
Large scale Semi-Global Matching on the CPU 
!

Robert Spangenberg, Tobias Langner, Sven Adfeldt and Raúl Rojas 

!
!
!

Author created preliminary version 

!
!

N.B.: When citing this work, cite the original article. 

!
!
!
!
!
!
Original Publication: 

!
Spangenberg, R.; Langner, T.; Adfeldt, S. & Rojas, R. Large scale Semi-Global Matching on 
the CPU Intelligent Vehicles Symposium Proceedings, 2014 IEEE, 2014, 195-201!
!
The final publication is available at!
!
http://dx.doi.org/10.1109/IVS.2014.6856419!
!
Copyright: IEEE

http://dx.doi.org/10.1109/IVS.2014.6856419


Large Scale Semi-Global Matching on the CPU

Robert Spangenberg1, Tobias Langner1, Sven Adfeldt1 and Raúl Rojas1

Abstract— Semi-Global Matching (SGM) is widely used for
real-time stereo vision in the automotive context. Despite its
popularity, only implementations using reconfigurable hard-
ware (FPGA) or graphics hardware (GPU) achieve high enough
frame rates for intelligent vehicles. Existing real-time imple-
mentations for general purpose PCs use image and disparity
sub-sampling at the expense of matching quality. We study
methods to improve the efficiency of SGM on general purpose
PCs, through fine grained parallelization and usage of multiple
cores. The different approaches are evaluated on the KITTI
benchmark, which provides real imagery with LIDAR ground
truth. The system is able to compute disparity maps of VGA
image pairs with a disparity range of 128 values at more than
16 Hz. The approach is scalable to the number of available
cores and portable to embedded processors.

I. INTRODUCTION

Stereo vision systems provide 3D perception by calculat-

ing the disparities of two input images. Due to their low

cost, they can compete with active technologies as RADAR

or LIDAR and are widely used in robotics and automotive

systems. They are employed in commercial vehicles to

support functions such as object, or pedestrian detection and

automated collision avoidance. The classical benchmark to

compare stereo algorithms is the Middlebury Stereo Dataset

[1]. It provides indoor scenes in a controlled setting. The

KITTI Vision benchmark suite [2] provides real-world test

images from the automotive context. Semi-global matching

(SGM) [3] achieves good performance on both benchmarks

and has been selected due to its relative efficiency and

algorithmic simplicity.

The SGM method approximates a global two-dimensional

Markov Random Field (MRF) regularized cost function by

following one dimensional paths in several directions through

the image. It is sufficient to use 8 or 16 paths to cover the

structure of the image. Along each path, the minimum cost

is calculated by means of dynamic programming. The mini-

mized energy consists of the data-term for photo-consistency

and two smoothness terms for slanted surfaces and depth

discontinuities. For automotive applications, the data term is

often census-based.

FPGA and GPU implementations of SGM for real-time

performance exist. While GPUs with sufficient performance

consume much energy, FPGAs are hard to integrate in gen-

eral purpose PCs or laptops. Furthermore, the development

process for FPGAs is quite complicated and time consuming,

even for small changes. Therefore, the goal is to achieve

1all authors are with Institut für Informatik at Freie
Universität Berlin, Arnimallee 7, 14195 Berlin, Germany
robert.spangenberg@fu-berlin.de

frame-rates above 10 Hz for robotics and driver assistance

applications on a general purpose multi-core CPU platform.

Due to the high memory requirements (O (h · w · d)) of

SGM, Hirschmüller proposed to process large images in tiles

and interpolate the resulting cost cubes at the tile borders

[3]. Here h denotes the image height, w the image width

and d the number of disparities. In [4], the image is divided

into several horizontal stripes for multi-core processing. The

authors report a degradation of roughly 1% less correctly

matched pixels on the Middlebury Dataset. We apply this

idea, but spend an additional overlap-area for the stripes, in

order to reduce the performance degradation.

This paper is organized as follows. Related work is

presented in section II. We then shortly explain the SGM

algorithm and detail the optimization approaches (section

III). The conducted experiments and their results are shown

in section V, followed by the conclusions in section VI.

II. RELATED WORK

The FPGA implementation in [5] achieves 33 Hz for VGA

images at a disparity resolution of 64 pixels using low-cost to

mid-range hardware. Another approach processes 680×400

px images at 25 Hz with a disparity range of 128 and a

power consumption of 3W [6]. Due to memory bandwidth

restrictions, two SGM engines work on 340×200 px image

pairs with 64 disparities, whose results are combined.

GPU implementations reach 11.7 fps for VGA resolution

and 64 disparities on a GeForce GTX 480 with a CUDA

implementation [7]. An earlier implementation gets 13 fps

on QVGA images, and a 64 pixel disparity range with a

Cg implementation on a GeForce 8800 Ultra [8]. The power

consumption of these GPUs is clearly above 150 W.

The CPU implementation in [9] uses image and depth sub-

sampling to achieve a frame rate of 14 Hz for a resolution of

640×320 pixels. The depth sub-sampling guarantees a depth

uncertainty below 1 m. SIMD instructions (single instruction,

multiple data) are employed to compute 16 disparities in one

step during the path accumulation step. It uses OpenMP to

calculate each independent path in parallel. To calculate the

similarity criterion, a 5 × 5 Census transform is computed,

parallelized line-wise with OpenMP.

The Central-symmetric census transform is proposed as a

sparse census transform in [10] to allow bigger patch sizes

while preserving the computational speed of smaller patch

sizes. Another way to sparsify the Census transform was

proposed in [11], consisting of leaving out every second pixel

of a patch.



upper stripe with lower border

lower stripe with upper border

middle stripe with upper and lower border bo
rd

er
 w

id
th

...

Fig. 1: Image stripes overlap

III. SEMI-GLOBAL MATCHING

A. Algorithmic structure

The SGM algorithm can be structured as follows. At first

the similarity criterion is computed, which in our case is a

Hamming Distance of a 5×5 or 9×7 Census window (used

by [4] as well). Compared to the original mutual information

criterion in [3], Census has been found to perform better

in outdoor scenes [12] and with slight decalibrations [13].

Both conditions apply to our own scenarios. After that, path

accumulation is done over 8 paths. In our application, the

variant using 16 paths only leads to minor improvements,

which do not justify the greater computational work. The

path costs are summed up into one disparity cost cube. From

this cube, the disparities connected to the minimum costs

are obtained for both viewpoints. This is done by a simple

winner-takes-all (WTA) strategy. Both images are median

filtered and occluded regions are invalidated with the left-

right-consistency check. In conclusion, we get the following

computational parts:

• Census mask computation

• Data cost calculation

• Path accumulation

• WTA left and WTA right

• Sub-pixel interpolation

• Median filtering

• Left-right-consistency check.

B. Parallelization Concept

The first step of optimization is to employ SIMD instruc-

tions for the most expensive parts of the algorithm, i.e. the

first four parts. The question remains of how to parallelize on

thread-level. Except for path accumulation, image lines can

be processed in parallel with no additional synchronization

cost. Therefore a parallelization based on horizontal image

stripes seems favorable, assigning one strip to each thread.

Path accumulation suffers, as it cannot access the respective

stripes above or below the current one. Paths across stripes

are cut and information cannot be propagated over them.

We fix the performance degradation by adding an additional

upper and lower border to the processed image stripe during

the path accumulation (Fig. 1). As we will see in the results

section, a small additional border is sufficient.

x

y

pL0

L1 L2 L3

L4

L5L6L7

p

forward scan

backward scan

Fig. 2: Independent paths and scans - grey areas are calcu-

lated before the new pixel p.

Another option would be to calculate independent paths

in parallel during accumulation (similar to [9], see Fig. 2).

This involves an additional synchronization point at the

summation of the path costs. Our tests with OpenMP did

not produce any speedup compared to the scalar version.

We think that this parallelization was too fine grained for

OpenMP.

C. Disparity Space Compression

Ideally, the SGM algorithm should be executed over the

whole disparity range. Depending on the application, it might

be sufficient to sample greater disparities with a sparser grid.

As detailed in [9], we can reduce the number of computed

disparities, while guaranteeing a certain depth uncertainty.

We can sample every value at the disparity range 0 to 63,

and every second or fourth in the range of 64 to 127.

As all parts of the algorithm except the data cost calcu-

lation are agnostic to the actual costs minimized, we can

partially sub-sample the disparity space in the data cost

calculation. We compress all data costs into one continuous

disparity volume and then apply the rest of the algorithm on

this reduced volume (Fig. 3). The resulting disparity maps

are uncompressed by a simple remapping operation. This

maps all sub-sampled disparities to their true values. Since

the input images are not sub-sampled, the data cost have to be

tolerant to small offsets induced by sub-sampling. If a pattern

belongs to an image patch of disparity d1 and this disparity

is not hit by the sub-sampling, the data cost should give a

minimum at either the left or right side of d1. Furthermore,

we indirectly modify the SGM smoothness term, such that

pixels in the sub-sampled range are allowed to have larger

disparity changes.

The runtime of the core algorithm depends roughly lin-

early on the number of evaluated disparities and the addi-

tional mapping function is fast. Therefore, disparity subsam-

pling offers a great speed improvement, if the loss of dispar-

ity resolution is acceptable for the application. In contrast to

image sub-sampling methods, all image information is used

and the disparity image itself is not downsized.



x

y

d

0 1

d-1

0 1 f2 d-1s...

Fig. 3: Disparity space compression: The full cost cube has

one slice per disparity value. For the compression, one starts

to sub-sample at a disparity f with a step width s until the

last disparity d−1. Only the gray parts form the compressed

slice.

IV. IMPLEMENTATION

A. Data Cost Calculation

We use a 5×5 or 9×7 Census mask as input for the

Hamming cost calculation. The census images are calculated

with SIMD instructions. For 8 bit inputs we process 16 pixels

at once, as those fit completely into the 128 bit SSE registers.

For 12 bit images, we process 8 pixels at once. Thirty-two

bit integers suffice to store the result of the transformation

for the 5× 5 mask, 64 bit for the 9× 7 mask.

The cost computation step is performed h ·w ·d times per

frame, making it time-critical. Therefore, we parallelize the

calculation on image stripes. The Hamming distance between

two census integers is calculated through an XOR-operation

followed by a population count, the summation of set bits.

The critical part is the calculation of the population count.

Lookup-tables (LUTs) are the fastest option without any

special instruction set available, but they are not vectorizable

and cost a significant amount of memory bandwidth. If

hardware population counts are available as part of the

instruction set (e.g. POPCNT), they are faster than LUTs,

but work only on single values. Parallel logic can be used for

the computation as well [4]. The SSSE3 instruction PSHUFB

offers the possibility to implement a parallel 4 bit-LUT in

logic [14], which can be used in connection with horizontal

adds to get population counts of 32 or 64 bit values. This is

similar to the LUT version, but without memory bandwidth

usage. The main advantage to the hardware solution is that a

parallel calculation of population counts over the full SIMD

register width is possible. This fits better to the parallel load

and store operation of the SIMD instructions and is faster

than parallel logic.

B. Path Accumulation

Path accumulation is performed using the following equa-

tion:

Lr(p, d) =C(p, d) + min[Lr(p − r, d)

, Lr(p − r, d− 1) + P1, Lr(p − r, d+ 1) + P1

,min
i

Lr(p − r, i) + P2].

(1)

This equation for a path r must be evaluated 8 ·h ·w ·d times

per frame, when using 8 paths. As we limit the aggregated

costs to a 16 bit value, we can process 8 disparities in one

step. Since we can use hardware instructions for saturated

add, minimum and maximum, the speedup is higher than 8,

which could be expected from the data parallelization.

The information from all paths is summed for all pixels

and disparities giving the accumulated costs

S(p, d) =
∑

r

Lr(p, d). (2)

We combine the individual paths to the final aggregated

sum by using two scans (Fig. 2). The first scan goes from

the top left to the bottom right, and combines the first

4 paths, storing an intermediate result for each pixel and

disparity. The second runs back from the bottom right to the

top left adding the results of the remaining 4 paths to the

intermediate, giving the accumulated costs.

C. Winner Takes All

We use a classic search for the disparity of minimum cost.

The second minimum is calculated as well and is used to

invalidate the disparity, if the cost is not distinctive enough.

This has to be done for h·w pixels of the left and right image.

We use the SSE4 instruction PHMINPOSUW to calculate

the minimum and position of 8 cost values at once. For

the WTA of the right image, we use diagonal search in the

cost volume. For this part, the memory layout prevents direct

SIMD processing. We copy all costs of disparities belonging

to a pixel location to a temporary storage and then perform

minimum search as for the left image.

D. Remaining steps

We use the equiangular interpolation as suggested by [15]

to compute sub-pixel disparities, since we minimize linear

costs. After that, a 3×3 median filtering is done in parallel

using SIMD instructions and a sorting network using parallel

minimum and maximum instructions. The left-right check is

applied at last.

E. Disparity Space Compression

For each disparity space compression variant, a specific

function has to be designed to implement the sub-sampling.

The remapping function is realized without branches and

uses SIMD instructions.

V. EXPERIMENTAL RESULTS

A. Setup

We used an Intel Core i7 i7-4960HQ notebook processor

with four cores and 2.6 GHz base clock rate. We compiled

the program in 64 bit mode using MSVC 2010. Parameters

for the SGM method are P1 = 7, P2 = 100. Fig. 5 shows

a part of an own test sequence with 12 Bit intensity values

and PAL resolution.



(a) border 1 px

(b) border 32 px

(c) full SGM

Fig. 4: 4-striped SGM - pavement detail

B. Quality

The KITTI stereo data set [2] is used for quantitative eval-

uation, providing ground-truth obtained by a laser-scanner.

The scenes are rather complex, with large regions of poor

contrast, lighting differences among stereo pairs, motion blur

and a large disparity range. The data set is separated into

a training and testing data set of around 200 images each.

Ground truth is provided freely accessible for the training

data set only, results for the testing data set are obtained by

an on-line service.

At first we tested the quality degradation caused by the

separation into stripes. With only a small additional overlap,

the border regions between the stripes can be clearly seen

on the road, the sidewalk and in the trees (Fig. 5, upper

image, extract at Fig. 4). Especially textureless areas tend

to get filled with the disparity values of their surroundings,

where texture is present. When the stripes separate less

textured areas from textured ones, jumps in the disparities

become apparent. With increasing overlap area, the disparity

discontinuities disappear. However, in scenes with very large

untextured areas, they might persist, as information is lacking

from the adjacent stripe. In this case, the classical SGM

does provide a propagation of the full image neighborhood

dominated by the regularization penalties. Depending on the

structure of the scene and the regularization parameters, each

of them might be closer to the true values.

(a) border 1 px

(b) border 8 px

(c) border 16 px

(d) border 32 px

(e) full SGM

Fig. 5: 4-striped SGM - lines at the left/right show stripes.



SGM rSGM-16 rSGM-8 rSGM-4 rSGM-2 rSGM-1 rSGM-0
0

2

4

6

8

10

12

e
rr

o
r

p
ix

e
ls

in
%

in
n
o
n
-o

c
c
lu

d
e
d

a
re

a
s 8.91 9.04 9.15 9.27 9.34 9.36

10.01

5.89 6.01 6.10 6.18 6.23 6.25

6.85

2px

3px

Fig. 6: Border width and quality for 4-striped SGM on the

KITTI training data set

1 2 4 6 8 16 32
number of stripes

0

2

4

6

8

10

e
rr

o
r

p
ix

e
ls

in
%

in
n
o
n
-o

c
c
lu

d
e
d

a
re

a
s

8.91 8.99 9.15 9.28 9.32
9.49 9.64

5.89 5.97 6.10 6.20 6.23 6.37 6.48

2px

3px

Fig. 7: Border width and quality for striped SGM with a

border of 8 px on the KITTI training data set

At a width of 32 px the difference to the non-striped

version is barely noticeable. The quantitative results for the

KITTI training data set confirm this observation. Without an

additional border, the number of erroneous pixels increases

by more than 1% (Fig. 6) compared to the standard SGM

method. An additional border of 16 pixels reduces this

increase to 0.12% for the 2 px error threshold and 0.13%

for the 3 px error threshold.

Varying the number of stripes with a constant border

shows the expected degradation with increasing number of

stripes (Fig. 7). As the stripes get too small, probability of

cutting a less textured area increases.

The results for the testing data set (Table II) show that

the method is comparable to other methods of the SGM

family. Its runtime is the fastest of the top ranking methods.

The runtime reported in Table II is higher than expected,

since we use the Center-Symmetric Census measure as data

cost, which is not optimized and due to the additional post-

processing. We do a speckle-filtering and apply a bilateral

filter approximation to smooth out small errors.

(a) Kitti training frame 1

(b) sub-sampling 4 between 64 and 127

(c) sub-sampling 2 between 64 and 127

(d) no sub-sampling

Fig. 8: Influence of disparity compression - In the upper three

images the wall at the right side has disparities from 60 to

127.

TABLE I: Influence of disparity compression on the Kitti

training data set - Out-Noc is the percentage of non-occluded

pixels with a disparity error bigger than the threshold. SGM-

DC2 uses a disparity compression of 2 for the upper 64

values. SGM-DC4 uses a disparity compression of 4.

method Out-Noc 2 px Out-Noc 3 px

SGM 8.91% 5.89%
SGM-DC2 9.24% 6.09%
SGM-DC4 10.25% 6.71%

The effect of disparity compression is clearly visible in

Fig. 8. Disparities on slanted surfaces are less smooth and

at a sub-sampling of four the number of matched pixels

decreases. In addition, the effectiveness of the Left-right-

check is reduced (Fig. 9). The pole in the scene fattens in

comparison to the not sub-sampled version. This seems to

be an effect of image sub-sampling during the calculation of

the compressed cost cube. The quality on the Kitti training

data set is reduced by 0.33% for a sub-sampling of 2 and

1.34% for a sub-sampling of 4 for the 2 px error threshold

(Table I).

C. Speed

Our input images for the speed evaluation have 12 bit

intensity depth. Eight bit images are possible as well. The

input image bit depth does not have a noticeable effect on



TABLE II: Evaluation on KITTI test set with error threshold 3 px. It shows the top 17 ranking methods at middle of January

2014 and the OpenCV Implementation of SGM with rank 27. SGM based methods are highlighted in bold: Weighted Semi-

Global Matching wSGM [10], our rapid SGM with 4 stripes and a border of 16 rSGM, Iterative Semi-Global Matching iSGM

[16], OCV-SGBM2 (anonymous submission), Semi-Global Matching SGM [3] and OpenCV Semi-Global Block Matching

OCV-SGBM.

Rank Method Setting Out-Noc Out-All Avg-Noc Avg-All Runtime Environment

1 SceneFlow fl ms 2.98 % 3.86 % 0.8 px 1.0 px 6 min 4 cores @ 3.0 Ghz (Matlab + C/C++)
2 PCBP-SS 3.40 % 4.72 % 0.8 px 1.0 px 5 min 4 cores @ 2.5 Ghz (Matlab + C/C++)
3 gtRF-SS 3.83 % 4.59 % 0.9 px 1.0 px 1 min 1 core @ 2.5 Ghz (Matlab + C/C++)
4 StereoSLIC 3.92 % 5.11 % 0.9 px 1.0 px 2.3 s 1 core @ 3.0 Ghz (C/C++)
5 PR-Sf+E fl 4.02 % 4.87 % 0.9 px 1.0 px 200 s 4 cores @ 3.0 Ghz (Matlab + C/C++)
6 PCBP 4.04 % 5.37 % 0.9 px 1.1 px 5 min 4 cores @ 2.5 Ghz (Matlab + C/C++)
7 PR-Sceneflow fl 4.36 % 5.22 % 0.9 px 1.1 px 150 sec 4 core @ 3.0 Ghz (Matlab - C/C++)
8 wSGM 4.97 % 6.18 % 1.3 px 1.6 px 6s 1 core @ 3.5 Ghz (C/C++)
9 ATGV 5.02 % 6.88 % 1.0 px 1.6 px 6 min >8 cores @ 3.0 Ghz (Matlab + C/C++)

10 rSGM 5.03 % 6.60 % 1.1 px 1.5 px 0.3 s 4 cores @ 2.6 Ghz (C/C++)

11 iSGM 5.11 % 7.15 % 1.2 px 2.1 px 8 s 2 cores @ 2.5 Ghz (C/C++)
12 AARBM 5.14 % 6.20 % 1.1 px 1.2 px 0.4 s 1 core @ 3.0 Ghz (C/C++)
13 ALTGV 5.36 % 6.49 % 1.1 px 1.2 px 20 s GPU @ 2.5 Ghz (C/C++)
14 OCV-SGBM2 5.38 % 6.50 % 1.0 px 1.2 px 2 s 1 core @ 2.5 Ghz (C/C++)
15 AABM 5.42 % 6.52 % 1.1 px 1.3 px 0.43 s 1 core @ 3.0 Ghz (C/C++)
16 RBM 5.50 % 6.48 % 1.2 px 1.3 px 0.2 s 1 core @ 3.0 Ghz (C/C++)
17 SGM 5.76 % 7.00 % 1.2 px 1.3 px 3.7 s 1 core @ 3.0 Ghz (C/C++)
27 OCV-SGBM 7.64 % 9.13 % 1.8 px 2.0 px 1.1 s 1 core @ 2.5 Ghz (C/C++)

(a) Kitti training frame 118

(b) sub-sampling of 4 between 64 and 127

(c) sub-sampling of 2 between 64 and 127

(d) no sub-sampling

Fig. 9: Influence of disparity compression - The pole at the

left shows less distinct borders with increased sub-sampling.

the algorithm run-times, since only the Census transform is

affected. We obtain execution-time differences below 1 ms.

The timings for the classical SGM formulation show,

that our solution (referred as SGM in Table III) clearly

outperforms the CPU implementation in [9], using only two

instead of four cores. This is not only a result of the newer

processor platform, but of the parallelization choices made.

The solution is faster than the older GPU implementation

of [8] and slightly slower than [7], but uses only 47 W

at maximum. For larger disparity ranges, the solution gets

even near to the FPGA implementation of [6], if we use

the number of evaluated disparities per second as a metric.

The detailed timings in Table IV show an almost direct

dependency of data cost calculation and WTA from the

number of disparities to evaluate. The path accumulation

step is slightly below a factor of one and is the most time

consuming.

The solution using image stripes with borders is able

to reach shorter cycle times, as all 4 cores can be used

during the whole algorithm. We call this method rapid SGM

(rSGM). We obtain a frame rate of 19.6 Hz for VGA

resolution and 64 disparity values, and 11.9 Hz for 128

disparity values. With disparity compression, a frame rate

of 16 Hz for 128 disparities is reached. This type of sub-

sampling induces little overhead, keeping the number of

evaluated disparities high and providing significant speedup

compared with the full SGM version.

VI. SUMMARY

We have created a system performing large scale semi-

global matching on a CPU1. With this system, we can

compute disparity maps suitable for intelligent vehicles and

1C++ source code on-line at http://userpage.fu-berlin.de/spangenb/



TABLE III: Timings - rSGM uses 4 stripes and a border of 16

pixels. rSGM-DC2 additionally uses a disparity compression

of 2 for the upper 64 values. rSGM-DC4 uses a disparity

compression of 4 for the upper 64 values

Method Cores image size disparities cycle disp/s

Unit [px] [px] [ms] [106/s]

GPU [8] 320×240 64 76 64
GPU [7] 640×480 64 85 230

FPGA [6] 2·340×200 2 · 64 40 218
FPGA [5] 640×480 64 30 648

CPU [9] 4 640×320 128 224 117
SGM 2 640×480 64 105 187
SGM 2 640×480 128 184 214
rSGM 4 640×480 64 51 390
rSGM 4 640×480 128 84 468

CPU [9] 4 268800 128 69 65
rSGM-DC2 4 640×480 128 71 415
rSGM-DC4 4 640×480 128 62 396

TABLE IV: Detailed timings for the full SGM variant

Algorithmic step 640×480 640×480 1248×384
#disparities 64 128 128
time [ms] [ms] [ms]

5×5 Census 1 1 1
Data cost calculation 7 14 21
Path accumulation 76 137 217
WTA left & right 16 30 46
Median filtering 1 1 2
Left-right consistency check 1 1 2
Sub-pixel interpolation 2 2 5

autonomous driving without special additional hardware.

Even images with higher resolution than VGA can be pro-

cessed in around 0.3 s. The induced load is low enough

to enable subsequent processing steps such as free-space

calculation or vehicle detection. The key is an algorithm that

enables low- and high-level parallelism without the need for

explicit synchronization. Furthermore, the method is scalable

to the number of available processing cores. We look forward

to an implementation using AVX2 instructions to further

increase the SIMD parallelism.

REFERENCES

[1] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” INTERNATIONAL

JOURNAL OF COMPUTER VISION, vol. 47, pp. 7–42, 2001.

[2] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in CVPR. IEEE, 2012, pp.
3354–3361.

[3] H. Hirschmüller, “Stereo processing by semiglobal matching and
mutual information,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30,
no. 2, pp. 328–341, 2008.

[4] M. Humenberger, T. Engelke, and W. Kubinger, “A census-based
stereo vision algorithm using modified semi-global matching and plane
fitting to improve matching quality,” 2010, pp. 77–84.

[5] M. Buder, “Dense real-time stereo matching using memory efficient
semi-global-matching variant based on fpgas,” pp. 843 709–843 709–9,
2012.

[6] S. K. Gehrig, F. Eberli, and T. Meyer, “A real-time low-power stereo
vision engine using semi-global matching,” in ICVS, ser. Lecture Notes
in Computer Science, M. Fritz, B. Schiele, and J. H. Piater, Eds., vol.
5815. Springer, 2009, pp. 134–143.

[7] M. Michael, J. Salmen, J. Stallkamp, and M. Schlipsing, “Real-
time stereo vision: Optimizing semi-global matching,” in Intelligent

Vehicles Symposium (IV), 2013 IEEE, 2013, pp. 1197–1202.
[8] I. Ernst and H. Hirschmüller, “Mutual information based semi-global

stereo matching on the gpu,” in Proceedings of the 4th International

Symposium on Advances in Visual Computing, ser. ISVC ’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 228–239.

[9] S. K. Gehrig and C. Rabe, “Real-Time Semi-Global Matching on
the CPU,” in Proceedings of the IEEE Computer Vision and Pattern

Recognition Workshops, San Francisco, CA, USA, June 2010, pp. 85–
92.

[10] R. Spangenberg, T. Langner, and R. Rojas, “Weighted semi-global
matching and center-symmetric census transform for robust driver
assistance,” in Computer Analysis of Images and Patterns, ser. Lecture
Notes in Computer Science, R. Wilson, E. Hancock, A. Bors, and
W. Smith, Eds. Springer Berlin Heidelberg, 2013, vol. 8048, pp.
34–41.

[11] M. Humenberger, C. Zinner, M. Weber, W. Kubinger, and M. Vincze,
“A fast stereo matching algorithm suitable for embedded real-time
systems,” Comput. Vis. Image Underst., vol. 114, no. 11, pp. 1180–
1202, Nov. 2010.

[12] H. Hirschmüller and D. Scharstein, “Evaluation of stereo matching
costs on images with radiometric differences,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 31, no. 9, pp. 1582–1599, 2009.
[13] H. Hirschmüller and S. K. Gehrig, “Stereo matching in the presence

of sub-pixel calibration errors,” in CVPR. IEEE, 2009, pp. 437–444.
[14] W. Mua, “Ssse3: Fast popcount (accessed 4.1.2014),” 2010. [Online].

Available: http://wm.ite.pl/articles/sse-popcount.html
[15] M. Shimizu and M. Okutomi, “Sub-pixel estimation error cancellation

on area-based matching,” Int. J. Comput. Vision, vol. 63, no. 3, pp.
207–224, July 2005. [Online]. Available: dx.doi.org/10.1007/s11263-
005-6878-5

[16] S. Hermann and R. Klette, “Iterative semi-global matching for robust
driver assistance systems,” in ACCV (3), ser. Lecture Notes in Com-
puter Science, K. M. Lee, Y. Matsushita, J. M. Rehg, and Z. Hu, Eds.,
vol. 7726. Springer, 2012, pp. 465–478.


