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Abstract It has been a long-time dream in electronic structure theory in phys-
ical chemistry/chemical physics to compute ground state energies of atomic and
molecular systems by employing a variational approach in which the two-body
reduced density matrix (RDM) is the unknown variable. Realization of the
RDM approach has benefited greatly from recent developments in semidefi-
nite programming (SDP). We present the actual state of this new application
of SDP as well as the formulation of these SDPs, which can be arbitrarily large.
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Numerical results using parallel computation on high performance computers
are given. The RDM method has several advantages including robustness and
provision of high accuracy compared to traditional electronic structure methods,
although its computational time and memory consumption are still extremely
large.

Keywords Large-scale optimization · Computational chemistry · Semidefinite
programming relaxation · Reduced density Matrix · N-representability ·
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1 Introduction

Electronic structure theory is the source of some of the largest and most chal-
lenging problems in computational science. As the quantum mechanical basis
for the computation of properties of molecules and solids it is also of immense
practical importance.

Traditional formulations of the electronic structure problem give rise to
large linear or nonlinear Hermitian eigenvalue problems, but using the re-
duced density matrix (RDM) method [5,18], one is required instead to solve a
very large semidefinite programming (SDP) problem. Until recently the RDM
method could not compete either in accuracy or in speed with well-estab-
lished electronic structure methods, but this is changing. Especially Nakata
et al. [41,42] showed that a well-established SDP code could be used to solve
an SDP having the RDMs as variables with the basic conditions (the “P”,
“Q”, and “G” conditions, as will be clarified later) for a wide variety of
interesting (although still small) molecules. Later, Zhao et al. [61] showed
that with the inclusion of additional conditions (“T1” and “T2”), the accu-
racy that is obtained for small molecular systems compares favorably with
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the best widely used electronic structure methods. Very recently, Mazziotti
[35,36] announced results for larger molecular systems using the P, Q and G

conditions.
For applied work, the main present challenge for the RDM approach is

to develop the efficiency of the solution of the resulting large SDP prob-
lems to the stage where one has a method that is genuinely competitive in
both accuracy and speed with traditional electronic structure methods. One
of the keys to successfully and drastically reduce the size of the SDP is to
formulate it as a dual SDP problem. The dual formulation has many fewer
dual variables (primal constraints) than the original primal formulation and
can therefore be solved more efficiently. The SDP problems must be solved
to high accuracy – typically seven digits for the optimal value – and this is
an extremely important consideration in the choice of solution methods and
codes.

In the next section, we present the electronic structure problem and the
RDM theory. In Sect. 2.1, we show the general form of the RDM reformula-
tion, and we explain the concept of N-representability conditions. In Sect. 2.2,
we exhibit the principal N-representability conditions: P, Q, G, T1 and T2,
respectively, which are semidefinite generalizations of the valid inequalities for
the Correlation Polytope in a higher dimensional space, and in Sect. 2.3, we give
a chronological overview of numerical computation since 1970s for the RDM
equations which are SDPs.

In Sect. 3, we present the precise formulation of the RDM equations in dual
SDP form using inequality and equality constraints. This is an improvement
over the previous result [61] where equality constraints were split into a slightly
relaxed pair of inequalities. We also consider the computational advantages of
the dual SDP formulation compared to the primal one in terms of both number
of floating point operations and memory usage.

Section 4 gives our main results. Section 4.1 discusses the sizes and the spar-
sity of this class of SDPs. Section 4.2 gives the ground state energies and the
dipole moments of small atomic–molecular systems solving small- and medium-
scale SDPs by SeDuMi, which can handle inequality and equality constraints in
the dual SDP problem. The numerical results confirm that the RDM approach
employing the P, Q, G, T1 and T2 conditions provides accurate, robust and
most of the time better values for the ground state energy and the dipole
moment than the traditional electronic structure methods. Section 4.3 gives
the same results for large-scale SDPs using the parallel SDPARA-SMP code,
which has a better memory storage scheme than SDPARA [57]. Only inequality
constraints are considered in the dual SDP formulation here. We also discuss
essential techniques to solve large-scale problems in a high performance paral-
lel environment. Possibly, we solved the largest SDP reported with 20,709 dual
variables (primal constraints) and largest block matrices with size 3,211×3,211
with such density and accuracy. This size was not exceeded because of lack of
available hours at the computational provider. Finally, Sect. 4.4 briefly reports
our particular experience in using alternative formulations and methods for this
problem.
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2 The electronic structure problem and reduced density matrices

2.1 Basic formalism

The electronic structure problem is to determine the ground state energy of a
many-electron system (atom or molecule) in a given external potential [50]. For
an N-electron system this ground state energy is the smallest eigenvalue of a
Hermitian operator (the Schrödinger operator or Hamiltonian) that acts on a
space of N-electron wavefunctions, which are complex-valued square-integrable
functions of N single-electron coordinates simultaneously that are totally anti-
symmetric under the interchange of any pair of electrons. (Antisymmetry will be
specified later, but it does differ from the concept of an antisymmetric matrix).

In our work we follow the usual approach of discretizing the many-electron
space of wavefunctions by way of a discretization of the single-electron space
of wavefunctions, and for purpose of exposition, we assume that single-electron
basis functions ψi (i = 1, 2, . . . , r) are orthonormal. Under such discretiza-
tion, we obtain a discrete Hamiltonian (matrix) H which corresponds to the
Schrödinger operator. The discretized ground state problem then asks for the
minimum eigenvalue E0 for Hc = E0c, where c is the discretized wavefunction
(vector). The antisymmetry requirement on the wavefunction is also carried
over c, so it has size r!/(N!(r − N)!

This discrete formulation of the electronic structure problem as an expo-
nentially large eigenvalue problem is also called full configuration-interac-
tion (FCI), and it is intractable except for very small systems. More practical
approaches [50] involve truncating the many electron basis in some systematic
way. These include the SDCI approach (singly and doubly substituted config-
uration interaction) or the CCSD approach (coupled cluster expansion using
single and double excitations).

An entirely different conceptual approach to the ground state electronic
structure problem relies on the concept of the two-body reduced density matrix
(2-RDM) of a many-electron system. This approach, first articulated in detail
in two papers in the early 1960s [5,18] (but note as well the earlier refs. [25,29,
30]), was the subject of active theoretical [8,38,13] and computational [27,28,
19,39,47,17] investigations through the 1970s, but because of limited success
interest waned.

Now we proceed to detail its main concept. We assume that the space of
wavefunctions has been discretized as just discussed. Notice that the minimum
eigenvalue E0 of the discretized electronic structure problem can be equiva-
lently computed from the SDP problem

⎧
⎨
⎩

min 〈H, Ŵfull〉
subject to 〈Ŵfull, I〉 = 1,

Ŵfull � O.
(1)

Here 〈·, ·〉 denotes the inner product in the space of real symmetric matrices
〈A, B〉 =

∑
ij AijBij, and A � B means that A − B is a positive semidefinite
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symmetric matrix. Ŵfull is the full density matrix: a real symmetric matrix of the
form Ŵfull(i1, . . . , iN ; i′1, . . . , i′N) where the indices i1, i2, . . . , iN take distinct values
from 1 to r (the discretization basis size), and like the wavefunction is antisym-

metric under interchange of any pair of indices, i.e., Ŵfull(i1, . . . , ia, . . . , ib, . . . , iN ;
i′1, . . . , i′N) = −Ŵfull(i1, . . . , ib, . . . , ia, . . . , iN ; i′1, . . . , i′N); and similarly for the

primed indices i′1, i′2, . . . , i′N . Ŵfull is an exponentially large object in r and N

(number of electrons) that is not suitable as ingredient of an effective compu-
tational method. However, a reduction of the problem (1) to a more tractable
convex optimization problem is possible.

Given a full density matrix Ŵfull, the corresponding p-body RDM Ŵp is a
function of two pairs of p-electron variables defined as a (scaled) partial trace
over the remaining N − p variables:

Ŵp(i1, . . . , ip; i′1, . . . , i′p)

= N!
(N − p)!

r∑

ip+1,...,iN=1

Ŵfull(i1, . . . , ip, ip+1, . . . iN ; i′1, . . . , i′p, ip+1, . . . , iN). (2)

The p-body RDM Ŵp is also real symmetric and inherits the antisymmetry

conditions from the Ŵfull.
The key property for RDM theory is described in the language of physics and

chemistry by saying that the Hamiltonian (matrix) H involves – for the case of
nonrelativistic electronic structure – one-body and two-body interaction terms
only. The mathematical description is that the energy depends only on the one-
body and two-body RDMs. Thus we have discrete operators (matrices) H1 and
H2 – the one-body and two-body parts of the Hamiltonian (matrix) H – such
that on the space of density matrices 〈H, Ŵfull〉 = 〈H1, Ŵ1〉 + 〈H2, Ŵ2〉.

It is easily seen that 〈Ŵp, I〉 = N!/(N − p)! and also that the mapping Ŵfull →
Ŵp preserves the positive semidefiniteness property. Now a formulation of the
discretized electronic structure problem (1) is obtained as an equivalent convex
optimization problem

⎧
⎨
⎩

min 〈H1, Ŵ1〉 + 〈H2, Ŵ2〉
subject to 〈Ŵ1, I〉 = N, 〈Ŵ2, I〉 = N(N − 1), and

“N-representability”.
(3)

Here, “N-representability” means: there exists a positive semidefinite matrix
Ŵfull such that (2) is valid for the variables Ŵ1 and Ŵ2 in (3). We also know that
all of these N-representability conditions describe a convex set for the matrices
Ŵ1 and Ŵ2.

The success of this approach might seem to rely now on being able to spec-
ify concrete necessary and sufficient conditions for the N-representability that
do not require the reconstruction of the large matrix Ŵfull, but this is under-
stood to be intractable as explained in the next section. Instead the conditions
that are known are necessary but not sufficient, and so they serve to define an
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approximation – a lower-bound approximation – to the original exponentially
large problem (1). The conditions that have turned out to be most effective
so far are all of semidefinite kind, and therefore, we seek to solve an SDP
relaxation of the discretized electronic structure problem (1).

2.2 Specific N-representability conditions

The linear space of Ŵ1 is the space of real symmetric r × r matrices, S
r, where

r is the discretization basis size. As defined in (2), Ŵ2 depends on two pairs of
indices, Ŵ2(i, j; i′, j′). Due to the antisymmetry, Ŵ2(i, j; i′, j′) = −Ŵ2(j, i; i′, j′) =
−Ŵ2(i, j; j′, i′) = Ŵ2(j, i; j′, i′) and so Ŵ2 ∈ S

r(r−1)/2. Observe that the sizes of
the variables in (3) now depend only on r and not anymore on N (number of
electrons) as in (1).

It is also clear from (2) that Ŵ1 is itself a scaled partial trace of Ŵ2:

Ŵ1(i, i′) = 1

N − 1

r∑

j=1

Ŵ2(i, j; i′, j). (4)

Ŵ1 could therefore be eliminated entirely from the problem. However, both the
objective function and the N-representability conditions are more conveniently
formulated if Ŵ1 is retained and if the trace condition (4) is used as a set of linear
constraints on the pair (Ŵ1, Ŵ2). We follow this approach.

The trace conditions on Ŵ1 and Ŵ2 were specified in (3). The remaining con-
ditions are in the form of convex inequalities. Moreover, all conditions that we
have used are of linear semidefinite form.

For the 1-RDM the remaining necessary and sufficient N-representability
conditions [5] are:

I � Ŵ1 � O. (5)

For the 2-RDM, a complete family of constructive necessary and sufficient
conditions is not known yet. On a smaller subspace of matrices (the “diagonal”
2-RDM’s), the N-representability problem is well understood: this diagonal
N-representability problem is equivalent to characterization of the Correlation
Polytope, also known as the Boolean Quadric Polytope and equivalent via a
linear bijection to the Cut Polytope [9, p. 54]. Optimization over the Boolean
Quadric Polytope is NP-hard (it is the same as the unconstrained 0-1 quadratic
programming problem), and as is pointed out in [9, p. 397], it follows from a
result of Karp and Papadimitriou [26] that a polynomially concise description
of all the facets of this polytope is not available unless NP = co-NP . For ear-
lier investigations into the diagonal N-representability problem, we note [8,38,
13]. As the original problem (1) is exponentially large, this complexity barrier
should not deter us – the RDM method is to be viewed as an approximation
method and one works with necessary conditions for N-representability that are
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known not to be sufficient, and therefore, we are considering an SDP relaxation
of the original problem (1).

The basic well known convex inequalities for the 2-RDM are the P and the
Q conditions (so named in [18], but they are also found in [5]) and the G condi-
tion [18]. In our previous work [61] we added to this a T1 and a T2 condition,
which as we pointed out are implied by a much earlier paper of Erdahl [13].
All these conditions are of semidefinite form: P � O, Q � O, G � O, T1 � O,
and T2 � O, where the matrices P, Q, G, T1 and T2 are defined by linear
combinations of the entries of the basic matrices Ŵ1 and Ŵ2. Specifically (all
indices range over 1, . . . , r and δ is the Kronecker delta):

P ≡ Ŵ2, (6)

Q(i, j; i′, j′) ≡ Ŵ2(i, j; i′, j′) − δ(i, i′)Ŵ1(j, j′) − δ(j, j′)Ŵ1(i, i′) + δ(i, j′)Ŵ1(j, i′)

+ δ(j, i′)Ŵ1(i, j′) + δ(i, i′)δ(j, j′) − δ(i, j′)δ(j, i′). (7)

The matrices P and Q are of the same size as Ŵ2 and have the same antisymmetry
property, so they belong to S

r(r−1)/2. Also,

G(i, j; i′, j′) = Ŵ2(i, j′; j, i′) + δ(i, i′)Ŵ1(j
′, j). (8)

In the matrix G there is no antisymmetry in (i, j) or in (i′, j′), so G belongs to

S
r2

. Also,

T1(i, j, k; i′, j′, k′) = A[i, j, k]A[i′, j′, k′]
(

1

6
δ(i, i′)δ(j, j′)δ(k, k′)

− 1

2
δ(i, i′)δ(j, j′)Ŵ1(k, k′) + 1

4
δ(i, i′)Ŵ2(j, k; j′, k′)

)
, (9)

where we are using the notation A[i, j, k]f (i, j, k) to mean an alternator with
respect to i, j and k: f (i, j, k) summed over all permutations of the arguments
i, j and k, with each term multiplied by the sign of the permutation. T1 is fully
antisymmetric in both its index triples, so it belongs to S

r(r−1)(r−2)/6. Finally,

T2(i, j, k; i′, j′, k′) = A[j, k]A[j′, k′]
(

1

2
δ(j, j′)δ(k, k′)Ŵ1(i, i′)

+ 1

4
δ(i, i′)Ŵ2(j

′, k′; j, k) − δ(j, j′)Ŵ2(i, k′; i′, k)

)
. (10)

T2(i, j, k; i′, j′, k′) is antisymmetric in (j, k) and in (j′, k′), so it belongs to S
r2(r−1)/2.

Observe that if we restrict the constraints to the diagonal entries of the P, Q,
G, T1, and T2 conditions, i.e., replacing the primed indices with the unprimed
ones (after applying the alternator operator in T1 and T2), we precisely obtain
the “triangular inequalities” for the Correlation Polytope [9, p. 57].
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2.3 Previous numerical computations using the RDM method

Following the clear statement of the RDM approach and of the most important
N-representability conditions [5,18], the first significant computational results
came in the 1970s. Kijewski [27,28] applied the RDM method to doubly ionized
carbon (N = 4), C++, using a discretization basis of 10 spin orbitals (r = 10).
Garrod and co-authors were the first ones to actually solve the SDP imposing
the P, Q and G conditions, by which they obtained very accurate results for
atomic beryllium (N = 4 and r = 10) [19,47,17]. Mihailović and Rosina also
considered the RDM method for nuclear physics [39], but reported rather poor
accuracy.

This early work belongs firmly to semidefinite programming, although that
name was not yet in use. The analytical work [18] is focused on semidefinite
conditions, and the subsequent computational methods would be recognized by
anyone working in semidefinite programming today. Rosina and Garrod [47]
described two main algorithms to solve the SDP. One successively added cutting
planes into the linear programming relaxation of the problem, and the other
minimized the objective function incorporating a barrier function for the cone
of positive semidefinite matrices!

Because of the high computational cost and the lack of progress on the N-
representability problem interest in the computational aspects of the RDM
approach fell off during the 1980s, but it has been rekindled in recent years.
Nakata et al. [41] showed in 2001 using an SDP package that the RDM
method with the P, Q and G conditions provides ground state energies that
compare very favorably to Hartree-Fock results for a wide variety of small
molecules (r up to 16). In subsequent work [42], they demonstrated that the
method maintains its accuracy when molecular dissociation is modeled – a
test that is failed by many of the traditional methods of electronic struc-
ture calculation. In a previous paper [61] several of us using SDPARA [57]
confirmed and extended the results of [41–43] for the accuracy of the RDM
method with P, Q and G conditions relative to the Hartree-Fock approxi-
mation. We further showed that by adding two additional N-representabil-
ity conditions, which we called T1 and T2, one obtains for small molecu-
lar systems (r up to 20) an accuracy that compares favorably not just with
Hartree-Fock but with the best standard methods of quantum chemistry. Al-
though the cost of the RDM method is still very high compared to traditional
methods, Mazziotti [35,36] recently announced results for considerably larger
systems (r up to 36) for the RDM approach imposing only the P, Q and G

conditions.
In the present paper we discuss in detail only our chosen approach of opti-

mizing the 2-RDM subject to semidefinite N-representability conditions (P,
Q, G, T1, T2), without invoking 3-body or higher RDMs. We note here, how-
ever, a related approach being actively pursued that employs 2-body and higher
reduced density matrices. In this other approach, under the name of Density
Equation (DE) or Contracted Schrödinger Equation (CSE) [4,44,54,7,31,58,
59], the primary unknown is the 1-RDM or 2-RDM and the equations involve
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an approximate reconstructed 3-RDM or 4-RDM. An excellent survey can be
found in the edited volume [3] that includes contributions by Coleman [6],
Erdahl [15], Nakatsuji [45], Valdemoro [55] and Mazziotti [32]. Applications
of the DE/CSE approach to quantum chemistry include [59,12]. In its original
form the DE/CSE method does not impose the basic positivity conditions on
the 2-RDM, but Erdahl and Jin [14,15] and Mazziotti [37,33] set up and solve
equations closely related to the DE/CSE ones in which positivity conditions
are imposed on the 2-RDM and on higher-order reconstructed density matrices
[34]. These problems may lead to SDPs with nonlinear equations.

3 The SDP formulation of the RDM method

Let C, Ap (p = 1, 2, . . . , m) be given block-diagonal symmetric matrices with
prescribed block sizes, and c, ap ∈ R

s (p = 1, 2, . . . , m) be given s-dimensional
real vectors. We denote by Diag(a) a diagonal matrix with the elements of a on
its diagonal.

The primal SDP is defined as

⎧
⎨
⎩

max 〈C, X〉 + 〈Diag(c), Diag(x)〉
subject to 〈Ap, X〉 + 〈Diag(ap), Diag(x)〉 = bp, (p = 1, 2, . . . , m)

X � O, x ∈ R
s,

(11)

and its dual

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min bTy

subject to S =
m∑

p=1

Apyp − C � O,

m∑

p=1

Diag(ap)yp = Diag(c),

y ∈ R
m,

(12)

where (X, x) are the primal variables and (S, y) are the dual variables.
Primal-dual interior-point methods and their variants are the most estab-

lished and efficient algorithms to solve general SDPs. Details on how these
iterative methods work can be found in [56,51,40].

In this section, we formulate the RDM method with the (P, Q, G, T1, T2)
N-representability conditions as an SDP. Observe that the 1-RDM variational
variable Ŵ1 and its corresponding Hamiltonian H1 is a two index matrix (see
(3)), but the 2-RDM variational variable Ŵ2, the corresponding Hamiltonian
H2, as well as Q and G are four index matrices, and moreover, T1 and T2

are six index matrices. We map each pair i, j or triple i, j, k of indices to a
composite index for these matrices, resulting in symmetric matrices of order
r(r − 1)/2 × r(r − 1)/2 for Ŵ2, H2 and Q, a symmetric matrix of order
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r(r − 1)(r − 2)/6 × r(r − 1)(r − 2)/6 for T1, and a symmetric matrix of order
r2(r−1)/2×r2(r−1)/2 for T2. For example, the four-index element Ŵ2(i, j; i′, j′),
with 1 ≤ i < j ≤ r, 1 ≤ i′ < j′ ≤ r, can be associated with the two-
index element Ŵ̃2(j − i + (2r − i)(i − 1)/2, j′ − i′ + (2r − i′)(i′ − 1)/2). We
assume henceforth that all matrices have their indices mapped to two indi-
ces, and we keep the same notation for simplicity. Furthermore, due to the
antisymmetry property of Ŵ2 and of the N-representability conditions Q, T1
and T2, and also due to the spin symmetry [61, (22)-(27)], all these matri-
ces reduce to block-diagonal matrices of size specified in
Table 1.

Now, let us define a linear transformation svec : S
n → R

n(n+1)/2 as

svec(U)=(U11,
√

2U12, U22,
√

2U13,
√

2U23, U33, . . . ,
√

2U1n, . . . , Unn)T , U ∈ S
n.

To formulate the RDM method with the (P, Q, G, T1, T2) conditions in (3)
as the dual SDP (12), define

y = (svec(Ŵ1)
T , svec(Ŵ2)

T)T ∈ R
m and

b = (svec(H1)
T , svec(H2)

T)T ∈ R
m.

It is now relatively straightforward to express the N-representability condi-
tions (5)–(10) as the dual slack matrix variable S by defining it to have the
following diagonal blocks: Ŵ1, I − Ŵ1, Ŵ2, Q, G, T1, T2 taking into account the
spin symmetry [61, (22)–(27)] and making suitable definitions for the matrices
C, Ap (p = 1, 2, . . . , m). The equalities in (3) and (4), and the ones involving the
number of electrons with α spin and given total spin S [61, (19)–(21)] will define
the vectors c, ap (p = 1, 2, . . . , m).

The required number of floating point operations when solving these prob-
lems for instance using the parallel code SDPARA [57] are as follows. The
computational flops per iteration when using SDPARA (Sect. 4.3) can be esti-
mated as O(m2f 2/q + m3/q + mn2

max
+ n3

max
), where nmax is the size of the

largest block matrix, f is the maximum number of nonzero elements in each
data matrix Ap (p = 1, 2, . . . , m), and q is the number of used processors. In
our case, m = O(r4), nmax = O(r3) and f = O(r2), and therefore, the compu-
tational flops per iteration is O(r12/q), while the total memory usage becomes
O(m2) = O(r8).

The formulation of the RDM method as a dual SDP, as considered here,
has a clear advantage over the primal SDP formulation [41,33,42,43,35,36] as
detailed in [61]. When using the primal SDP formulation with the (P, Q, G, T1,
T2) conditions, we have m = O(r6), nmax = O(r3) and f = O(1), and then, the
computational flops per iterations becomes O(r18/q), while the total memory
usage becomes O(m2) = O(r12).

The formulation (12) proposed here is novel in the sense that it now includes
equality constraints that were previously absent in [61]. The implications of
these two different formulations are discussed in Sect. 4.3.
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4 Numerical results for the RDM method

4.1 Sizes and sparsity of SDPs

Table 1 shows the typical size of the SDP relaxation problem (12) as a function
of the discretization basis size r, itemizing the sizes of block matrices for each
of the N-representability conditions.

Observe that the number of equality constraints in the primal SDP (11) grows
as m ≈ 3r4/64, while the size of the largest block matrices corresponding to the
T2 condition grows as approximately 3r3/16, and they do not depend on the
number of electrons N of the system.

As one can observe from the N-representability conditions given in Sect. 2.2
and the actual formulation (12) as an SDP, all data matrices for our problem have
integral values, except the diagonal matrices Diag(c), Diag(ap) (p = 1, 2, . . . , m)

which have rational values, and the objective function vector b which has real
values. Also, if we have two different systems with a common discretization
basis size r, only the diagonal matrices and the objective function vector differ,
and the entries corresponding to the semidefinite conditions of Ŵ1 and the (P,
Q, G, T1, T2) conditions will be exactly the same. This fact can eventually be
explored to re-solve a new system with the same discretization basis size r once
we have the results from a previous one.

Each of the data matrices (C, Diag(c)), (Ap, Diag(ap)) (p = 1, 2, . . . , m) are
very sparse in our problem. A more interesting sparsity characterization of the
problem can be observed by analyzing the density rate of the dual slack matrix
variable S =

∑m
p=1 Apyp−C, which has 21 block matrices as itemized in Table 1,

for a random nonzero vector y ∈ R
m. From the definition and the dual SDP

Table 1 Size of the SDP relaxation problem as a function of the discretization basis size r

Number of constraints m in primal SDP (11) r
4

(
3r3

16
− r2

4 + 9r
4 + 1

)

N-representability conditions Size of block matrices

Dimension of the free variable x r
2

(
r
2 + 1

)
+ 5

Ŵ1 � O r
2 , r

2

I − Ŵ1 � O r
2 , r

2

P ≡ Ŵ2 � O r2

4 , r
4

(
r
2 − 1

)
, r

4

(
r
2 − 1

)

Q � O r2

4 , r
4

(
r
2 − 1

)
, r

4

(
r
2 − 1

)

G � O r2

2 , r2

4 , r2

4

T1 � O r2

8

(
r
2 − 1

)
, r2

8

(
r
2 − 1

)
, r

12

(
r
2 − 1

) (
r
2 − 2

)
,

r
12

(
r
2 − 1

) (
r
2 − 2

)

T2 � O r2

8

(
3r
2 − 1

)
, r2

8

(
3r
2 − 1

)
, r2

8

(
r
2 − 1

)
, r2

8

(
r
2 − 1

)
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formulation (12) we used, one can see that the block matrices corresponding to
the 1-RDM Ŵ1 characterization, the P condition, and the Q condition are fully
dense. In addition, the two smallest block matrices of the G condition are fully
dense, too. Figure 1 (left) depicts the density of the other block matrices as a
function of the discretization basis size r. More specifically, this figure shows the
density of the largest block matrix of the G condition, and the block matrices
corresponding to the T1 and T2 conditions (see Table 1). The density rate of
the two largest block matrices of the T1 condition coincides with the rate of the
two smallest block matrices of the T2 condition here.

A very positive aspect of the density rates is that for all the block matrices
corresponding to the T1 and T2 conditions, the density decreases as r increases.
In particular, the crucial block matrix corresponding to the two largest block
matrices of the T2 condition are the sparsest ones due to the product of Kro-
necker deltas (10), although they are still rather dense: 19.3% for r = 26.

Figure 1 (right) shows the sparsity structure corresponding to the two largest
block matrices of the T2 condition from S for r = 12. These block matrices
are still very dense (37.7%) and apparently do not have an obvious sparsity
structure which could be exploited.

4.2 Numerical results for small- and medium-scale problems

We utilized SeDuMi 1.05 [49] for small- and medium-scale SDPs on a Pentium
Xeon 2.4 GHz with 6GB of memory, and a level two cache of size 512 KB.
SDPT3 3.1 [53] is the only other software package that can solve SDPs with
inequality and equality constraints in the dual SDP (12), but our experiments
showed that SeDuMi provides much more accurate solutions.

Table 2 shows the actual sizes, the typical time and memory usage of the SDPs
we picked for each discretization basis size r up to 18. We only listed the sizes
of the largest block matrices among the 21 block matrices and one diagonal
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Fig. 1 Density rates of the sparse block matrices as a function of the discretization basis size r

(left), and sparsity structure for the two largest block matrices of the T2 condition for r = 12 (right)
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Table 2 Sizes, required time and memory to solve the SDPs (imposing the (P,Q,G,T1,T2) condi-
tions) as a function of the discretization basis size r for small- and medium-scale problems using
SeDuMi

Basis size Conditions Number of Sizes of the largest Time Memory
r constraints m block matrices (GB)

P, Q, G 465 50 × 1, 25 × 4, 10 × 4, 5 × 4 11 s 0.0
10 P, Q, G, T1 465 50 × 3, 25 × 4, 10 × 6, 5 × 4 10 s 0.0

P, Q, G, T1, T2 465 175 × 2, 50 × 5, 25 × 4, 10 × 6 86 s 0.1
P, Q, G 948 72 × 1, 36 × 4, 15 × 4, 6 × 4 2.3 min 0.1

12 P, Q, G, T1 948 90 × 2, 72 × 1, 36 × 4, 20 × 2 2.8 min 0.1
P, Q, G, T1, T2 948 306 × 2, 90 × 4, 72 × 1, 36 × 4 17 min 0.1
P, Q, G 1,743 98 × 1, 49 × 4, 21 × 4, 7 × 4 13 min 0.1

14 P, Q, G, T1 1,743 147 × 2, 98 × 1, 49 × 4, 35 × 2 14 min 0.1
P, Q, G, T1, T2 1,743 490 × 2, 147 × 4, 98 × 1, 49 × 4 1.4 h 0.2
P, Q, G 2,964 128 × 1, 64 × 4, 28 × 4, 8 × 4 41 min 0.3

16 P, Q, G, T1 2,964 224 × 2, 128 × 1, 64 × 4, 56 × 2 1.4 h 0.3
P, Q, G, T1, T2 2,964 736 × 2, 224 × 4, 128 × 1, 64 × 4 6.4 h 0.4
P, Q, G 4,743 162 × 1, 81 × 4, 36 × 4, 9 × 4 1.9 h 0.6

18 P, Q, G, T1 4,743 324 × 2, 162 × 1, 84 × 2, 81 × 4 2.7 h 0.7
P, Q, G, T1, T2 4,743 1,053 × 2, 324 × 4, 162 × 1, 84 × 2 12 h 1.0

matrix. Here, 306 × 2 for instance means that there are two block matrices of
sizes 306 × 306 each.

Table 3 shows our main result, the ground state energies calculated by the
RDM method, imposing the (P, Q, G), (P, Q, G, T1), (P, Q, G, T2), and (P, Q,
G, T1, T2) conditions (columns 7–10) to verify numerically the effectiveness
of each N-representability condition. For all the tables that follow, “r” is the
discretization basis size, “basis” is the spin orbital (one-electron) basis, “state”
is the equilibrium state of the system, “N(Nα)” is the electron (α spin electron)
number, and “2S + 1” is the spin multiplicity. For non-atomic systems, it is also
necessary to add the repulsion energies to the optimal values of SDPs to obtain
the ground state energies. These results are compared with the mainstream
electronic structure methods: coupled cluster singles and doubles with pertur-
bational treatment of triples (CCSD(T)) (from Gaussian 98 [16] – column 11),
singly and doubly substituted configuration interaction (SDCI) (from Gamess
[48] – column 12), and Hartree-Fock (HF) (from Gamess – column 13). The
standard for these comparisons is the Full Configuration Interaction method
(FCI) (from Gamess – column 14) which essentially consists in computing the
minimum eigenvalue of a symmetric matrix with size O(r!/N!(r − N)!). All of
the energies are given as a difference between them and the FCI values. Since
the RDM method is an SDP relaxation of the FCI (1), it always gives a lower
bound for the energy. On the other hand, SDCI and HF give upper bounds,
and CCSD(T) an approximation for the FCI value. Also, in all the tables that
follow, the actual discretization basis is from [10,11,23,22],1 and the experimen-

1 Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set
Database, Version 02/25/04, as developed and distributed by the Molecular Science Computing
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tal geometries for these systems are from [20,21,24]. In all calculations using
Gaussian 98 and Gamess, we unfroze the core orbitals which are frozen by
default. The entry “F/C” means fail to converge.

The RDM method with the (P, Q, G) conditions gives better results than
the classic HF. With the (P, Q, G, T1) conditions we get improvements, but
imposing the (P, Q, G, T1, T2) conditions, the results are clearly better than
the best traditional electronic structure method CCSD(T) (from Gaussian 98).
One of the great advantages of the RDM method compared to the traditional
electronic structure methods is that it is more numerically robust in the sense
that the SDPs can be solved without tuning or sensitive parameter setting
required by the traditional electronic structure methods. CCSD(T) solves a
nonlinear eigenvalue problem so that there are systems which are hard to solve
or do not converge (H3, CH3, NH+

3 in Tables 3 and 6), or due to its non-var-
iational nature, the energy can get lower than the FCI energy (Na, LiOH in
Tables 3 and 6). Unfortunately, the RDM method is not competitive in terms of
time since heuristic based electronic structure methods provide results in a few
seconds.

The RDM method with (P, Q, G, T1, T2) conditions provides a more reli-
able approximation of the ground state energy than using only the (P, Q, G)
conditions if we pay a price for the computational time and memory as shown
in Table 2. However their complexity in terms of floating point operations per
iteration (of the interior-point method) and total memory usage are the same:
O(r12) and O(r8), respectively (see Sect. 3).

It is interesting to comment here that the RDM method, through an SDP
relaxation, can always derive an extremely good lower bound for the ground
state energy in polynomial time in r, while the targeting value from the FCI
is only computable in factorial time in N and in a fixed discretization basis r.
At the same time, though, it is quite impressive that some electronic structure
methods like CCSD(T) can often provide comparably good values in a much
shorter time.

Observe from Table 3 that we usually require at least seven digits of accu-
racy for the optimal value of the SDP for systems with less than −100.0 Har-
trees of energy. This means that, adding to the difficulty of solving large-scale
SDPs, we need highly precise optimal values and solutions. This particular
requirement apparently excludes the possibility of using methods such as the
bundle method, Krylov iterative methods or nonlinear formulations (see refs. in
[56,51,52,2]).

The dipole moment 〈µ̂〉 is defined as the norm of (〈µ̂x〉, 〈µ̂y〉, 〈µ̂z〉), i.e., 〈µ̂〉 =√
〈µ̂x〉2 + 〈µ̂y〉2 + 〈µ̂z〉2, where

Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest
Laboratory, P.O. Box 999, Richland, Washington 99352, USA, and funded by the U.S. Department
of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle
Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830.
http://www.emsl.pnl.gov/forms/basisform.html.
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〈µ̂x〉 = 〈µx, Ŵ1〉, [µx]ij =
∫

ψi(z)xψj(z)dz, (i, j = 1, 2, . . . , r)

and ψi (i = 1, 2, . . . , r) are the basis function for the discretization. 〈µ̂y〉 and 〈µ̂z〉
are also defined in a similar way.

In Table 4, we show (only) the nonzero dipole moments 〈µ̂〉 of H3, BeH+,
NH−

2 , and FH+
2 in Debye. The ground state of H3 is doubly degenerated and the

components of its dipole moment are collinear and have opposite directions.
The RDM method calculates the ensemble average of these vectors resulting
zero for the dipole moment since there is no constraint in the current formula-
tion which identifies such degeneracy. In general, the dipole moments from the
RDM method with (P, Q, G) conditions are better than from HF, and worse
than from SDCI. But with (P, Q, G, T1, T2) conditions, they almost reproduce
the FCI results.

Finally, the error measures for the approximate optimal solution (X̂, x̂, Ŝ, ŷ)

of the SDPs are as follows:

(I) duality gap ≡ bT ŷ − 〈C, X̂〉 − 〈Diag(c), Diag(x̂)〉,
(II) primal feasibility error ≡ max

p=1,2,...,m
|〈Ap, X̂〉 + 〈Diag(ap), Diag(x̂)〉 − bp|,

(III) dual feasibility error

max

⎧
⎪⎨
⎪⎩

max
i,j=1,2,...,n

∣∣∣∣∣∣∣

⎡
⎣Ŝ −

m∑

p=1

Apŷp + C

⎤
⎦

ij

∣∣∣∣∣∣∣
, max

i=1,2,...,s

∣∣∣∣∣∣

⎡
⎣

m∑

p=1

apyp − c

⎤
⎦

i

∣∣∣∣∣∣

⎫
⎪⎬
⎪⎭

,

(IV) minimum eigenvalue of X̂,

(V) minimum eigenvalue of Ŝ.

The largest errors obtained for the instances solved in this section, not nec-
essarily for the same problem, are (I) 6.86 × 10−7, (II) 2.16 × 10−7, (III) 0, (IV)
1.93 × 10−9, and (V) 3.51 × 10−9. Since they are small values, they guarantee
that we are very close to the optimal solution (see [56,51,40] for optimality
criteria).

Basically, there are two reasons we could not solve larger SDPs by SeDuMi.
First, lack of memory caused by the use of MATLAB. Second, the computa-
tional time becomes very large for a serial code. Therefore, we solved large-scale
SDPs by the parallel code SDPARA [57] using high performance computers in
the next subsection.

4.3 Numerical results for large-scale problems

SDPARA [57] is a C++ open source parallel code for solving general SDPs
under GNU General Public License. It is an implementation of the primal-
dual predictor-corrector infeasible interior-point method. The main ways that
SDPARA benefits from parallel computation are the following two routines.
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In the framework of primal-dual interior-point methods for general SDPs, the
most computationally intense routines involve the construction and the solution
of a linear equation whose coefficient matrix is known as the Schur complement
matrix (SCM). A close look at this matrix [57] reveals that each element can
be evaluated on a different processor, independently from the others, if each
of them stores the input data matrices Ap (p = 1, 2, . . . , m) and the variable
matrices X and S in their own memory space. This characteristic is well suited
for parallel computation. In addition to the evaluation of the SCM, its par-
allel Cholesky factorization can be done efficiently by a routine provided by
ScaLAPACK [1].

We installed SDPARA on two IBM RS/6000 SPs, seaborg (16 × 375 MHz
Power3+ with level two cache of size 8MB, and a maximum of 64GB of mem-
ory per Nighthawk node) at the National Energy Research Scientific Computing
Center (NERSC), and eagle (4 × 375 MHz Power3-II with level two cache of
size 8MB, and 2GB of memory per Winterhawk-II thin node) at Oak Ridge
National Laboratory. We also installed SDPARA on an IBM pSeries 690, chee-

tah (32 × 1.3 GHz Power4 with level two cache of size 1.5 MB per chip, level
three cache of size 32 MB, and maximum of 128 GB memory per Regatta node)
at Oak Ridge National Laboratory. We chose to report the time and the total
memory usage for seaborg since we performed most of the computation there.

SDPARA was compiled with IBM C++. We also made two modifications to
SDPARA 0.90 [57], which limited the size of SDPs that could be solved to r = 20
with m = 7, 230 and nmax = 1, 450 [61]. First, a check point was introduced, per-
mitting a re-start of SDPARA after a certain number of iterations. This was
due to a technical restriction on the running time of twelve hours at these
multiple-user facilities. Second, the memory storage was changed. SDPARA
0.90 keeps duplicate copies of three type of matrices: the input data matrices
C, Ap (p = 1, 2, . . . , m), the variable matrices X and S, and a considerable num-

ber of auxiliary matrices such as X−1, S−1, various matrix products, and the
search direction at each processor. See [57] for details. Storing the input data
matrices and the variable matrices at each processor is essential for construct-
ing the SCM elements by parallel processing. The advantage of also storing the
auxiliary matrices at each processor is that this reduces communication time,
but the disadvantage is the excessive use of local memory. We modified the
code to just keep a single copy of the auxiliary matrices at a specific proces-
sor. Before evaluating the SCM elements at each iteration of the interior-point
method, we transmit copies of only the updated variable matrices from the
specific processor to all other processors. We will call this version of the code
SDPARA-SMP.

Table 5 shows the great reduction in total memory usage that resulted from
this change, where the last column indicates the number of processors used.
Here we solved SDPs with discretization basis size r up to 26. Furthermore,
a reduction in the running time was also achieved, especially for problems
with (P, Q, G) and (P, Q, G, T1) conditions, by making a minor improvement
in handling zero block matrices. Fortunately, the computational time was not
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increased by these modifications, mostly because most of communications were
done within the node, which shares a common memory space between several
processors, and not between different nodes.

Another limitation in using SDPARA-SMP is that it does not handle equality
constraints in the dual SDP (12) as SeDuMi does. Therefore, we introduced a
small perturbation into the formulation which is equivalent to a further relax-
ation of the problem (12) [61]. Equalities like 〈Ŵ1, I〉 = N were all replaced
by −ǫ ≤ 〈Ŵ1, I〉 − N, and 〈Ŵ1, I〉 − N ≤ ǫ, where ǫ was fixed to 10−5 for SDP
relaxations with (P, Q, G, T2) or (P, Q, G, T1, T2) conditions and r ≥ 16, and
10−7 otherwise.

Table 6 gives the ground state energy for all systems we solved using
SDPARA-SMP, including the small- and medium-scale ones we solved pre-
viously using SeDuMi. The basic conclusions about the quality of the results
of the RDM method compared to the traditional electronic structure methods
are the same as previously stated. A comparison between this table and Table 3
shows that the small perturbations we included in the formulation can lower
the energy in some cases as much as 0.0005 Hartrees (CH3 with (P, Q, G, T1,
T2) conditions), which is still acceptable but not desirable. On the other hand,
this means that the actual energies obtained by the SDPs especially imposing
the (P, Q, G, T1, T2) conditions with equality constraints should be slightly
higher than shown in Table 6, and they still must give comparably better results
than CCSD(T).

In particular, we believe that we solved the largest SDP found in the litera-
ture so far (m = 20, 709, largest block matrix nmax = 3, 211) with this density
and accuracy. Larger problems could not be solved because we had limited
access to these high performance computers.

Table 7 shows the nonzero dipole moments for the corresponding molecules.
We derive the same conclusions as in Sect. 4.2.

Finally, we give the error measures for the approximate optimal solution

(X̂, Ŝ, ŷ) for the SDPs. Now that we do not have the equality constraints in the
dual SDP (12), the errors (I), (II) and (III) can be restated as follows:

(I′) duality gap ≡ bT ŷ − 〈C, X̂〉,
(II′) primal feasibility error ≡ max

p=1,2,...,m
|〈Ap, X̂〉 − bp|,

(III′) dual feasibility error ≡ max
i,j=1,2,...,n

|[Ŝ −
m∑

p=1

Apŷp + C]ij|.

The largest errors obtained for the instances solved in this section, not neces-
sary for the same problem, are (I′) 1.73×10−5, (II′) 1.28×10−6, (III′) 4.48×10−13,
(IV) 2.27 × 10−10, and (V) 3.85 × 10−12.

4.4 Considerations on alternative methods

The small perturbations we introduced into the formulation, splitting one equal-
ity constraint into two inequality constraints, as explained at Sect. 4.3, are not
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desirable. Instead, we tried to eliminate some variables (at y in (12)) using
these equalities as equations, producing an equivalent SDP with fewer variables
and no equality constraints. Preliminary numerical experiments demonstrated,
however, that these linear transformations introduce undesirable numerical
properties into the problem and SDPARA was not able to get enough accuracy
[60, Sect. 5.3.3]. Therefore, incorporation of equality constraints as a standard
option, as done in SeDuMi and SDPT3, certainly is a desirable addition to
SDPARA’s capability.

Alternative methods such as discussed by [40] may be worth considering, but
we have felt up until now that they are not able to deliver the accuracy that we
require for this application. This is certainly our experience with the spectral
bundle method; early experiments reported in [46] indicated that is very diffi-
cult to obtain satisfactory accuracy. We also experimented with the new code
SDPLR 1.01 [2] which combines an augmented Lagrangian technique with lim-
ited-memory BFGS. However, we even could not solve the smallest problems
to the accuracy that we need since the number of internal limited-memory
BFGS iterations increases prohibitively as the optimal solution is approached.
Surprisingly, Mazziotti [35,36] very recently announced some results for larger
systems (r = 36, with an estimate m ≈ 390, 000 and nmax ≈ 600, using only the
(P, Q, G) conditions), for which he solved the SDPs by a method similar to that
used in SDPLR.

The use of the conjugate gradient method to solve the SCM system or other
iterative methods to solve the related indefinite “augmented system” (see [52])
could be a further alternative, but the extreme ill-conditioning of these linear
systems makes it very difficult to obtain the accuracy that we need. It is possible
that eliminating some of the degeneracies in the system could lead to improved
performance of these methods.

5 Conclusion and further directions

The RDM method, which provides a lower bound for the ground state energy of
a many-electron system subject to a given external potential, can be formulated
as an SDP problem through the known (P, Q, G, T1, T2) N-representability con-
ditions. The new formulation presented here as a dual SDP (12) seems the most
suitable one for the state-of-art software to solve general SDPs. The numerical
experiments carried out since 2001, including the ones reported here, demon-
strate for the first time the quality, the strength, and the actual effectiveness of
the N-representability conditions known for more than forty years in electronic
structure calculation. In fact, they demonstrate that the RDM method with the
(P, Q, G, T1, T2) conditions can give better ground state energies than the
current electronic structure methods, although it is not competitive in terms of
time at least at present. It also has the advantage of robust convergence which
is not the case for the traditional electronic structure methods. In addition, our
results for the dipole moment confirm that the RDM itself is computed with
excellent accuracy compared with traditional wavefunction-based methods.
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We also report results for the largest problems in literature using the (P,
Q, G, T1, T2) conditions with discretization basis size r = 26 (m = 20, 709,
nmax = 3, 211), while the previous ones were r = 20 (m = 7, 230, nmax = 1, 450)
[61]. The SDPs which arise from this application can be arbitrarily large, and
may require special techniques for their solution. Parallel computation and
large memory management are indispensable. In fact, it seems that we will
always face a dual hardware limitation in solving large-scale problems: time
and memory, both of which depend on the number of available processors and
physical memory.

The recent series of numerical results for this application opens up a whole
research field which was once very active, and at the same time raises many
questions for future investigations.

Some fundamental questions for physicists are the search for new
N-representability conditions and understanding the role of the known con-
ditions. Chemists might be interested in understanding why the same (P, Q, G,
T1, T2) conditions provide very good approximations for some systems and not
for others, and also in studying many desirable properties obtainable by this
unique method, like dissociation processes of highly-correlated systems having
multiple bonds and high spin states, which are difficult to calculate. And finally,
optimizers have the challenge of solving larger SDPs with m > 20, 000 and
n > 3, 000 with high accuracy. However, it is certain that novel algorithms and
exploration of new physical properties of the N-representability conditions are
necessary in order for the RDM method to become practical.

As a final observation, we recognize that there is a need to provide physicists/
chemists easy-to-use black box SDP solvers based on their own terminology.
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