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Abstract: Real-time large-scale point cloud segmentation is an important but challenging task for
practical applications such as remote sensing and robotics. Existing real-time methods have achieved
acceptable performance by aggregating local information. However, most of them only exploit local
spatial geometric or semantic information dependently, few considering the complementarity of both.
In this paper, we propose a model named Spatial–Semantic Incorporation Network (SSI-Net) for
real-time large-scale point cloud segmentation. A Spatial-Semantic Cross-correction (SSC) module is
introduced in SSI-Net as a basic unit. High-quality contextual features can be learned through SSC by
correcting and updating high-level semantic information using spatial geometric cues and vice versa.
Adopting the plug-and-play SSC module, we design SSI-Net as an encoder–decoder architecture. To
ensure efficiency, it also adopts a random sample-based hierarchical network structure. Extensive
experiments on several prevalent indoor and outdoor datasets for point cloud semantic segmentation
demonstrate that the proposed approach can achieve state-of-the-art performance.

Keywords: point cloud; large-scale semantic segmentation; spatial geometric; semantic context;
cross-correction

1. Introduction

Recently, high-quality 3D scanners and depth sensors are available to many agents
such as self-driving cars and robots, making it possible to utilize the point cloud data
collected from these sensors to assist many downstream tasks. Among these downstream
tasks, point cloud segmentation that predicts a classification score for each point has
attracted significant research interests, mainly because the segmentation result plays a basic
and critical role in providing self-driving cars or robots with scene-level understandings
such as urban remote sensing information from a LiDAR point cloud.

In recent years, researchers [1–8] have shown great success in terms of semantic seg-
mentation using deep learning models. Early works [3–7] focus on researching how to
segment small-scale point clouds such as object surfaces sampled from CAD models. Al-
though having achieved promising results, they are not suitable for large-scale point clouds
collected from in-the-wild scene by advanced sensors due to both poor effectiveness and
poor efficiency. Loic Landrieu et al. [9] presenting a efficient structure called Superpoint
graph (SPG) is a pioneering work that tailored large-scale point cloud segmentation. How-
ever, it would cause huge computational cost, making it impossible to achieve real-time
performance. Therefore, RandLANet [10] is proposed. This method suggests randomly
downsampling the point cloud at each layer to ensure the efficiency of the model, and the
segmentation accuracy is kept by leaning powerful contextual local features using some
delicately designed local feature aggregation modules. However, it neglects the comple-
mentarity between spatial information and semantic information, i.e, it only exploits local
spatial information or local semantic information dependently. Therefore, the model would
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always predict wrong segmentation results at some ambiguous regions or lose local details,
as shown in Figure 1.

Figure 1. Semantic predictions of LiDAR scans. From left to right are the results of SPG [9],
RandLA [10], SSI-Net, and ground truth.

To tackle the above-mentioned problems, this paper proposes a novel model Spatial–
Semantic Incorporation Network (SSI-Net) for real-time large-scale point cloud segmen-
tation. SSI-Net aims at a robust non-local features for point cloud semantic segmentation
via subtly relating spatial geometric and high-level semantic information. To better in-
corporate these two kinds of information, we inspect two questions: (1) how to augment
geometric patterns with the guidance of semantic information, and (2) how can spatial
geometric be used to aggregate most positive semantic information in turn. To this end, a
Spatial–Semantic Cross-correction (SSC) module is introduced in SSI-Net as a basic unit.
High-quality contextual features can be learned through SSC by correcting and updating
semantic features using spatial cues and vice verse. More specifically, to learn discrimina-
tive non-local features for semantic segmentation, both branches first perform the nearest
neighboring algorithm locally to find K candidate neighbors and form fundamental clusters
where each cluster is constructed with the K neighbors, center points and the differences
between the neighbors and the corresponding center point. Then, a constraint condition is
generated in one branch to append on the other to refine its representation so that the spatial
geometric and high-level semantics can be well acquired. Finally, the outputs of the two
branches are updated by a feature aggregation operation to obtain the cross-promoted fea-
tures. Adopting the plug-and-play SSC module, we design SSI-Net as an encoder–decoder
architecture. We also adopt the random sampling strategy to ensure run-time efficiency,
so that our model can achieve real-time performance. We conduct extensive experiments
on several public datasets, and experiments show our model can achieve state-of-the-art
performance in terms of both segmentation accuracy and running time efficiency. Our main
contributions are:

• We propose a novel model named SSI-Net that can be appropriate for both indoor and
outdoor point cloud semantic segmentation to implement real-time scene perception
guidance. SSI-Net highly aggregates high-level semantic information and spatial
geometric patterns to enhance the descriptor’s representation ability. Thus, robust
non-local features of indoor and outdoor scenes can be obtained to improve the
precision of semantic segmentation on point clouds.

• We propose the Spatial–Semantic Cross-correction (SSC) module, which can delicately
interconnect high-level semantic and spatial geometric features in the latent space
through two intersecting point cloud nearest neighbor clustering branches. Specifically,
the constraints of high-level semantic information reduce the error rate of geometric
expression, and conversely, spatial features can expand the scope of high-level seman-
tic information. As a consequence, the mutual promotion and fusion provide more
sufficient context information for point cloud semantic segmentation.

• Being computationally efficient, SSI-Net meets the needs of large-scale scenes. Results
on several indoor and outdoor public datasets for point cloud segmentation demon-
strate the state-of-the-art power of our proposed method in terms of Intersection-over-
Union and overall accuracy for large-scale processing.
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2. Related Work

This part makes a simple list of the point cloud analysis development mainly based
on deep learning methods. We emphasize some work that is related to large-scale point
cloud clouds.

2.1. Deep Learning on Point Cloud Segmentation

Deep learning has immensely promoted the progress of 2D and 3D computer vi-
sion. This segment presents a brief introduction of the four following main deep learning
approaches to point clouds.

Multiview-based methods: Deep learning methods first designed for image pro-
cessing cannot be directly applied to point clouds. As the early way, multiview-based
methods reduce the data dimension and represent 3D data by a set of rendered views on
2D images to allow the direct application of 2D CNNs. SnapNet [11] is one example that
uses a multiview-based method to deal with 3D semantic segmentation. Approaches in
this category can deal with unstructured problems related to point clouds; however, the
transformation process leads to geometrical information loss (i.e., 2D images cannot fully
express the 3D structures). When it comes to large-scale tasks, covering an entire scene
with a number of virtual viewpoints is not easy. As a result, multiview-based deep learning
architectures are seldom used for semantic segmentation.

Voxel-based methods: Voxel-based methods intend to address unordered and un-
structured problems simultaneously via transforming the point cloud into voxel grid and
applying 3D CNNs directly. One well-known voxel-based deep learning architecture
for semantic segmentation is SegCloud [12], which utilizes a preprocessing step to vox-
elize point clouds to adapt the 3D fully convolutional neural network. Other works such
as [13–15] also propose some typical networks for semantic segmentation. Unfortunately,
this kind of approach will introduce information loss, and the storage scheme lacks effi-
ciency in terms of computation and memory usage. PCSCNet [16] tries to fix this problem
and suggests a fast voxel-based semantic segmentation model using Point Convolution and
3D Sparse Convolution, which outperforms at both high and low resolution and accelerates
the feature propagation.

Pointwise MLP methods: As the first job to process point clouds without any formal
transformation, PointNet [17] takes advantage of some symmetric operations, i.e., max-
pooling and Multi-Layer Perceptrons (MLPs), to learn point features individually, which
guarantees the fundamental properties of point clouds. However, such a brilliant idea at
that time does not capture the contextual features from the local neighborhood. To further
improve their research, Qi et al. propose PointNet++ [18] to perform mini-pointnet in
groups. At the same period, methods [19–21] spring up to specify features of each point
based on a local neighboring connection for better representation. Inspired by the non-
local operation, PointASNL [22] proposes a local–non-local module to further capture the
neighbor and long-range dependencies of the sampled point. Ref. [23] selectively performs
the neighborhood feature aggregation with dynamic pooling and an attention mechanism.
Although a large amount of approaches have been proposed, the idea of PointNet [17]
remains the standard. Moreover, ref. [24] employs a two-layer MLP to realize a binary
segmentation module and reach comparable detection with the help of semantics.

Graph-based methods: The advances and difficulties of current research inspire the
combination of a graph concept and point cloud analysis. Approaches of this category
first build graphs G(V, E) and then conduct convolution on graphs that have been proven
to be suitable for non-Euclidean data. For example, to realize deep graph convolutional
networks (GCNs), Li et al. [7] utilize residual/dense connections and dilated convolutions,
which breaks the bottleneck that GCNs are limited to very shallow models due to the van-
ishing gradient problem. Ref. [25] improves point representations and local neighborhood
graph construction within the general framework of graph neural networks by a 9D local
geometric representation and a locality adaptive graph construction algorithm.
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2.2. Large-Scale Point Cloud Semantic Segmentation

A large proportion of the above approaches aims at partial segmentation or small
scene segmentation. In recent years, more and more scene perception tasks, for example
autonomous driving and remote sensing, require large-scale processing techniques. To meet
the demand, some approaches [9,10,26,27] have explored large-scale point cloud analysis.
SPG [9] uses a superpoint graph structure to tackle the challenge of semantic segmentation
of millions of points. In addition to this structured format of point clouds, voxel-based
representation has been applied to some networks [26,27] for large-scale semantic segmen-
tation. However, these representations require a huge amount of computation. The recent
RandLA-Net [10] built by point representation learning with MLPs reaches considerable
performances. However, it encodes local features simply with Euclidean distance-based
K nearest neighbors, neglecting the interaction between geometric and semantic context,
which may limit the capability in capturing more positive representation. MVP-Net [28]
proposes an end-to-end network to realize a novel neighbor searching for pointwise point
cloud semantic segmentation. With current development in sensors and tasks, there are
increasingly high-precision requirements for semantic prediction. Nevertheless, current
research is far from enough. To explore high-quality contextual features for semantic
segmentation and use these results to represent scenes more effectively, this work puts
effort into these problems and proposes a cross-promoted method.

3. Proposed Method

As an important data source, one of the overwhelming traits of a point cloud is its
adequate position information. Thus, the spatial geometric relationship has been targeted
as the major element to encode local features. Some work about 2D semantic segmentation
emphasizes the role of semantic context. Based on this observation, this article proposes
the Semantic–Spatial Cross-correction (SSC) module to improve the feature representation
not only with the spatial geometric but also the high-level semantic information.

3.1. Spatial-Semantic Cross-Correction Module

Figure 2 shows the structure of our SSC module which can be decomposed into
two parts: a semantic-aware spatial block to encode spatial geometric features and an
attention block to extract high-level semantic information. Each block first aggregates
nearest neighbors to acquire preliminary spatial geometric and semantics. The neighboring
information clustered based on single criterion can introduce outliers or redundancies to
some extent. Here, we associate the two branches together. The spatial geometric is rectified
with position offsets inferred from semantics and vice versa. With such an in-depth feature
learning style, the representation ability of the descriptor will be improved, and robust
non-local features can finally be extracted to realize high-precision semantic segmentation.

3.1.1. Semantic-Aware Spatial Block

Given a point cloud with n points, their coordinates and acquired features can be
denoted as P = {p1, . . . , pi, . . . , pn} ⊂ R3 and F = { f1, . . . , fi, . . . , fn} ⊂ RN , respectively.
As shown in Figure 2, we firstly perform k-nearest neighboring (kNN) to search K candidate
neighborhoods denoted as {p1

i , . . . , pk
i , . . . , pK

i } and { f 1
i , . . . , f k

i , . . . , f K
i }. Neighbors only

based on Euclidean distance may bring in noisy points, so we affiliate with semantic
information to revise the neighboring points. Then, the K neighbors and its center points
construct a cluster to describe the local geometry. The elements of the cluster consist
of four parts: point-wise distance-based neighbors pk

i , neighbors rectified with semantic
information hk

i , the relative coordinates rk
i and distances dk

i . The cluster characteristics
are fed into a shared MLP to generate feature map G = {g1, g2, . . . , gK} to represent the
geometric information.
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Figure 2. Structure of the proposed Spatial–Semantic Cross-correction module.

The graphical representation of our semantic-aware spatial block is shown in Figure 2
(blue part). Three-dimensional (3D) x-y-z coordinates are natural elements for point clouds.
This block encodes local spatial structures with a geometrical relationship from both
distance and semantic approximable neighbors. We have demonstrated its effect in ablation
study.

3.1.2. Attention Block

We have investigated two questions in Section 1, and this part is the solution to the
second one. Our modified attention block is designed to better refine semantic information
for local feature learning. The attention mechanism can help update point representation by
assigning weights to different neighbors. To capture local representation, feature difference
is taken as a constraint to select key information. However, only considering the feature
difference as the criterion will introduce redundancy, and the spatial geometric relationship
should play a role in correcting neighboring features.

Here, we combine this idea with point-wise based methods. Different from the
previous feature difference, this paper appends the distance factor by calculating a distance-
aware semantic deformation to refine the weight constraint:

∆ f k
i = M f {(pi − pk

i ), ‖ pi − pk
i ‖, (pi − hk

i ), ‖ pi − hk
i ‖}, (1)

where ∆ f k
i represents the semantic deformation, and M f is a shared MLP.

Then, the deformable neighboring feature can be denoted as νk
i = f k

i + ∆ f k
i , and the

attention weight of each neighboring point is computed as follows:

αk
i = Mα{Mg1( fi, f k

i ), Mg2( fi, νk
i )}, (2)

where Mgi (., .) are mapping functions to assess the effects of neighbors, and Mα is the
softmax function.

After the above operations, the feature of each neighboring point is recounted as follows:

f̃ k
i = αk

i · (Mg{ f k
i , νk

i }), (3)
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where Mg performs an MLP operation with a ReLU activation. The output of the semantic
context encoding is the new set of high-level neighboring features, which softly selects
the positive information by a set of adaptive attention weights controlled by the modified
feature difference.

The encoding procedures of spatial location and semantic context are not isolated
in this Spatial–Semantic Cross-correction module. In this way, geometric and semantic
information can be sufficiently exploited to acquire improved local feature representation.

3.2. Feature Aggregation

The SSC module explores correlation to represent scenes more effectively with aug-
mented spatial geometric patterns and high-level semantic information. Given the fea-
ture maps of geometric representation G = {g1, . . . , gk, . . . , gK} and semantic context
F̃i = { f̃ 1

i , f̃ 2
i , . . . , f̃ k

i , . . . , f̃ K
i } generated by the SSC module in Section 3.1, we use a feature

fusion strategy to aggregate them:

Φi = ψ( f̃ k
i , rk

i ), (4)

where ψ represents concatenate operation.
Once the aggregated features Φi = {ϕ1

i , . . . , ϕk
i , . . . , ϕK

i } are obtained, we firstly per-
form a vector max operator to collect the most prominent neighbors,

Φmax = MAX(Φi). (5)

Considering max-pooling operation tends to save features in a hard way, we insistently
borrow an attention mechanism to obtain useful features abandoned by max-pooling. The
attention weights can be calculated by a specific function =i(., .) where the learned attention
scores play the role of a soft mask to automatically focus on the important features, and
these neighboring features are summed in the following way:

Φatt =
K

∑
i=k
=i(ϕk

i , W) · ϕk
i , (6)

where =i(, ., ) consists of a shared MLP followed by softmax, and W is the learnable weights
of the shared MLP.

Then, the maximum and attentive features are combined,

Φcom = MLPs{Φmax, Φatt}, (7)

Finally inspired by the idea of ResNet [29], skip connection is added to implement the
cross-promotion features:

Φ̃i = η(Fi) + Φcom, (8)

where η is the function consisting of a shared MLP to improve Fi and guarantee the same
dimension with Φcom.

3.3. Our Network Architecture

This paper concentrates on improving the representation ability of the descriptor. We
adopt the described module to construct the SSI-Net, shown in Figure 3, which follows the
encoder–decoder structure to acquire multiple-scale features. The input of this network
is a large-scale point cloud with a dimension of N × din where N is the number of points,
and din is the feature dimension of each input point represented by its 3D coordinates
and color information. The input is first fed into a fully connected layer to extract per-
point features, and then, several encoding layers and decoding layers are used to learn
rich feature representation. Finally, three fully connected layers and a dropout layer are
appended to predict the semantic labels of the input.
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Figure 3. Structure of the proposed Spatial–Semantic Cross-correction module.

The structure settings refer to the work [10] as follows:
Encoding layer: Each encoding layer adopts a given sampling ratio ((4, 4, 4, 4, 2) for

S3DIS, and (4, 4, 4, 4) for SemanticKITTI) to gradually reduce the point size, and the output
dimensions of each layer are (16, 64, 128, 256, 512) and (16, 64, 128, 256) accordingly.

Decoding layer: The decoding layer used after the encoding layer is to restore the
size of the input point cloud via a hierarchical propagation. Each decoding layer uses skip
connection to help facilitate the feature extraction which concatenates the interpolated
features with the features from the set abstraction layer to reduce information loss.

Semantic prediction: Semantic segmentation generates one label for each point of the
input point cloud. After restoring to the original size, three fully connected layers followed
by one dropout layer with a drop ratio of 0.5 are joined to predict the final semantic labels.

4. Experiments

In this section, we demonstrate how our method can be trained to perform semantic
segmentation on point clouds and divide experimental descriptions into three parts. First,
some necessary settings about our experiments are provided for comparison with the
state-of-the-art. Second, detailed quantitative and qualitative results on different datasets
are shown to illustrate the performance. Finally, ablation studies are performed to explain
the selection of our network design.

4.1. Experimental Settings

Evaluation Metrics: The mean Intersection-over-Union (mIoU), the average value
of Intersection over Union (IoU) for each semantic class, the overall accuracy (OA), and
the average class accuracy (mAcc) are common standard scores to evaluate the semantic
segmentation performance.

Datasets: This work targets an accurate semantic segmentation on large-scale point
cloud scenes. To validate the proposed SSI-Net, we conduct experiments on some indoor
and outdoor datasets.

1. Evaluation on S3DIS: The Stanford Large-Scale 3D Indoor Spaces (S3DIS) dataset is
derived from real 3D scans and extensively used by lots of jobs. The S3DIS dataset includes
271 rooms from six areas containing 13 classes of objects typically encountered in an indoor
scene: ceiling, floor, wall, beam, column, window, door, table, chair, sofa, bookcase, board,
and clutter. Points in this dataset provide both 3D coordinates and color information. In
the experiment, the number of input points on this dataset is set as 4096 ∗ 10. To evaluate
the semantic segmentation results on S3DIS, we provide evaluation on Area 5 and 6-fold
cross-validation results to compare the performances with certain state-of-the-art networks.
The mACC, OA, and mIoU of the overall classes are compared in this paper.

2. Evaluation on SemanticKITTI: SemanticKITTI is a large-scale outdoor scene
dataset which is based on the KITTI odometry dataset showing inner city traffic and
residential areas but also highway scenes and countryside roads. There are 22 sequences
(00 ∼ 10 as the training set, and 11 ∼ 21 as the test set) which are annotated in 19 semantic
classes: road, sidewalk, parking, other-ground, building, car, truck, bicycle, motorcycle,
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other-vehicle, vegetation, trunk, terrain, person, bicyclist, motorcyclist, fence, pole, and
traffic-sign. The raw point cloud contains 3D coordinates information. The number of
input points is set as 4096 ∗ 11 in the experiment. For this dataset, the mIoU and IoU of
each class are taken as the evaluation metrics.

Training Settings: Our experiments have been performed with Python 3.6, Tensorflow
1.12 GPU version and trained for 100 epochs. During training, the batch size is set as 4, and
the Adam optimizer is used. The initial learning rate is 0.01 and decays with a rate of 0.5
after every 10 epochs.

4.2. Performance Comparison
4.2.1. Results of S3DIS

This part shows the results on the S3DIS compared with different methods under
the two evaluation modes mentioned in Section 4.1. Table 1 presents the results tested
on Area 5. Our SSI-Net achieves the best performance in terms of mACC (73.2%) and
mIoU (65.1%) compared to these methods that supply evaluation on Area 5. The mIoU
has improved by 3.7% relative to the latest BoundaryAwareGEM [30], and the mACC has
increased by 6.2% over PointWeb [20]. The OA value of SSI-Net is 0.1% lower than ELGS
[31] which builds a more complex structure with graph attention block, the spatial-wise and
channel-wise attention and is designed for small-scale point cloud processing. Moreover,
most of the compared methods in the table prefer the farthest point sampling (FPS) as it
leads to less information loss in comparison to random sampling. For better comparison,
Table 2 shows the IoU value of each class of S3DIS on Area 5 from which one can see that
our SSI-Net achieves the best performance on some complex structures such as a table, sofa,
and bookcase.

Table 1. Results (%) on S3DIS evaluated on Area 5.

Methods OA mACC mIoU

PointNet [17] - 49.0 41.1
SegCloud [12] - 57.4 48.9
PointCNN [32] 85.9 63.9 57.3

SPG [9] 86.4 66.5 58.0
PCCN [33] - 67.0 58.3

PointWeb [20] 86.9 66.6 60.3
ELGS [31] 88.4 - 60.1

MinkowskiNet20 [34] - 62.6 69.6
MinkowskiNet32 [34] - 65.4 71.7

BoundaryAwareGEM [30] - - 61.4
DPFA [23] 87.4 - 53.0

DPFA+BF Reg [23] 88.0 - 55.2
3D GrabCut [35] - - 57.7

Box2Seg (AST) [35] - - 60.4

SSI-Net 88.3 73.2 65.1

Table 3 gives the results on the 6-fold cross-validation compared with PointNet [17],
RSNet [36], 3P-RNN [37], PointCNN [32], ShellNet [38], PointWeb [20], KPConvrigid [39],
KPConvde f orm[39], PointASNL [22], and RandLA [10]. Approaches [10,17,20,22,38] are clas-
sified into point-based methods. Other researchers such as [32,39] utilize convolution-like
operation to improve feature representation. The mACC of SSI-Net rises to 82.3% and
surpasses the listed results in this test mode. However, the scores of OA and mIoU are
slightly inferior to PointASNL [22] and KPConvde f orm [39], respectively. Most of the meth-
ods return similarly high IoU values for simple classes. Significant differences distribute in
classes with complex structures such as table, chair and sofa.
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Table 2. IoU (%) of each class of S3DIS evaluated on Area 5.

Methods Ceil. Floor Wall Beam Col. Wind. Door Table Chair Sofa Book. Board Clut.

PointNet [17] 88.8 97.3 69.8 0.05 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2
SegCloud [12] 90.1 96.1 69.9 0.0 18.4 38.4 23.1 75.9 70.4 58.4 40.9 13.0 41.6
PointCNN [32] 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
SPG [9] 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
PCCN [32] 92.3 96.2 75.9 0.3 5.98 69.5 63.5 66.9 65.6 47.3 68.9 59.1 46.2
PointWeb [20] 92.0 98.5 79.4 0.0 21.1 59.9 34.8 76.3 88.3 46.9 69.3 64.9 52.5
3D GrabCut [35] 80.3 88.7 69.6 0.0 28.8 61.0 35.2 66.5 71.7 69.2 69.7 61.7 48.2
Box2Seg (AST) [35] 82.0 92.0 70.8 0.0 28.8 61.9 38.1 71.4 85.3 74.3 68.4 63.6 48.0
DPFA [23] 93.7 98.7 75.5 0.0 14.5 50.1 31.8 73.7 73.4 13.7 55.5 57.1 51.2
DPFA+BF Reg [23] 93.0 98.6 80.2 0.0 14.7 55.8 42.8 72.3 73.5 27.3 55.9 53.0 50.5

SSI-Net 93.1 97.7 81.7 0.0 24.5 61.9 54.2 79.4 87.7 67.0 70.4 72.0 56.0

Table 3. Results (%) on S3DIS dataset with 6-fold cross-validation.

Methods OA mACCmIoU Ceil. Floor Wall Beam Col. Wind. Door Table Chair Sofa Book. Board Clut.

PointNet [17] 78.6 66.2 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2
RSNet [36] - 66.5 56.5 92.5 92.8 78.6 32.8 34.4 51.6 68.1 59.7 60.1 16.4 50.2 44.9 52.0
3P-RNN [37] 86.9 - 56.3 92.9 93.8 73.1 42.5 25.9 47.6 59.2 60.4 66.7 24.8 57.0 36.7 51.6
PointCNN [32] 88.1 75.6 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6
ShellNet [38] 87.1 - 66.8 90.2 93.6 79.9 60.4 44.1 64.9 52.9 71.6 84.7 53.8 64.6 48.6 59.4
PointWeb [20] 87.3 76.2 66.7 93.5 94.2 80.8 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5
KPConvrigid [39] - 78.1 69.6 93.7 92.0 82.5 62.5 49.5 65.7 77.3 57.8 64.0 68.8 71.7 60.1 59.6
KPConvde f orm [39] - 79.1 70.6 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3
PointASNL [22] 88.8 79.0 68.7 95.3 97.9 81.9 47.0 48.0 67.3 70.5 71.3 77.8 50.7 60.4 63.0 62.8
RandLA [10] 88.0 82.0 70.0 93.1 96.1 80.6 62.4 48.0 64.4 69.4 69.4 76.4 60.0 64.2 65.9 60.1

SSI-Net 88.0 82.3 70.5 93.7 96.8 80.1 61.9 44.0 65.0 69.7 72.8 74.6 67.6 63.2 66.0 60.6

Detailed semantic segmentation results for each area on the S3DIS dataset with 6-fold
cross-validation are shown in Table 4 to better represent the performance of our approach.

Table 4. Detailed results (%) for each area on S3DIS dataset with 6-fold cross-validation.

Testing Area OA mACCmIoU Ceil. Floor Wall Beam Col. Wind. Door Table Chair Sofa Book. Board Clut.

Area1 89.2 75.7 87.6 96.3 95.1 77.1 54.3 51.9 80.1 83.4 73.3 81.4 76.5 62.8 70.4 67.7
Area2 84.2 55.4 70.8 89.0 95.5 76.8 21.4 26.6 52.2 64.6 49.8 60.3 56.0 50.0 28.3 49.8
Area3 91.1 79.2 89.4 95.7 98.2 81.4 70.2 33.3 82.1 88.5 74.7 84.8 85.0 74.5 88.6 73.0
Area4 85.1 62.1 76.6 94.1 97.0 77.8 39.9 48.8 31.8 60.5 68.6 77.7 65.5 46.1 39.7 60.0
Area5 88.3 65.1 73.2 93.1 97.7 81.7 0.0 24.5 61.9 54.2 79.4 87.7 67.0 70.4 72.0 56.0
Area6 91.9 80.0 92.2 96.7 97.5 84.4 82.0 72.0 80.9 86.4 75.9 84.2 62.1 72.4 75.1 70.8

4.2.2. Results of SemanticKITTI

SemanticKITTI is a challenging dataset. Table 5 reports the quantitative results of
SSI-Net on this dataset compared with some representative methods. The mIoU of our
method achieves the best value of 55.4%, which surpasses most point-based methods
[9,10,18,22,40,41] by a large margin. From Table 4, one can see that the projection-based
methods [42–45] are superior to the point-based methods on the whole. However, our
SSI-Net also outperforms these mentioned projection-based methods. For example, the
mIoU value increases by 1.1% compared to the best projection-based method [45]. It obtains
the maximum mIoU in 11 out of the 19 categories: particularly the values of the truck and
motorcycle, which are much higher than the second ones. We attribute this to the active
cross-correction of the spatial and semantic information developed by our SSC module.
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Table 5. Semantic segmentation results (%) on the SemanticKITTI dataset.
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PointNet [17] 14.6 61.6 35.7 15.8 1.4 41.4 46.3 0.1 1.3 0.3 0.8 31.0 4.6 17.6 0.2 0.2 0.0 12.9 2.4 3.7
SPG [9] 17.4 45.0 28.5 0.6 0.6 64.3 49.3 0.1 0.2 0.2 0.8 48.9 27.2 24.6 0.3 2.7 0.1 20.8 15.9 0.8
SPLATNet [40] 18.4 64.6 39.1 0.4 0.0 58.3 58.2 0.0 0.0 0.0 0.0 71.1 9.9 19.3 0.0 0.0 0.0 23.1 5.6 0.0
PointNet++ [18] 20.1 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9
TangentConv [41] 40.9 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5
SqueezeSeg [42] 29.5 85.4 54.3 26.9 4.5 57.4 68.8 3.3 16.0 4.1 3.6 60.0 24.3 53.7 12.9 13.1 0.9 29.9 17.5 24.5
SqueezeSegV2 [43] 39.7 88.6 67.6 45.8 17.7 73.7 81.8 13.4 18.5 17.9 14.0 71.8 35.8 60.2 20.1 25.1 3.9 41.1 20.2 36.3
DarkNet21Seg [44] 47.4 91.4 74.0 57.0 26.4 81.9 85.4 18.6 26.2 26.5 15.6 77.6 48.4 63.6 31.8 33.6 4.0 52.3 36.0 50.0
DarkNet53Seg [44] 49.9 91.8 74.6 64.8 27.9 84.1 86.4 25.5 24.5 32.7 22.6 78.3 50.1 64.0 36.2 33.6 4.7 55.0 38.9 52.2
RangeNet53++ [46] 52.2 91.8 75.2 65.0 27.8 87.4 91.4 25.7 25.7 34.4 23.0 80.5 55.1 64.6 38.3 38.8 4.8 58.6 47.9 55.9
SalsaNext [47] 54.5 90.9 74.0 58.1 27.8 87.9 90.9 21.7 36.4 29.5 19.9 81.8 61.7 66.3 52.0 52.7 16.0 58.2 51.7 58.0
LatticeNet [48] 52.2 88.8 73.8 64.6 25.6 86.9 88.6 43.4 12.0 20.8 24.8 76.4 57.9 54.7 34.2 39.9 60.9 55.2 41.5 42.7
PointASNL [22] 46.8 87.4 74.3 24.3 1.8 83.1 87.9 39.0 0.0 25.1 29.2 84.1 52.2 70.6 34.2 57.6 0.0 43.9 57.8 36.9
RandLA-Net [10] 53.9 90.7 73.7 60.3 20.4 86.9 94.2 40.1 26.0 25.8 38.9 81.4 61.3 66.8 49.2 48.2 7.2 56.3 49.2 47.7
PolarNet [45] 54.3 90.8 74.4 61.7 21.7 90.0 93.8 22.9 40.3 30.1 28.5 84.0 65.5 67.8 43.2 40.2 5.6 67.8 51.8 57.5
MVP-Net [28] 53.9 91.4 75.9 61.4 25.6 85.8 92.7 20.2 37.2 17.7 13.8 83.2 64.5 69.3 50.0 55.8 12.9 55.2 51.8 59.2
SSI-Net 55.4 92.2 12.9 36.9 72.0 27.8 55.0 66.4 0.0 92.9 42.2 79.6 0.8 89.5 54.2 86.8 66.0 76.1 58.6 41.9

Figures 4–6 present concerned illustrations of the SemanticKITTI dataset. Figure 4
shows some qualitative results on the validation set. SemanticKITTI provides an un-
precedented number of scans covering the full 360 degree field-of-view of the employed
automotive LiDAR, and we choose four scans from sequence 08 to reveal a contrast of
segmentation results. Pictures in the first row are the ground truths, and these in the
second row are the outputs of SSI-Net. Figure 5 shows the inference time on sequence 08 of
SemanticKITTI and the overall mIoU to demonstrate the efficiency of the proposed method.

Figure 4. Qualitative results of our SSI-Net on the validation set of SemanticKITTI. Red rectangles
represent the failure cases.
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Figure 5. Inference time comparison on sequence 08 of SemanticKITTI and mIoU of SemanticKITTI
of PointNet [17], PointNet++ [18], SPG [9], RandLA [10] and SSI-Net (ours).

Figure 6. Qualitative results of online test on sequence 11 ∼ 21.

Sequences 11∼21 are used as a test set showing a large variety of challenging traffic
situations and environment types. Figure 6 exhibits some qualitative results of online test
(sequences 11∼21) in 2D panorama views.

4.3. Ablation Studies

Effect of each unit: To demonstrate the effect of each component: semantic-aware
spatial location encoding, attentional semantic encoding, and feature aggregation block, we
perform the following ablation studies on Area 5 of the S3DIS dataset and SemanticKITTI
datset:

(1) Removing the semantic-aware information of spatial location encoding: this part aims
to encode more detailed local geometry with position and high-level information;

(2) Replacing the attentional semantic encoding by general MLP layers;
(3) Aggregating local features only by max operation.

Results of this part are shown in Table 6: (1) The encoder with our full units reaches
the best mIoU; (2) The greatest impact on mIoU is caused by the removing of an attentional
semantic block probably because attention mechanism and neighboring deformation can
help aggregate key semantic information discarded by random sampling.
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Table 6. Ablation studies on Area 5 of S3DIS and SemanticKITTI (%)

S3DIS SemanticKITTI

Methods OA mACC mIoU mIoU

Removing semantic-aware information 86.1 72.2 63.6 53.8
Removing attentional semantic block 85.2 71.8 61.9 51.7
Max operation 86.7 73.0 63.1 52.9
With full units 88.3 73.2 65.1 55.4

Selection of spatial encoding block: As described in Section 3.1.1, the semantic-
aware spatial block can be expressed as follows:

gk
i = Ms{pk

i , hk
i , (pi − pk

i ), ‖ pi − pk
i ‖, (pi − hk

i ), ‖ pi − hk
i ‖}. (9)

We perform other experiments for the selection of this module:

(1) Encoding the neighboring points pk
i and deformable neighboring points hk

i ;
(2) Encoding the relative position: pi − pk

i and pi − hk
i , and corresponding Euclidean

distance: ‖ pi − pk
i ‖ and ‖ pi − hk

i ‖;
(3) Encoding the point pi, the relative position: pi − pk

i and pi − hk
i , and Euclidean

distance: ‖ pi − pk
i ‖ and ‖ pi − hk

i ‖;
(4) Encoding the neighboring points: pk

i and hk
i , the relative position: pi − pk

i and pi − hk
i ,

and the Euclidean distance: ‖ pi − pk
i ‖ and ‖ pi − hk

i ‖.
Table 7 compares the mIoU values with different selections: (1) encoding the neighbor-

ing points, the relative position and the Euclidean distance outputs the highest mIoU; (2)
the neighboring points play an important role in our spatial location encoding block.

Table 7. Selection for spatial location encoding test on Area 5 of S3DIS and SemanticKITTI (%).

S3DIS SemanticKITTI

Methods mIoU mIoU

(1) {pk
i , hk

i } 63.5 52.0
(2) {(pi − pk

i ), ‖ pi − pk
i ‖, (pi − hk

i ), ‖ pi − hk
i ‖} 65.0 53.1

(3) {pi, (pi − pk
i ), ‖ pi − pk

i ‖, (pi − hk
i ), ‖ pi − hk

i ‖} 63.4 54.0
(4) {pk

i , hk
i , (pi − pk

i ), ‖ pi − pk
i ‖, (pi − hk

i ), ‖ pi − hk
i ‖} 65.1 55.4

FPS vs. RS: We compare the mIoU and IoU value of each class in this part, Table 8.
The mIoU value of RS is only lower than FPS by 0.1%; however, as we know, the FPS is
much less efficient than RS. Thus, we choose random sampling in our design.

Table 8. Effect of different sampling strategies (%).

Samplings mIoU Ceil. Floor Wall Beam Col. Wind. Door Table Chair Sofa Book. Board Clut.

Farthest Point Sampling (FPS) 65.2 93.9 97.5 82.0 0.0 30.2 62.2 48.9 80.4 87.4 62.5 72.4 72.5 57.4
Random Sampling (RS) 65.1 93.1 97.7 81.7 0.0 24.5 61.9 54.2 79.4 87.7 67.0 70.4 72.0 56.0

5. Conclusions

This paper pays attention to large-scale semantic segmentation on point clouds to
provide reliable information for indoor and outdoor semantic understanding such as
autonomous vehicles that need detailed objects mapping in urban roads. Specifically, our
proposed architecture SSI-Net is built on an SSC module that focuses on a more effective
feature description via a spatial and semantic cross-correction manner. By mutually revising
the neighboring information, robust representation can be obtained to support our work.
Experimental results on S3DIS and SemanticKITTI datasets achieve the state-of-the-art
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performance compared to relevant methods. However, this work also has its limitations.
We only consider simple characteristics of point clouds (i.e., distance and relative position),
which may face ambiguities of feature representation in more complex scenes. For instance,
this kind of geometric representation cannot well handle the situation where different
objects are cluttered closely in a table. In future work, we will focus on these problems
by improving boundary information or acquiring more semantic expression with cross-
modality segmentation et al., and we will further promote its combination with more 3D
tasks such as 3D reconstruction, real-time localization and point cloud pose estimation.
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