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ABSTRACT

Over the recent years, there has been an increasing interest

in large-scale classification of remote sensing images. In this

context, the Inria Aerial Image Labeling Benchmark has been

released online in December 2016. In this paper, we discuss

the outcomes of the first year of the benchmark contest, which

consisted in dense labeling of aerial images into building /

not building classes, covering areas of five cities not present

in the training set. We present four methods with the highest

numerical accuracies, all four being convolutional neural net-

work approaches. It is remarkable that three of these methods

use the U-net architecture, which has thus proven to become

a new standard in image dense labeling.

Index Terms— Classification benchmark, aerial images,

deep learning, convolutional neural networks, U-net.

1. INTRODUCTION

The problem of large-scale semantic labeling is of paramount

importance in remote sensing. It consists in the assignment

of a thematic label to every image pixel. A large variety

of classification methods have been proposed, ranging from

the classification of individual pixels to the incorporation of

multi-scale spectral-spatial features, in particular automati-

cally learned with convolutional neural networks [1, 2].

One of the current challenges consists in designing meth-

ods that generalize to different areas of the earth and can take

into account the important intra-class variability encountered

over large geographic extents. To evaluate the generalization

capabilities of classification techniques, the Inria Aerial Im-

age Labeling (IAIL) Benchmark has been proposed and re-

leased online at mid December 2016 [3]. The benchmark im-

ages cover varied urban landscapes over two different con-

tinents, ranging from dense metropolitan districts (e.g., San

Francisco’s financial district) to alpine resorts (e.g,. Lienz in

Austrian Tyrol). The reference data comprises building and

not building classes. Contrary to all previous datasets, the

training and test sets have been split by city, i.e. the classifier

performance is evaluated on the set of cities not present in the

training set. The test set reference data has not been publicly

Train Tiles* Total area

Austin, TX 36 81 km2

Chicago, IL 36 81 km2

Kitsap County, WA 36 81 km2

Vienna, Austria 36 81 km2

West Tyrol, Austria 36 81 km2

Total 180 405 km2

Test Tiles* Total area

Bellingham, WA 36 81 km2

San Francisco, CA 36 81 km2

Bloomington, IN 36 81 km2

Innsbruck, Austria 36 81 km2

East Tyrol, Austria 36 81 km2

Total 180 405 km2

Table 1: IAIL dataset statistics. *Tile size: 50002 px. (0.3 m/pixel).

released, and a contest has been launched online to classify

data from five test cities.

In this paper, we discuss the outcomes of the first year of

the Inria benchmark contest. We first briefly recall the compo-

sition of the dataset and give its use statistics. We then present

four winning methods with the highest numerical accuracies,

all four being convolutional neural network approaches. Fi-

nally, we conclude about the state-of-the-art in large-scale se-

mantic labeling.

2. INRIA DATASET AND STATISTICS

The IAIL benchmark dataset1 is composed of 360 color (3-

band RGB) orthorectified images, with the spatial resolution

of 30 cm/pixel, with the total coverage of 810 km2 (every

image size is 50002 pixels). The images have been acquired

during several flight campaigns over different urban areas of

the Unites States and Austria. The reference data was cre-

ated by rasterizing shapefiles of public domain official build-

ing footprints, and is composed of two classes: building and

not building. An example of a close-up from the IAIL dataset

with the corresponding reference data is shown in Fig. 2.

Table 1 summarizes the regions included in the dataset

and their distribution into training and test sets. The amount

of training and test data is the same. The split was done in

such a way that both sets contain landscapes from the United

States and Europe, as well as both high-density (e.g., Vi-

enna/Innsbruck) and low-density (e.g., Kitsap/Bloomington)

settlements. Only training reference data has been publicly

released. More information about the IAIL dataset can be

found in [3].

1project.inria.fr/aerialimagelabeling



During the first year after the IAIL benchmark release,

the dataset has been downloaded more than 800 times, by re-

searchers from all continents, with the approximately equal

distribution from public and private institutions. The 16 sub-

missions with the classification results on the test set have

been received and automatically evaluated, using two perfor-

mance measures:

• Intersection over union (IoU) of the building class, i.e.,

the number of pixels labeled as building in both the prediction

and the reference, divided by the number of pixels labeled as

pixel in the prediction or the reference.

• Accuracy, i.e., the percentage of correctly classified pix-

els.

These measures are computed for each of the regions

individually (e.g., Innsbruck, San Francisco) and also for

the overall test set. The following section presents four ap-

proaches which achieve the highest performance in terms of

these criteria.

3. METHODOLOGIES

3.1. U-net with novel training/test strategy (Applied Ma-

chine Learning Lab AMLL at Duke University)

We used the original U-net architecture from [4], with a single

major modification; we used half as many filters at each layer

(see Fig. 1). Therefore, for example, we used 32 filters instead

of 64 in the first-level convolutional layers, 64 filters instead

of 128 filters in the second-level layers, etc. When training

the U-net, we used the standard input and output patch sizes

of 572×572 and 388×388, respectively. However, as we will

explain, it was beneficial to modify these sizes during label

inference.

The design of the IAIL dataset, in which no training data

is available for all five testing cities, makes overfitting much

more likely compared to other benchmark problems in remote

sensing segmentation. We do not yet have experimental ev-

idence, we hypothesize that the reduced number of filters in

our U-net model (i.e., reduced learning capacity) reduced our

risk of overfitting to the training data, even after optimizing it

for good performance on our validation data.

3.1.1. Network training

Pre-processing was comprised of padding all of the image

tiles symmetrically with 92 pixels on each side, and then com-

puting a global mean (i.e., a single RGB value) which was

subtracted from each pixel in the imagery dataset.

We created two datasets with the available labeled image

tiles from each city: a training dataset comprised of tiles 6

through 36 from each city, and a validation dataset comprised

of the remaining tiles. Within the training tiles, we extracted

572×572 patches on a uniform grid, with 92 pixels of overlap

between neighboring patches. We pooled together the patches

extracted from each training tile to create a training dataset

Fig. 1: U-net architecture designed by AMML.

of patches. We found that extracting training patches on a

uniform grid, with relatively little overlap between patches,

yielded networks with much better performance than, for ex-

ample, sampling patches from random locations. We provide

comprehensive experimental support for this training strategy

in [5].

During network training we used a standard stochastic

gradient descent with a cross-entropy objective function. We

used the Adam optimizer with an initial learning rate of 1e−3,

and a momentum of 0.9. We trained our network for 100

epochs, where each epoch consisted of 8000 mini-batches,

and the learning rate was reduced to 1e− 4 after 60 epochs.

Minibatches consisted of 5 training patches, which were

drawn randomly from our patch training dataset. Online aug-

mentation was applied randomly to the input patches, includ-

ing vertical/horizontal flips and 0/90/180/270 degrees rota-

tions.

3.1.2. Label inference

We observed that the U-Net model produces relatively poor

predictions at the edge of its output. In order to mitigate

this problem, we increased the input size of the U-Net to

2636×2636 during label inference, which was the maximum

size that could be supported by our 1080 Ti GPU. When com-

pared to using the original input patch size, we found that

this approach improved our performance, while also reducing

our overall inference time. We provide comprehensive exper-

imental support for this inference strategy in [6].

3.2. Dual-resolution U-net (NUS)

We proposed a dual-resolution U-net [4] architecture, along

with soft Jaccard loss. To fit large images to GPU memory,

we have to cut them into patches. However, these patches will

bring artifacts along boundary region during testing. To solve

this issue, we use a pair of dual-resolution images as input.



In detail, we crop one high-resolution 384 × 384 patch

from the original image. Then we crop a 768 × 768 patch

with the same center and downsample it to a twice lower res-

olution (384 × 384) image. Features from both high and low

resolution patches are extracted by U-Net, then score maps for

each resolution are computed. A weight map is further learnt

to merge score maps from different resolutions. This weight

map determines, for each pixel, how much the network relies

on different resolution inputs. To summarize, the final result

is a weighted sum of dual-resolution score maps.

By using the proposed dual-resolution architecture, one

can better train and predict large or along-patch-boundary

buildings, and prevent from artifacts when merging patches.

Besides that, the employed loss function is a combina-

tion of sigmoid cross-entropy (sigmCE) and a soft Jaccard

loss introduced in [7]. Jaccard, or IoU, index is commonly

used as an evaluation metric for segmentation tasks, and in-

tuitively, it would be useful to compute a loss with Jaccard

index. To make it differentiable, we use prediction scores and

corresponding ground truth to compute a soft Jaccard index

(lsoft−IOU ), as defined in [7], and use it as part of the loss

function. Our loss function is computed as:

LNUS = LsigmCE − log lsoft−IOU . (1)

During training, we extracted 384×384 patches from images

and use vertical/horizontal flips for data augmentation. We

used the Adam optimization algorithm, with a base learning

rate of 1e − 3, a momentum of 0.9 and “poly” learning rate

policy. We firstly finetuned channel numbers of the original

U-net to better fit our dataset (channels of the modified U-

net are: 32, 64, 128, 128, 256, 128, 128, 64, 32). Then, we

integrated all the modules of the proposed architecture and

trained our network from scratch for 30 epochs.

3.3. Signed distance transform regression (ONERA)

In this method, we use a standard fully convolutional network:

SegNet [8], which we adapt to include spatial context in the

optimization process. Indeed, the standard semantic segmen-

tation loss function is the averaged classification error - the

cross-entropy, which is computed on all pixels regardless of

their location. To constrain the network to learn for each pixel

the spatial dependencies from its neighbours, we add a reg-

ularization loss computed on the Euclidean signed distance

transform (SDT) [9].

For each ground truth mask, we compute its Euclidean

SDT. Therefore, we obtain a continuous representation of the

ground truth, that assigns to each pixel its distance to the

nearest building border. We also slightly alter the network

so that it has two outputs: the standard classification and a

regression of the SDT. This can be seen either as a multi-

task framework or an additional regularization term in the

form of an L1 penalty on the inferred distances. Assuming

that Zseg, Zdist, Yseg, Ydist respectively denote the output of

the segmentation softmax, the regressed distance, the ground

truth segmentation labels and the ground truth distances, the

final loss to be minimized is:

LONERA = NLLLoss(Zseg, Yseg) + λL1(Zdist, Ydist),
(2)

where NLLLoss is a negative log-likelihood loss function,

and λ is an hyper-parameter that controls the strength of the

regularization.

This significantly improves the network predictions. In-

deed, the inferred maps present now a better connectivity and

generally smoother borders. This stems from the regulariza-

tion using the SDT regression, that constrains the network to

learn the class of each pixel, but also how far it is located

from the building edge. It therefore reduces the influence of

ambiguous spectrometry and reinforces the impact of the spa-

tial context.

Our SegNet is trained on 384×384 patches with stochastic

gradient descent, using pre-trained VGG-16 weights for the

encoder and random He initialization [10] for the decoder.

3.4. Stacked U-Nets (Raisa Energy)

We started by dividing the original tiles into smaller patches,

which are fed as training data to our model. Our model is

based on the U-Net architecture [4]. The U-Net architecture

consists of a contracting path followed by an expanding path.

This setup empowers the model with accurate localization ca-

pabilities so it can be utilized for precise segmentation tasks.

Instead of using a single U-Net, our model uses a stack of

two U-Nets arranged end-to-end. The second network works

as post-processor for the previous one to enhance its predic-

tions.

Since IoU and accuracy are the performance evaluation

metrics, we used a loss function that combines both binary

cross entropy and a differential form of Intersection-over-

Union (IoU) [7] to focus on our objective. In addtion, data

augmentation in the form of basic rotations and reflections is

used at both training and inference times, as it led to a more

robust model with better results on the validation set.

The output of our model is a 2D dense activation map

representing scores for individual pixels whether it contains

a building or not. These activation maps are concatenated

together to reconstruct the whole tile. We used reflections at

the the tile edges to obtain better prediction at the most outer

patches. These reflections remove the discontinuity effect of

the edges.

4. EXPERIMENTS

Both numerical and visual classification comparisons for

all IAIL benchmark submissions can be found on https:

//project.inria.fr/aerialimagelabeling/

leaderboard/. Table 2 summarizes the numerical results

for the four approaches described in the previous section,

and compares them with the results published in the original

benchmark paper [3]. Fig. 2 shows a sample of classification

https://project.inria.fr/aerialimagelabeling/leaderboard/
https://project.inria.fr/aerialimagelabeling/leaderboard/
https://project.inria.fr/aerialimagelabeling/leaderboard/


Table 2: Numerical evaluation on test set.

Method Bellingham Bloomington Innsbruck San Francisco East Tyrol Overall

IoU Acc. IoU Acc. IoU Acc. IoU Acc. IoU Acc. IoU Acc.

AMLL 67.14 96.64 65.43 96.73 72.27 96.66 75.72 91.80 74.67 97.70 72.55 95.91

NUS 70.74 97.00 66.06 96.74 73.17 96.75 73.57 91.19 76.06 97.81 72.45 95.90

ONERA 68.92 96.94 68.12 97.00 71.87 96.72 71.17 89.74 74.75 97.78 71.02 95.63

Raisa 68.73 96.79 60.83 96.23 70.07 96.31 70.64 89.52 74.76 97.64 69.57 95.30

Inria [3] 56.11 95.37 50.40 95.27 61.03 95.37 61.38 87.00 62.51 96.61 59.31 93.93

RGB image Ground truth

AMLL NUS

ONERA Raisa energy

Fig. 2: Sample of classification results.

maps. The methods proposed by the AMLL lab and the NUS,

both based on the U-net architecture, yielded the highest

and comparable accuracies. The AMLL method performed

particularly well on the dense urban areas, while the NUS ar-

chitecture yielded the best performance on the less populated

areas.

5. CONCLUDING REMARKS

From the outcomes of the first year of the IAIL benchmark

contest, we can conclude on the following:

• The U-net architecture has shown the highest perfor-

mance and has thus proven to be well suited for image dense

labeling.

• A loss function must be carefully designed. It has been

proven that combining both the averaged classification error

and either a differential form of IoU, or an SDT-based regu-

larization loss improves segmentation performance.

• A good choice of training/inference strategies boosts

classification results, yielding the winning performances.
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