels, and iterations

at finer levels can focus on local refinements.

The contribution of this paper is an adaptive multi-

resolution framework for semantic 3D reconstruction,

which progressively refines a volumetric reconstruction

only where necessary, via a sequence of convex optimiza-

tion problems. To our knowledge it is the first formula-

tion that supports multi-resolution optimization and adap-

tive refinement of the volumetric scene representation. As

expected, such an adaptive approach exhibits significantly

better asymptotic behavior: as the resolution increases, our

method exhibits a quadratic (rather than cubic) increase in

the number of voxels. In our experiments we observe gains

up to a factor of 22 in speed and reduced memory consump-

tion by a factor of 40. Both the geometric reconstruction

and the semantic labeling are as accurate as with a fixed

voxel discretization at the highest target resolution.

Our hierarchical model is a direct extension of the fixed-

grid convex labeling method [17] and emerges naturally as

the optimal adaptive extension of that scheme, i.e., under in-

tuitive assumptions it delivers the tightest possible approx-

imation of the energy at full grid resolution. Both mod-

els solve the same energy minimization, except that ours is

subject to additional equality constraints on the primal vari-

ables, imposed by the spatial discretization.

2. Related Work

Large-scale 3D city reconstruction is an important appli-

cation of computer vision, e.g. [15, 29, 26]. Research aim-

ing at purely geometric surface reconstruction rarely uses

volumetric representations, though, because of the high de-

mands w.r.t. memory and computational resources. In this

context [30] already used a preceding semantic labeling to

improve geometry reconstruction, but not vice versa.

Initial attempts to jointly perform geometric and seman-

tic reconstruction started with depth maps [28], but later re-

1Throughout the paper, the term voxel means a cube in any tesselation

of 3-space. Different voxels do not necessarily have the same size.

search, which aimed for truly 3-dimensional reconstruction

from multiple views, switched to a volumetric representa-

tion [17, 2, 25, 36, 39], or in rare cases to meshes [9]. The

common theme of these works is to allow interaction be-

tween 3D depth estimates and appearance-based labeling

information, via class specific shape priors. Loosely speak-

ing, the idea is to obtain at the same time a reconstruction

with locally varying, class-specific regularization; and a se-

mantic segmentation in 3D, which is then trivially consis-

tent across all images. The model of [17] employs a dis-

crete, tight, convex relaxation of the standard multi-label

Markov random field problem [42] in 3D, at the cost of high

memory consumption and computation time. Here, we use

a similar energy and optimization scheme, but significantly

reduce the run-time and memory consumption, while retain-

ing the advantages of a joint model. [25] also jointly solve

for class label and occupancy state, but model the data term

with heuristically shortened ray potentials [32, 36]. Yet, the

representation inherits the asymptotic dependency on the

number of pixels in the input images. [25] also resort to an

octree data structure to save memory, which is fixed in the

beginning according to the ray potentials, contrary to our

work, where it is adaptively refined. This is perhaps also

the work that comes closest to ours in terms of large-scale

urban modeling, but (like other semantic reconstruction re-

search) it uses only street-level imagery, and thus only needs

to cover the vicinity of the road network, whereas we recon-

struct the complete scene.

Since the seminal work [13] volumetric reconstruction

has evolved remarkably. Most methods compute a distance

field or indicator function in the volumetric domain, ei-

ther from images or by directly merging several 2.5D range

scans. Once that representation has been established, the

surface can be extracted as its zero level set, e.g. [33, 22].

Many volumetric techniques work with a regular parti-

tioning of the volume of interest [43, 41, 32, 12, 23, 24, 36].

The data term per voxel is usually some sort of signed dis-

tance generated from stereo maps, e.g. [43, 41]. Beyond

stereo depth, [12] propose to also exploit silhouette con-

straints as additional cue about occupied and empty space.

Going one step further, [32, 36] model, for each pixel

in each image, the visibility along the full ray. Such a ge-

ometrically faithful model of visibility, however, leads to

higher-order potentials per pixel, comprising all voxels in-

tersected by the corresponding ray. Consequently the mem-

ory consumption is no longer proportional to the number of

voxels, but depends on the number of ray-voxel intersec-

tions, which can be problematic for larger image sets and/or

high-resolution images. In contrast, the memory footprint

of our method (and of others that include visibility locally

[43, 17]) is linear in the number of voxels, and thus can be

reduced efficiently by adaptive discretization.

[27] deviate from a regular partitioning of the volume,
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and instead start from a Delaunay tetrahedralization of a

3D point cloud (from multi-view stereo). The tetrahedrons

are then labeled empty or occupied, and the final surface is

composed of triangles that are shared by tetrahedrons with

different labels. The idea was extended by [20], who focus

on visibility to also recover weakly supported objects.

In fact even the well-known PMVS multi-view stereo

method [14] originally includes volumetric surface recon-

struction from the estimated 3D points and normals. To that

end, the Poisson reconstruction method [21] was adopted,

which aligns the surface with a guidance vector field (given

by the estimated normals). The octree representation of

[21], was later combined [5] with a cascadic multigrid

solver, e.g. [8, 16], leading to a significant speed-up. The

framework is eminently suitable for large scale processing,

but the least-squares nature inherited from the original Pois-

son formulation makes it susceptible to outliers. In contrast,

our formulation can use robust error functions to handle

noisy input. The price to pay is a more involved optimiza-

tion problem instead of a simple linear system. We further-

more exploit that high precision is only needed at voxels

close to the surface; representing large regions, that have a

constant semantic label, with many voxels appears wasteful.

A similar idea was utilized by [1] in the context of stitch-

ing images in the gradient domain. Contrary to prior work

[21, 5, 10], our octree structure is not predetermined by the

input data, but refined adaptively, such that we can exploit

the per-class probabilities rather than only a minimal energy

solution. Compared to refining all voxels with data, we can

avoid many unnecessary splits that would otherwise be in-

voked by noise in the depth maps.

One can interpret our method as a combination of multi-

grid (coarse-to-fine) reconstruction on a volumetric pyra-

mid [43, 41], and adaptive hierarchical refinement, e.g. [19].

We also refine selectively, and initialize the solver from pre-

vious results for faster convergence.

3. Method

To address 3D semantic segmentation and geometry re-

construction in a joint fashion, we follow the approach of

[17]. The model employs an implicit volumetric represen-

tation, allowing for arbitrary but closed and oriented topol-

ogy of the resulting surface. One limitation of that model is

its huge memory consumption, which we address with our

spatially adaptive scheme, without loss in quality.

3.1. Discrete Formulation

In [17] a bounding box of the region of interest is sub-

divided into regular and equally sized voxels s ∈ Ω. The

model then determines the likelihood that an individual

voxel is in a certain state. The scene is described by a set of

indicator functions xis ∈ [0, 1], which are constant per voxel

element s. As indicated by the respective function (xi = 1),

Figure 2: Contribution to the data term of the ray r through

pixel p observing class i and depth d, c.f . Eqs. (3a,3b).

the voxels can take on a state (i.e. a class) i out of a prede-

fined set C = {0 . . .M − 1}. For our urban scenario we

consider a voxel to either be freespace (i = 0), or occupied

with building wall, roof, vegetation or ground. Additionally

we collect objects that are not explicitly modeled in an extra

clutter state. A solution to the labeling problem is found by

minimizing the energy:

E(x) =
∑

s∈Ω

∑

i

ρisx
i
s +

∑

i,j;i<j

φij(xijs − xjis ), (1)

subject to the following marginalization, normalization and

non-negativity constraints:

xis =
∑

j

x
ij
s,k, x

i
s =

∑

j

x
ji
s−ek,k

, k ∈ {1, 2, 3} and

∑

i

xis = 1, xij ≥ 0.
(2)

Here, ek ∈ R
3 denotes the kth canonical unit vector. The

convex and 1-homogeneous functions φij locally penalize

the transition from label i to label j. Intuitively, the vari-

ables xij can be interpreted as encoding the probability

mass transferred from class i to class j as one moves from

voxel s to its neighbor in direction k. Here, φij acts as a

class-specific geometric prior, which, given the local sur-

face orientation xijs − xjis ∈ [−1, 1]3, can also take the di-

rection of the boundary surface into account.

The data cost ρis combines evidence from depthmaps and

semantic segmentation masks, and encodes the likelihood

of label i at a certain voxel s.

The energy defined by Eqs. (1, 2) is a generalization of

the standard primal LP-relaxation of the Markov Random

Field energy. As noted in [42], the formulation in discrete

space relaxes the need for a (w.r.t. the label space) metric

regularizer φ, which is mandatory for the continuous case

(e.g. [35, 38]).

3.2. Data Term

To define the data cost for a voxel at a certain grid res-

olution we again follow [17]. Consider a pixel p in one

of the images, and let d denote the pixel’s observed depth.

The possible semantic classes are indexed with i. Now, let

r(p, d̂) be a function that maps a depth value d̂ to a 3D point

on the ray through p. Then the contribution of p to the en-

ergy at voxel s is:
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ρis := σi if r(p, d+ δ) ∈ s ∧ i 6= 0 , and (3a)

ρis :=











β if ∃ d̂ : r(p, d̂) ∈ s ∧ 0<d− d̂<δ ∧ i 6= 0

−β if ∃ d̂ : r(p, d̂) ∈ s ∧ 0<d̂− d<δ ∧ i 6= 0

0 otherwise. (3b)

The situation is depicted in Fig. 2. σi denotes the negative

log-likelihoods of observing class i in the pixel. The σi are

obtained from a MultiBoost classifier. Details can be found

in the supplementary material.

Eq. (3b) is independent of the class label i and only con-

siders voxels close to the surface, as predicted by the depth

map. The data term in Eqs. (3a,3b) is given in form of a

truncated L1 norm, which penalizes the deviation of the re-

construction from the observed depth along a pixel’s view-

ing ray. The parameters δ and β encode the truncation point

and slope (weight) of the corresponding penalty. In other

words, the underlying model assumes the inlier noise of the

depthmaps to be exponentially distributed, c.f . [17]. Be-

cause we seek to minimize the energy (Eq. 1), the data cost

prefers freespace for voxels in front of the observed depth.

Assuming independence of the per-pixel observations, the

final data costs per voxel can be accumulated over all rays.

Discussion. Accounting for visibility only locally near

the observed depth is clearly an approximation, but it has

the advantage that everything is encapsulated in the unary

potentials. Modeling visibility along the full length of the

rays leads to higher-order potentials which, for each pixel in

each image, relate the depth observation to the occupancy of

all voxels passed by the ray (either independently per view

[25] or including multi-view constraints [32]). For a volume

of |Ω| voxels, the less complicated first case already leads

to O( 3

√

|Ω|) voxels per clique. In large-scale applications

like ours, with hundreds of images of several Megapixels

each, such a model faces serious memory issues.2 In con-

trast, breaking the higher-order cliques down to local unary

potentials eliminates the dependency on the number and the

resolution of the input images, such that the memory con-

sumption scales only with the number of voxels. Hence, the

reduced number of voxels in our hierarchical model trans-

lates directly to a smaller memory footprint.

3.3. ClassSpecific Geometric Priors

The functions φij penalize class transitions in the vol-

ume, and are modeled as negative log-probabilities of the

following form:

φij(y) = ψij(y) + ||y||2T
ij . (4)

The isotropic part T ij contains the neighborhood statistics
of the classes. The anisotropic part ψij models the like-

lihood of a transition between classes i and j in a certain

direction. Our task-specific choices are detailed in Sec. 5.

2Note that [25] propose heuristic ways to limit the influence region of

a ray. That alternative could be analyzed in future work.

Note that φij in Eq. (4) is 1-homogeneous, such that the

area of the bounding surface element is implicitly consid-

ered in the finite difference scheme. The parametric form

of ψ, or rather of its dual ψ∗(p)= ιWψ
, is chosen to be the

indicator function of a convex set Wψ , the so-called Wulff

shape. This choice leads to ψ(y)=supn∈Wψ
nTy.

4. Hierarchical Algorithm

The described volumetric model for joint 3D reconstruc-

tion and semantic segmentation is rich, but memory-hungry

and computationally expensive. To make it more scalable,

we embed it in an octree and develop an optimal spatially

adaptive refinement scheme. We start at a resolution level

l = L0 with a coarse 3D grid, minimize the energy, and

then refine the discretization only close to the surface. We

assert that the preliminary result at coarse discretization can

not only serve as an initialization for the finer discretization,

but also provides a good guess where one can expect sur-

face transitions, and in this way guide the adaptive refine-

ment. Data and regularization terms are updated for refined

voxels, and the new energy is minimized, until the smallest

voxels in the octree have the target resolution LN . We point

out the difference to standard surface refinement: in our vol-

umetric multi-class scheme the connectivity can change at

finer resolution levels, for instance a narrow street might

open between two formerly connected buildings.

Loosely speaking, one can interpret our framework as a

multi-grid method [8], where the solution at a coarse dis-

cretization of the domain is used as improved initial guess

for the fine-grid relaxation. The multi-grid approach is a

good match for our problem. Low frequency components

of the solution are already found at coarse resolution. This

greatly accelerates the computation, because at full resolu-

tion they span many voxels, thus gradient-based optimiza-

tion would take many iterations to converge, e.g. [8, 16].

We first describe our data structure and then derive the

hierarchical energy and optimization procedure.

4.1. OctreeStructure

In the octree we distinguish inner and leaf nodes. The

former hold the parent-child relations of the tree, whereas

the latter store the variables needed to minimize the energy.

Inner nodes are designed to consume as little memory as

possible. They each contain a 32-bit index for the eight

children, of which 1 bit is used to indicate whether the child

is a leaf or inner node; and one 32-bit index to the parent, of

which 5 bits are used to store the depth (octree level). Al-

though more sophisticated implementations exist, e.g. [31],

this simple structure proved sufficient for our application. A

leaf voxel, on the other hand, has to store a number of floats,

which is quadratic in the number |C| of classes. In our case

(|C| = 6) we need 181 floats. Hence, our octree consumes

approximately 99% of the memory in its leafs, which shows
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that the overhead introduced by the adaptive data structure

is negligible.

4.2. Discrete Energy in the Octree

Other than in the regular voxel grid ΩLN :=Ω, voxels of

different sizes coexist in the refined volume Ωl at resolution

level l ∈ {L0, . . . , LN}. Our derivation of the correspond-

ing generalized energy starts from three desired properties:

(i) Elements form a hierarchy defined by an octree. (ii) Each

voxel, independent of its resolution, holds the same set of

variables. (iii) The energy can only decrease if the dis-

cretization is refined from Ωl to Ωl+1:

El(x
∗
l ) ≥ El+1(Al,l+1x

∗
l ) ≥ El+1(x

∗
l+1). (5)

Here, we have defined the linear operator Al,l+1 to lift the
vectorized set of primal variables xl :=

(

x(s)
)

s∈Ωl
,

x(s) :=((xi(s))i=0...M−1, (x
ij
k (s))i,j=0...M−1, k=1,2,3)

T,

(6)

to the refined discretization at level l+ 1. While the second

inequality in (5) follows immediately from the optimality of

x
∗, the first one defines the relationship between solutions at

coarser and finer levels. In case of equality, we can observe

that minimizing our energy w.r.t. the reduced variable set

at coarser level corresponds to minimizing the energy of its

lifted version in the refined discretization.

In the light of (i), any proper prolongation must fulfill:

Al+1,l+2Al,l+1 = Al,l+2. Then, with the choice El(xl) :=
E(Al,LNxl), equality in the first part of (iii) holds:

E(Al,LNxl) = El(xl) ≥ El+1(Al,l+1xl) =

E(Al+1,LNAl,l+1xl) = E(Al,LNxl)
(7)

Prolongation Operator. Because of the hierarchical struc-

ture it is sufficient to specify mappings only for a single

coarse parent voxel s and one of its descendants s̄. We fur-

ther assemble the operator from two parts, which individu-

ally lift indicator and transition variables:

A :=
[

(AI)T; (AIJ)T
]T

. (8)

We start with the former:

AI
l,L(s, s̄) :=

[

AIl,L|0
]

, AIl,L∈R
M×M ,0∈R

M×3M2

,

AIl,L(i, j) = 1 iff i = j and 0 else.
(9)

The operator is already specified for general L ≥ l. Then,

the data energy of a labeling x
i
s for a coarse voxel s at level

l becomes:
∑

s̄∈ΩLN∩s, i ρ
i
s̄A

I
l,LN

(s, s̄)xis =
∑

i ρ
i
sx
i
s. In

accordance with (1), we abbreviated the data term for the

coarse voxel with ρs, summing over all its descendants.

To define the prolongation of the transition variables

xij(s), we first analyze the splitting of a single voxel. The

situation is illustrated in Fig. 3, for simplicity restricted to a

(a) (b) (c)

Figure 3: Adaptive regularizer (2D case).

2 label, 2D case. After splitting the coarse voxel (Fig. 3a),

its refined version has to fulfill the constraints from (2). All

inner constraints (Fig. 3b, blue lines) can be fulfilled by set-

ting xiik = xi and x
ij
k = 0 else, which also avoids a penalty

from the regularizer. Voxel with non-zero transitions are

only found at the boundary (Fig. 3b, pink lines). Depending

on the location at the border of the coarse voxel, different

components of the argument of the regularizer φ can be set

to 0 (Fig. 3b). Further, after additional splits (Fig. 3c), the

same functional forms occur with different frequency. This

motivates the choice of a level-dependent regularizer. For

a voxel at level l we use the weighted sum of functions that

occur at its border after maximal refinement. Let ∂eks be

the boundary of s in direction ek. We can now define our

lifting of the transition variables from a parent voxel s ∈ Ωl

to s̄ ∈ ΩL ∩ s:

AIJ
l,L(s, s̄) :=

[

BIl,L|B
IJ
l,L

]

, BIl,L∈R
3M2×M, BIJl,L∈R

3M2×3M2

BIl,L((i, i, k), (i)) = 1 iff ∂ek s̄ 6⊂ ∂eks and 0 else

BIJl,L((i, j, k), (i, j, k)) = 1 iff ∂ek s̄ ⊂ ∂eks and 0 else.

(10)

Feasibility is preserved by construction and both conditions

for (7) are fulfilled (proof in the supplementary material).

Adaptive regularization. Our regularizer, Φijl (x
ij
s − xjis ),

depends on the resolution of a voxel and is of the form:

Φl(z) := φ(z)+
3

∑

k=1

wleφ(z−z
Tekek)+w

l
fφ(z

Tekek). (11)

At faces we measure φ(zTekek), at edges φ(z−zTekek) for
some direction ek, k = 1, 2, 3 and in the corner we get φ(z).
The weights reflect the occurrence of grid-level voxels at the

boundary of the enclosing parent voxel (c.f . Fig. 3c):

wle := 2LN−l − 1 and wlf := (wle)
2. (12)

All our (an-)isotropic regularizers are of the form φ(z) :=
supn∈W nTz, since T ij ||n||2 = supn:||n||2≤T ij n

Tz. Equa-

tion (11) is then equivalent to:

Φl(z) := sup
n∈W l

nTz,with

W l := W ⊕
3

∑

k=1

wlePHk(W )⊕ wlfPLk(W ) ,
(13)
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where W l is the Minkowski sum of the respective sets
and P denotes a projection onto the plane Hk := {x ∈
R

3|xTek = 0}, respectively the line Lk := {sek|s ∈ R}.

Numerical scheme. Equipped with prolongation operator,

scale-dependent regularizer Φijl and data term, our energy

for an arbitrary hierarchical discretization Ωl of 3-space be-

comes:

El(xl) =
∑

s∈Ωl

∑

i

ρisx
i
s +

∑

i,j;i<j

Φijl (x
ij
s − xjis ). (14)

Introducing the set N−ek(s) to collect the neighborhood of

s in direction −ek, we can denote a new set of constraints:

xis =
∑

j

x
ij
s,k, x

i
s =

∑

j

x
ji
s̄,k, ∀s̄ ∈ N−ek(s),

k ∈ {1, 2, 3} and
∑

i

xis = 1, xij ≥ 0. (15)

The energy (14) is convex. To solve it, we introduce La-

grange multipliers for the constraints (15), convert the prob-

lem to primal-dual form, and apply the method of [11]. The

prolongation operator defines a weighting of the different

constraints. This is helpful for pre-conditioning [34], which

is essential because of the large size differences between

voxels in our hierarchical framework.

Our numerical scheme requires us to project onto shapes

that are Minkowski sums of convex sets. For that several

alternatives exist. In case the Wulff shapes are given explic-

itly in the form of a triangular mesh, one can pre-compute

(13) for each level in polynomial time in an offline step [3].

In our case the sets are simple, in the sense that the pro-

jection onto each Wulff shape can be performed in closed

form. Thus, we utilize Eq. 11. If memory consumption

is not an issue, a simple way is to maintain separate dual

variables for the individual sets. In contrast, a Dykstra-like

projection scheme [6] avoids storing additional variables al-

together, at the cost of a small increase in computation time.

In the supplementary we give an outline of the numerical

scheme, including a derivation of this projection.

Optimality. The adaptive energy El as introduced above

can be expressed equivalently by augmenting the basic non-

adaptive energy (1, 2) with the following constraints:

∀i, ∀s ∈ Ωl : {xis̄ = xis|∀s̄ ∈ Ω ∩ s} and

∀i, j, ∀s∈Ωl :{xijs̄,k = x
ij
s,k|∀s̄ ∈ Ω ∩ s ∧ ∂ek s̄ ⊂∂eks}.

(16)

I.e., one can interpret our hierarchical refinement scheme

as solving the same problem, subject to additional equal-

ity constraints imposed by the variable discretization of the

volume. This equivalence proves the optimality of the pro-

posed scheme under the assumptions (i), (ii) and (iii).

We point out that the first set of constraints in (16) is not

sufficient to derive the multi-resolution scheme (counterex-

ample in the supplementary material). Without additional

equality constraints on the xij , the optimality condition (iii)

would require the introduction of additional variables for

each Wulff shape in (13). We abandon that idea at this point,

but if memory consumption is not an issue, a tighter bound

on the energy can perhaps be achieved.

Splitting criteria. Ideally our algorithm would in every

step refine exactly all those voxels which intersect with the

true surface. This is a chicken-and-egg problem, so we have

to rely on the preliminary solution at the coarser level to

predict these voxels. In practice we simply identify neigh-

boring voxel pairs that are assigned to different classes:

∃k, s̄∈Nek(s) : argmax
i

xis 6= argmax
i

xis̄ (17)

and divide both voxels s and s̄. Moreover, we also require

the resolution of adjacent voxels to differ by at most one

level, and split voxels accordingly. After refinement, we

use the lifting scheme (8) to initialize the newly introduced

(primal and dual) variables at the finer resolution.

5. Evaluation

We test our algorithm on a real world data set from the

city of Enschede [37]. All experiments are run on a machine

with 64 GB of RAM and a hexa Intel Core i7 CPU.

Data Set and Input Data. We follow a current trend in

image-based mapping and exploit oblique aerial imagery

in addition to classical nadir photographs. This mitigates

visibility problems such as foreshortening or occlusion. In

total, the data set comprises of 510 images acquired in the

Maltese cross configuration (for each position a nadir image

and four oblique views to the north, south, east and west).

Our method requires two types of input data: oriented

images in order to generate depthmaps, and training data

for statistical learning. The images were oriented with Vi-

sualSFM [40], and depthmaps were generated with semi-

global matching [18, 7]. For semantic labeling we train a

MultiBoost classifier [4] on a few hand-labeled images. De-

tails about the employed image features can be found in the

supplementary material. With the classifier we then predict

per-pixel log-likelihoods for all possible classes. Fig. 4 il-

lustrates our input data at a glance.

Label-Specific Geometric Priors. We employ two forms

of Wulff shapes (Sec. 3.3). The first supports flat, horizon-

tal structures in the 3D model and applies to the follow-

ing label transitions: ground–freespace, ground–building,

ground–vegetation, building–roof, roof–freespace. The

second one prefers vertical boundaries at the transitions

building–freespace and building–vegetation. Parameters for

the Wulff shapes are either learned from existing city mod-

els or set empirically, see [17] for details.

Comparison to Fixed Voxel-Grid. We go on to compare

our hierarchical model with a fixed voxel grid of the same
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Figure 4: Input data for our method: oriented images

(top), cutouts from 1 nadir and 2 oblique views (middle),

depthmap and class probability map (bottom).

Data set Error measure Octree Grid MB

Scene 1
Overall acc. [%] 92.8 92.3 89.1

Average acc. [%] 92.2 91.7 87.0

Scene 2
Overall acc. [%] 83.9 83.4 82.5

Average acc. [%] 80.6 79.9 81.4

Table 1: Quantitative verification of our results with the grid

model and the MultiBoost input data from [4].

target resolution. The fixed grid requires 600 iterations to

converge. In our multi-resolution procedure, we run 200

iterations at every level, then refine all voxels that fulfill the

splitting criterion, and run the next 200 iterations. When

the first voxels have reached the target resolution LN we

run 100 iterations, conditionally split voxels that are not yet

at minimal size, and finally run another 100 iterations.

One problem we face is the lack of 3D ground truth. To

quantitatively check the correctness of the results, we use

the following procedure: we select two representative im-

ages from our data set and manually label them to obtain a

semantic ground truth. For the corresponding scene parts,

we then run semantic 3D reconstruction, back-project the

result to the images, and compare them to the ground-truth

labeling in terms of overall accuracy and average accuracy.

Tab. 1 summarizes the outcomes of the comparison. The

differences between adaptive and non-adaptive reconstruc-

tion are vanishingly small (< 0.7 percent points) and mostly

due to aliasing. The comparison for one of the two scenes is

illustrated in Fig. 5. The classification maps from the octree

and the full grid are almost indistinguishable, which under-

lines that the two methods give virtually the same results.

We conclude that our refinement scheme is valid and does

not lead to any loss in accuracy compared to the full voxel

grid. Labels back-projected from the semantic 3D recon-

struction are less noisy than the raw classifier output. How-

ever, the reconstruction (both adaptive and non-adaptive)

introduces a systematic error at sharp 3D boundaries, best

Figure 5: Comparison of the labeling accuracy. Colors indi-

cate ground (gray), building (red), roof (yellow), vegetation

(green) and clutter (blue).

Figure 6: Left: Two images from the Enschede dataset.

Middle left: Semantic 3D models (Scene 3 & 4). Mid-

dle right: Back-projected models overlayed on the images.

Right: Pure volumetric 3D models [41]. Note errors such as

deformed and fragmented buildings or flattened vegetation.

visible along transitions between building walls and roofs.

This bias originates from our data term, which forces the

voxels behind the observed depth (in ray direction) to be

occupied. This fattening effect was also observed in [36],

and it was shown that complete ray potentials can remedy

the problem, at the cost of much higher memory consump-

tion. In spite of the fattening, the back-projected 3D models

are still (slightly) more correct than the MultiBoost results.

The gains are larger in the opposite direction, i.e. the se-

mantic information significantly improves the 3D surface

shape. Fig. 6 illustrates exemplary cases where our class-

specific priors lead to superior 3D models compared to a

generic regularization of the surface area [41]. Unfortu-

nately that effect is hard to quantify.

Performance Analysis. We go on to measure how much

memory and computation time we save by adaptively refin-

ing the reconstruction only where needed. As a baseline, we

run the non-adaptive method at full target resolution. Even

at 0.4m voxel size the storage requirements of the baseline

limit the comparison to four smaller subsets of our dataset.

For a fair comparison, we cut the bounding box for the

non-adaptive method such that it tightly encloses the data

(whereas our octree implementation always covers a cubic

volume). Since the city of Enschede is flat, this favors the

non-adaptive method. In rough terrain or non-topographic

applications the gains will be even higher.
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Runtime@0.4m [sec] Memory@0.4m [GB] Memory@0.2m [GB]

Scene 1 2 3 4 1 2 3 4 3 4

Octree 19883 19672 5488 4984 2.7 2.6 0.7 0.7 3.3 2.7

Grid 430545 416771 91982 92893 54.3 54.3 13.6 13.6 108.5 108.5

Octree (naive) 43174 43845 10603 11343 6.5 6.8 1.7 1.9 — —

Ratio (Grid) 21.7 21.2 16.8 18.6 20.1 20.9 19.4 19.4 32.9 40.2

Ratio (Octree naive) 2.2 2.2 1.9 2.3 2.4 2.6 2.4 2.7 — —

Table 2: Comparison of run-time and memory footprint of our method (Octree), [17] (Grid), and a naive Octree. Maximum

gains for processing time and memory consumption per refinement level are shown in bold. The target Grids feature a

resolution of 512 x 512 x 256 (Scene 1 and 2) and 256 x 256 x 256 (Scene 3 and 4) at 0.4m.

Figure 7: Evolution of the multi-scale semantic 3D model over five refinement steps. Top: Reconstructions at the correspond-

ing refinement levels. Both shape and semantic labels gradually emerge in a coarse-to-fine manner. Bottom: Vertical slice

through the scene, with color-coded voxel size (respectively, depth in the octree).

The hierarchical scheme starts with voxels of size

13.5m, and does 5 refinements to reach a target resolu-

tion of 0.4m. The results are summarized in Tab. 2. In all

scenes, the adaptive computation saves around 95% of both

memory and computation time. To quantify the effect of

the proposed splitting criterion (Sec. 4) we further contrast

it with a simpler adaptive procedure which naively splits

any voxel with non-zero data cost (Tab. 2). Our method,

which takes into account the class likelihoods, uses around

2.5× less memory and is more than 2× faster. For the two

smaller scenes 3 and 4 we refine one level further to a target

resolution of 0.2m. At that resolution the baseline would

require>108GB of memory, 33−40× more than our adap-

tive scheme. We only had 64GB of RAM available, so we

could not compare computation time. Across our experi-

ments, we observe an empirical gain of 1.9N over N refine-

ments, for both processing time and memory consumption.

Fig. 7 illustrates the evolution of our adaptive scheme

over 5 refinement steps. The top row shows the interme-

diate reconstruction, gradually improving in terms of ac-

curacy and detail. The bottom row shows a vertical slice

through the volume, with voxels color-coded according

to their size, respectively refinement level. Colors range

from blue (coarse, 13.5m3 voxels) to yellow (fine, 0.2m3

voxels). One can clearly see the splitting near surfaces

(class boundaries), while voxels in homogeneous areas like

freespace or the inside of buildings remain big.

Large-Scale City Reconstruction. Finally, we proceed

to our target application of large-scale city reconstruction.

We process the whole data set of 510 images and recon-

struct an extensive semantic model of the city of Enschede

(3km2) with a target resolution of 0.8m, respectively 1
2048

of the bounding volume, see Fig. 1. Our adaptive scheme

requires a moderate 27.9GB of memory, and completed the

reconstruction in 40 hours on one PC. The same resolution

(2048×2048×128) would require 434GB of memory with-

out a multi-resolution scheme.

6. Conclusion

We have proposed an adaptive multi-resolution process-

ing scheme for (joint) semantic 3D reconstruction. The

method makes it possible to process much larger scenes

than was previously possible with volumetric reconstruc-

tion schemes, without any loss in quality of the results.

In future work, we plan to extend the scheme to irreg-

ular discretizations, such as the recently popular Delaunay

tetrahedralizations, so as to adapt even better to the data at

hand. Moreover, our basic idea is generic and not limited to

semantic 3D reconstruction. We would like to explore other

applications where it may be useful to embed the convex

relaxation scheme in an adaptive multi-resolution grid.
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