

Open access • Posted Content • DOI:10.1101/2021.09.26.21264129

Large-scale seroepidemiologic surveillance of COVID-19 - Cross-sectional study in Hyogo prefecture of Japan in August, 2021 — Source link

Zhenxiao Ren, Koichi Furukawa, Mitsuhiro Nishimura, Yukiya Kurahashi ...+14 more authors

Institutions: Kobe University, University of Hyogo

Published on: 28 Sep 2021 - medRxiv (Cold Spring Harbor Laboratory Press)

Topics: Population

Related papers:

- Seroepidemiological Survey of the Antibody for Severe Acute Respiratory Syndrome Coronavirus 2 with Neutralizing Activity at Hospitals: A Cross-sectional Study in Hyogo Prefecture, Japan
- Seroprevalence Surveys for Anti-SARS-CoV-2 Antibody in Different Populations in Taiwan With Low Incidence of COVID-19 in 2020 and Severe Outbreaks of SARS in 2003.
- PREVALENCE OF MOLECULAR AND SEROLOGICAL TESTS OF THE NEW CORONAVIRUS (SARS-CoV-2) IN CARLOS CHAGAS-SABIN LABORATORIES IN CUIABA
- Seroprevalence of SARS-CoV-2 antibodies in an entirely PCR-sampled and quarantined community after a COVID-19 outbreak the CoNAN study
- · Seroprevalence of SARS-CoV-2 Antibodies Among Rural Healthcare Workers

Share this paper: 🚯 🎽 🛅 🗠

All rights reserved. No reuse allowed without permission.

1 Title

2	Large-scale sero	epidemiologic sur	veillance of COVID	-19 - Cross-sectional	l studv in Hvogo

3 prefecture of Japan in August, 2021

4

5 Authors

- 6 Zhenxiao Ren¹, Koichi Furukawa, MD¹, Mitsuhiro Nishimura, PhD¹, Yukiya Kurahashi, MD¹,
- 7 Silvia Sutandhio, MD¹, Lidya Handayani Tjan, MD¹, Kaito Aoki¹, Natsumi Hasegawa¹, Jun
- 8 Arii, DVM, PhD¹, Kenichi Uto², Keiji Matsui, PhD², Itsuko Sato², Jun Saegusa, MD, PhD²,
- 9 Nonoka Godai³, Kohei Takeshita, PhD⁴, Masaki Yamamoto, PhD^{3,4}, Tatsuya Nagashima, MD,

10 PhD⁵, Yasuko Mori, MD, PhD^{1*}

11

12 Affiliations

- 13 ¹Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School
- 14 of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.
- ¹⁵ ²Department of Clinical Laboratory, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku,
- 16 Kobe, Hyogo 650-0017, Japan.
- ¹⁷ ³Laboratory of Macromolecular Dynamics and X-ray Crystallography, Department of Life
- 18 Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
- ¹⁹ ⁴Life Science Research Infrastructure Group, Advanced Photon Technology Division, RIKEN
- 20 SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 Japan.
- ⁵Hyogo Prefecture Health Promotion Association, 2-1-12 Arata-cho, Hyogo-ku, Kobe, Hyogo
- 22 652-0032, Japan.
- 23
- 24 * Corresponding author
- 25 E-mail: ymori@med.kobe-u.ac.jp (YM)
- 26

27 Abbreviations

- 28 COVID-19: Coronavirus disease 2019
- 29 SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2
- 30 ECLIA: Electrochemiluminescence immunoassay
- 31 ELISA: Enzyme-linked immunosorbent assay
- 32 N: Nucleocapsid
- 33 S: Spike
- 34 PBS: phosphate buffered saline
- 35 COI: cut-off index NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

ABTS: 2,2' -azino-bis(3-ethylbenzothiazoline-6-sulfonic acid 36

38 Abstract

The situation of the COVID-19 pandemic in Japan is drastically changing in the 2nd year, 2021, 39 40 due to the appearance of SARS-CoV-2 variants of concern and the roll-out of mass vaccination. 41 In addition to PCR diagnosis, periodic seroepidemiologic surveillance is important to analyze 42 the epidemic situation. In this study, we analyzed the rate of seropositivity for the SARS-CoV-2 43 N and S antigens in Hyogo prefecture, Japan in August 2021. Sera collected from people who 44 received a health check-up in a clinic of the Hyogo Prefecture Health Promotion Association 45 were subjected to analysis of reactivity to the SARS-CoV-2 N and S antigens by 46 electrochemiluminescence immunoassay (ECLIA) and enzyme-linked immunosorbent assay 47 (ELISA), respectively. For a total 1,000 sera, the positive rates to N and S antigens were 2.1% 48 and 38.7%, respectively. The infectious rate estimated by serological analysis based on the 49 presence of the anti-N antibody was 2.5-fold higher than the value reported based on PCR-based 50 analysis, and it increased five-fold compared to the rate determined by our previous 51 seroepidemiologic study in October, 2020. The anti-S positive rate was almost consistent with 52 the vaccination rate in this area. The observed high anti-S antibody level in the seropositive 53 population may indicate that the mass vaccination in Japan is being performed smoothly at this 54 time point, although the infectious rate has also increased.

55

56 Introduction

57 The COVID-19 pandemic, which first emerged in December 2019, has undergone 58 several turning points, introducing drastic changes in its progress. One of the most important 59 factors is the appearance of the SARS-CoV-2 variants of concern (VOCs) replacing the original 60 variant. In Japan, the Alpha variant (B1.1.7) replaced the existing strain by around April, 2021; 61 then, the Delta variant (B1.617.2) began spreading rapidly throughout the country from July to 62 August, 2021 (2,16,22). The other critical event has been the launch of anti-COVID-19 63 vaccines. Accelerated development of several vaccine platforms was based on the components 64 of the original SARS-CoV-2 strain as the template, and these vaccines were shown to be

65 effective for reducing the COVID-19 outbreak (17, 20). Although the COVID-19 vaccine 66 rollout in Japan was delayed compared to that in other countries such as Israel and United States 67 (19), the Comirnaty (BNT162b2 mRNA, BioNTech-Pfizer, Mainz, Germany/New York, United 68 States) vaccine (25) was first approved in Japan and administered to health-care workers 69 starting in February 2021, and elderly persons aged ≥ 65 years old starting April 2021, 70 expanding to other populations from May, 2021. The mRNA vaccines developed by Moderna 71 (7) were also approved and have been widely used in Japan from May 2021. The number of 72 vaccinated people is increasing rapidly in Japan, as monitored by the government system (1). 73 On September 13th, the government announced that 50.9% of the population in Japan has 74 completed vaccination (https://covid19.who.int/region/wpro/country/jp). These two factors, that 75 is, propagation of SARS-CoV-2 VOCs and the progress of the vaccination, may balance each 76 other out, making predictions of the COVID-19 situation more difficult. 77 In October 2020, we conducted seroepidemiologic surveillance in Hyogo prefecture, 78 population 5.5 million, located in the southern-central region of Japan, the so-called Kansai area 79 (11). In our 1st seroepidemiologic surveillance, we reported that 0.15% of 10,377 sera had 80 neutralizing activity against SARS-CoV-2 infection in vitro. The value 0.15% was interpreted to 81 be the true infectious rate, and it was three times higher than the value (0.05%) estimated based 82 on the PCR diagnosis at that time point (33), probably because the serological analysis could 83 also detect persons with histories of asymptomatic infection. 84 In previous COVID-19 seroepidemiologic analyses, both the Nucleocapsid (N) and

Spike (S) antigens of the SARS-CoV-2 were used as markers of infection; reactivity of serum antibodies against one or two of these antigens was detected (9, 21, 27, 33). However, currently the anti-N antibody is the major marker because the vaccines used in Japan protect individuals by inducing anti-S immunities including anti S-antibodies, making it is impossible to distinguish the S antibodies due to SARS-CoV-2 infection from those induced by vaccination. Nevertheless, analysis of the anti-S antibodies is of great importance because they are the key immune components for counteracting SARS-CoV-2 infection, and can serve as a marker of an

92 individual's potential to be protected from the infection (29, 31).

93 Under the current situation where infected and vaccinated people are both prevalent in 94 society, seroepidemiologic surveillance can be used to accurately measure the proportion of 95 individuals who have acquired SARS-CoV-2-specific antibodies by infection, vaccination or 96 both. Seroepidemiologic surveillance is frequently conducted to understand and predict 97 epidemics (8, 23, 26, 28, 35). 98 In this study, we reported the 2nd seroepidemiologic survey of COVID-19 in Hyogo 99 prefecture from July to August 2021, which overlaps with the period of the 2020 Tokyo 100 Olympics, delayed one year and held in Japan in the summer of 2021 (30). The anti-N antibody 101 positivity rate revealed that the estimated infection rate was slightly higher than that reported by 102 PCR diagnosis, whereas the anti-S antibody positive rate was consistent with the current 103 vaccination rate in Hyogo prefecture. This report will be a milestone in the era during which the 104 vaccine and SARS-CoV-2 VOCs are struggling for dominance. 105 106 Materials and methods 107 Samples 108 Serum samples were collected from people receiving health check-ups at the clinics of Hyogo Prefecture Health Promotion Association, Kobe, Japan from 19th July to 6th August. This 109 110 retrospective observational study was explained on the website of Kobe University Hospital 111 along with the opportunity to opt-out. Each serum was heat-treated at 56°C for 30 min and 112 stored in 4°C until use. 113 114 Detection of anti-N antibody by electrochemiluminescence immunoassay (ECLIA) 115 An electrochemiluminescence immunoassay (ECLIA) was conducted using the cobas 116 e801 module (Roche Diagnostics, Rotkreuz, Switzerland) as in our previous study (11). The Elecsys Anti-SARS-CoV-2 assay kit (Roche Diagnostics, Rotkreuz, Switzerland) is based on a 117 118 double-antigen sandwich assay, which detects antibodies against the SARS-CoV-2 nucleocapsid

119 (N). The measurement was performed according to the manufacturer's instructions, and samples

120 with a cut-off index (COI) > 1.0 were diagnosed as positive.

121

122 Expression and purification of SARS-CoV-2 spike protein

123 The Spike protein used for the ELISA assay was prepared by a recombinant 124 expression system similar to that previously reported by another research group (15). Briefly, 125 the gene sequence of the SARS-CoV-2 Spike ectodomain (amino acids 1-1213) was subcloned 126 into a pCAGGS vector (24) with a puromycin-resistant gene. The Spike sequence used here 127 includes following mutations: D614G, R682del, R683del, R685del, F817P, A892P, A899P, 128 A942P, K986P, and V987P, and additional sequences: namely, an HRV-3c recognition site, T4 129 foldon, and a His-tag at the C-terminal side. The sequence was confirmed by the capillary 130 electrophoresis sequencer DS3000 (Hitachi High-Tech). 131 Spike protein was expressed using the Expi293 expression system (Thermofisher 132 Scientific) according to the manufacturer's instruction. The culture supernatant was collected at

133 four days post transfection. The His-tagged Spike protein was purified by Ni-NTA agarose

134 (Qiagen) and size exclusion chromatography using the Superose 6 increase column and AKTA

135 pure system (Cytiva).

136

137 Detection of anti-Spike antibodies by enzyme-linked immunosorbent assay (ELISA)

138 Anti-Spike antibodies in the human sera were detected by an enzyme-linked 139 immunosorbent assay with the purified Spike ectodomain described above. Each well of the 96-140 well ELISA plate (Corning) was coated with 100 ng of purified Spike protein dissolved in a 141 carbonate buffer at 4°C overnight. After washing the plate with PBS containing 0.1% Tween 20 142 (PBST) to remove the antigen, PBST supplemented with 1% bovine serum albumin was added 143 as a blocking buffer followed by incubation at 4°C for 2 hours. Individual sera samples serially 144 diluted from 1:40 to 1:5120 in the blocking buffer were added to the antigen-coated plate, and 145 then incubated at 37°C for 1 hour. After washing with PBST, a goat anti-human IgG with

146 conjugated horseradish peroxidase (abcam) diluted 1:10000 with PBST was added as a 147 secondary antibody followed by incubation at 37°C for 1 hour. After washing with PBST, 100 µl 148 per well of ABTS solution (Roche) was added as substrate, and the plate was incubated at room 149 temperature for 40 minutes in the dark. The reaction was stopped by adding 100 μ l of 1.5% 150 (w/v) oxalic acid dehydrate solution. The optical density at wavelength 405 nm (OD_{405}) was 151 measured using the plate leader Multiskan FC (Thermofisher Scientific). Based on a preliminary 152 experiment using sera from healthy volunteers (average 0.14; standard deviation: 0.022, n=12), 153 we set a cut-off value of 0.3 for the 1:40 dilution to define positivity, with the aim of avoiding 154 false positive detection. The value of the area under the curve (AUC) was used to evaluate the 155 anti-S antibody amount (6, 12). The AUCs were calculated for the plot of OD_{405} values 156 according to dilution factors, and an arbitrary value of 1 was given as the width for a two-fold 157 dilution step.

158

159 **Ethics statement**

160 This study was approved by the ethical committees of Kobe University Graduate School of 161 Medicine (approval codes: B2156702). Hyogo Prefecture Health Promotion Association was 162 also granted approval under the ethical committee of Kobe University Graduate School of 163 Medicine. Information about this retrospective observational study was published on the 164 website of Kobe University Hospital, along with the opportunity to opt out. To validate the 165 ELISA, sera from COVID-19 patients and healthy volunteers were used under approval of the 166 ethical committee of Kobe University Graduate School of Medicine (approval code B200200), 167 and written informed consent was obtained from the donors.

168

169 **Results**

170 Summary of the samples

We collected sera from 1,000 persons who received a health check-up at a clinic of the
Hyogo Prefecture Health Promotion Association in Hyogo prefecture. A summary of the

173 samples is shown in Table 1. The gender ratio was nearly equal: males, 58.7%; females, 41.3%.
174 The age distribution was widely spread with a median of 48 (Table 1 and Figure 1A). The
175 history of vaccination and infection were not included as selection or exclusion criteria; thus, no
176 prior information was referred to in this study.
177
178 Reactivity of sera against the SARS-CoV-2 N and S antigens

179 The SARS-CoV-2 anti-N antibodies were detected by the electrochemiluminescence

180 immunoassay (ECLIA) method (10, 11), and 21 of the 1,000 samples (2.1%) were deemed

181 positive given the cut-off of 1.0 (Table 2). The age distribution of positive cases is shown in

182 Figure 1B and Table 2. The positive rate for the age groups 30-39 yrs and 40-49 yrs were

183 especially high, at 3.4% (6/179) and 4.1% (10/243), respectively. The positive rates for males

184 and females were 2.7% (16/587) and 1.2% (5/413), respectively.

185 The anti-S antibodies were detected by the enzyme-linked immunosorbent assay

186 (ELISA) method using a purified SARS-CoV-2 Spike protein. As a result, 38.7% (387/1,000)

187 were positive given the cut-off of 0.3 (See the Materials and Methods). The age distribution of

188 anti-S positive cases is shown in Figure 1C and Table 2. The positive rate for those in their 60s

and 70s showed an apparently high rate, 70.7% (123/174) and 90.2% (37/41), respectively. On

190 the other hand, the anti-S positive rates for younger age groups were relatively low; 18.9%

191 (24/127), 31.3% (56/179), 27.6% (67/243), and 33.9% (80/236), for the age groups ≤ 29 y, 30-39

192 y, 40-49 y, and 50-59 y, respectively.

193The correlation of measured scores for anti-N and anti-S antibodies was analyzed in194N- positive cases and is shown in Figure 2. The Spearman's correlation factor was 0.42,195indicating little correlation if any, probably due to the mixed effect of infection and vaccination196for the value of the anti-S antibody. As expected, all the anti-N positive sera also were anti-S197positive with one exception for a serum in which the N antibody detection value was also

198 relatively low, probably due to a weak immune response

199

200 Distribution of anti-S antibody amount in sera

201	We further analyzed the distribution of the anti-S positive reactivity of the sera
202	because it represents the amount of anti-S antibodies related to the neutralizing antibodies
203	against SARS-CoV-2. The anti-S positive sera were further evaluated by serial dilution.
204	Representative curves are shown in Figure 3A. The area under the curve (AUC), which
205	indicates the amount of anti-S antibodies, was calculated for the 387 anti-S positive samples,
206	and the distribution is plotted in Figure 3B. The median was 13.75, and the higher and lower
207	quartile of the values were 17.45 and 8.79, respectively. In the same analysis, the AUC values
208	for the serum of COVID-19 patient and that of a healthy control were 11.56 and 1.66,
209	respectively. Thus, most of the anti-S-positive sera contained comparable amounts of anti-S
210	antibodies to that of an actual COVID-19 patient. The anti-S AUC values for the anti-N positive
211	sera were plotted in Figure 3C by extracting from the data of Figure 3B. The values are widely
212	distributed within the range of whole AUC values, consistent with the result of Figure 2.

213

214 Discussion

215 Seroepidemiologic surveillance is a powerful approach to understanding the spread of 216 infectious diseases in combination with other methods such as PCR diagnosis and antigen tests. 217 Our surveillance in August 2021 revealed that the anti-N-positive rate, which represents the 218 SARS-CoV-2 infectious rate, was 2.1%. At the end of the surveillance, the reported infectious 219 rate based on PCR diagnosis was 0.85% and 0.80% in the Hyogo prefecture and in Japan, 220 respectively (33), indicating approximately a 2.5-fold difference compared with the result in this 221 study. The difference is accounted for by the existence of asymptomatically or mildly infected 222 individuals whose cases may not have been detected because they never underwent testing and 223 PCR analysis. Indeed, a substantial portion of SARS-CoV-2 infected individuals are 224 asymptomatic (4), leading to the inaccuracy of surveillance rates determined solely on PCR 225 diagnosis. Although it is difficult to extrapolate our data directly to the whole population, they 226 suggest that the infection is more widespread in Japan than the current PCR test results suggest

and indicate a need for more systematic testing. Nonetheless, the difference between the
seroepidemiologic analysis and the PCR diagnosis was not overly large; i.e., the two sets of data

are mutually validating.

230 The infectious rate of 2.1% revealed in this study in August 2021 is 14-fold higher 231 than the rate 0.15% we reported in our 1st seroepidemiologic analysis in October 2020 (11). The 232 infectious rate of the 1st surveillance was based on the neutralizing antibody titer; however, 233 vaccination has made it difficult to analyze the relationship between the infection and the 234 neutralizing antibody titer of the sera. In contrast to the anti-S antibody, the anti-N antibody is 235 expected to be induced only by the SARS-CoV-2 infection as long as only S-targeted vaccines 236 are used (13, 32). The anti-N analysis by the ECLIA method of the 1st surveillance for samples 237 collected at the same clinic of the Hyogo Prefecture Health Promotion Association was 0.4% 238 (4/1,000) (11), indicating a 5-fold increase at the same area in these 10 months. This result was 239 not surprising considering the fact that after the 1st surveillance in October 2020, Japan 240 including Hyogo prefecture experienced two additional waves of COVID-19 infection around 241 January 2021 and May 2021; currently, we face the so-called fifth wave, which started in July, 242 2021 (3, 33).

As of August, 2021 vaccination in Japan with mRNA vaccines that induce anti-Sbased immunity has been proceeding. As reported by our previous research and others, the vaccination actually induces neutralizing antibody in sera (14, 34), (Furukawa et al., manuscript submitted). According to the Japanese government system, the vaccination rate in the Hyogo prefecture as of August 6th, 2021 was 32.79% and 42.05% for single- or two-dose vaccinations, respectively (1). The revealed anti-S positive rate was 38.7% in this study; this result well represents the current progress in vaccination in Hyogo prefecture, Japan.

The observed high anti-S positive rate for the age groups 60-69 yrs and ≥70 yrs is
explained by the priority vaccination for elderly people (more than 65 years old) in Japan
(Figure 1C). The high anti-S positive rate might be related to the relatively low infection rate in
these age groups (Figure 1B). However, the data for the age groups 50-59 yrs and <29 yrsr, for

which both the anti-S and ant-N positive rates were relatively low, indicated that the low
infectious rate could not be simply explained by the high anti-S positive rate of the age group.
To understand the relatively high infectious rate for the age groups 30-39 yrs and 40-49 yrs
shown in our data (Figure 1B), social reasons such as work commitments and social activities
may need to be taken into consideration.

259 The relationship between the anti-S positive and the anti-N positive rate has become 260 unclear because of the effect of vaccination. Actually, we could not find a correlation between 261 the anti-N and the anti-S scores (Figure 2). Although all anti-N-positive sera were also positive 262 for the anti-S antibody, with one exception, some of the sera showed high anti-S values with 263 relatively low anti-N scores (Figure 2). Breakthrough infection for vaccinees may induce anti-N 264 antibodies; however, the titers of the antibodies may be expected to be decreased owing to the 265 prophylactic immunity induced by vaccination, preventing infection and viral replication. 266 Actually, Allen et al. has reported that anti-N antibodies were hardly detected by the ECLIA 267 methods we used in this study in cases of breakthrough infection (5). The cut-off value for the 268 anti-N assays should be reconsidered in future seroepidemiologic studies in light of the high 269 vaccination rate that is expected soon in Japan.

The COVID-19 situations in Japan and all over the world are rapidly changing day by day. This study was conducted during the build-up of social immunity by vaccination and the rapid spread of the SARS-CoV-2 Delta strain in Japan. It will become an important reference for future studies including our third epidemiological surveillance, which we anticipate will show a drastically altered situation of COVID-19.

- 275
- 276 **Conflict of interest**

277 The authors declare no conflict of interest in this research.

278

- 279 Funding
- 280 This work was supported by Hyogo Prefectural Government.

20	1
20	T

282 Acknowledgement

- 283 We thank Kazuro Sugimura MD, PhD (Superintendent, Hyogo Prefectural Hospital Agency and
- 284 Professor, Kobe University) for his full support to promote this study. We express our sincere
- 285 gratitude for cooperation and participation of staffs of Hyogo Prefecture Health Promotion
- 286 Association. We also thank researchers of Division of Respiratory Medicine, Department of
- 287 Internal Medicine, Kobe University Graduate School of Medicine and Hyogo Prefectural
- 288 Kakogawa Medical Center.
- 289

290 **Figure legends**

- 291 Figure 1
- 292 Age distribution of the samples and seropositive rate. (A) Age distribution of the volunteers who
- 293 provided the sera. Subjects were divided into six age groups as follows: 29 years or less (\leq 29
- 294 years), 30-39 years, 40-49 years, 50-59 years, 60-69 years, 70 years or more (\geq 70 yrs). The anti-
- 295 N positive rate (B) and anti-S positive rate (C) were calculated by age groups. The bars were
- 296 painted according to the genders. For the anti-N, the measurement was performed once for all,
- 297 and confirmed by a repeating measurement for the anti-N positive samples and anti-N negative
- 298 samples with relatively high values (>0.25). For anti-S, all the positive samples were measured
- 299 twice, and samples for which consistent results were obtained were counted as positive.
- 300

301 Figure 2

- 302 Correlation between the observed scores of anti-N and anti-S analysis. For the anti-N analysis,
- 303 the cut of index value (COI) recorded by the device was used. For the anti-S analysis, the
- 304 observed OD₄₀₅ value of the ELISA was used.

- 306 Figure 3
- 307 Qualitative analysis of the anti-S antibody amount. (A) Three representative curves plotting the

- 308 observed OD₄₀₅ values along the serial serum dilution factors are shown. The serum from a
- 309 COVID-19 patient and that from a healthy donor were used as positive and negative controls,
- 310 respectively. The areas under the curve were calculated from the individual curves and used as a
- 311 reference of the anti-S amount. The calculated AUCs for the curves shown in (A) were as
- 312 follows: Sample 1, 20.35; Sample 2, 3.59; Sample 3, 7.87; patient serum, 11.56; and healthy
- 313 control: 1.66. (B) The distribution of AUC values from the anti-S ELISA ELISA curves are
- 314 shown as a violin plot. The thick horizontal line stands for the median, 13.75, and the thin
- 315 horizontal lines indicated the lower and higher quartile values, 8.79 and 17.45, respectively. The
- 316 values for the patient sera and sera of healthy controls are indicated as filled and open
- 317 arrowheads, respectively. (C) Distribution of anti-S AUC values for the anti-N positive sera. The
- 318 exceptional sample determined as anti-S negative is shown as an open circle, and has the lowest
- 319 value, as expected.
- 320

321

.

322 Tables

323 Tables 1. Information of the sample numbers and the age distribution

		Sex	
	All	Male	Female
Sample number, n (%)	1,000 (100%)	587 (58.7%)	413 (41.3%)
Age, yrs, median, (range)	48 (19-83)	51 (20-83)	44 (19-78)
Numbers by age group, n			
\leq 29 years	127	41	86
30-39 years	179	97	82
40-49 years	243	134	109
50-59 years	236	153	83
60-69 years	174	133	41
≥70 years	41	29	12

		Sex	
	All (n=1,000)	Male (n=587)	Female (n=413)
SARS-CoV-2 anti-N antibody (I	ECLIA)		
Positive No. by age group, n			
≤29 years (n=127)	1	0	1
30-39 years (n=179)	6	5	1
40-49 years (n=243)	10	7	3
50-59 years (n=236)	3	3	0
60-69 years (n=174)	1	1	0
≥70 years (n=41)	0	0	0
Positive No. in all participants,	21 (2 10/)		5 (1.00/)
n (%)	21 (2.1%)	16 (2.7%)	5 (1.2%)
SARS-CoV-2 anti-S antibody (E	CLISA)		
Positive No. by age group, n			
≤29 years (n=127)	24	4	20
30-39 years (n=179)	56	30	26
40-49 years (n=243)	67	28	39
50-59 years (n=236)	80	48	32
60-69 years (n=174)	123	92	31
≥70 years (n=41)	37	26	11
Positive No. in all participants,			
n (%)	387 (38.7%)	228 (38.8%)	159 (38.5%)

Tables 2. Numbers of anti-N and anti-S positive samples by age groups 325

327 References

328	1.	Government CIOs' portal, Japan. COVID-19 Vaccination in Japan.
329		https://cio.go.jp/en/index.php, https://cio.go.jp/c19vaccine_dashboard.
330	2.	Ministry of Health, Labour and Welfare. https://www.mhlw.go.jp/stf/covid-
331		19/open-data_english.html.
332	3.	World Health Organization. WHO Coronavirus (COVID-19) Dashboard
333		https://covid19.who.int/region/wpro/country/jp. Accessed 15 September,
334		2021).
335	4.	Alene, M., L. Yismaw, M. A. Assemie, D. B. Ketema, B. Mengist, B. Kassie, and
336		T. Y. Birhan. 2021. Magnitude of asymptomatic COVID-19 cases throughout
337		the course of infection: A systematic review and meta-analysis. PLoS One
338		16: e0249090.
339	5.	Allen, N., M. Brady, A. I. Carrion Martin, L. Domegan, C. Walsh, L. Doherty,
340		U. N. Riain, C. Bergin, C. Fleming, and N. Conlon. 2021. Serological markers of
341		SARS-CoV-2 infection; anti-nucleocapsid antibody positivity may not be the
342		ideal marker of natural infection in vaccinated individuals. J Infect.
343	6.	Amanat, F., D. Stadlbauer, S. Strohmeier, T. H. O. Nguyen, V. Chromikova, M.
344		McMahon, K. Jiang, G. A. Arunkumar, D. Jurczyszak, J. Polanco, M. Bermudez-

345		Gonzalez, G. Kleiner, T. Aydillo, L. Miorin, D. S. Fierer, L. A. Lugo, E. M.
346		Kojic, J. Stoever, S. T. H. Liu, C. Cunningham-Rundles, P. L. Felgner, T.
347		Moran, A. Garcia-Sastre, D. Caplivski, A. C. Cheng, K. Kedzierska, O.
348		Vapalahti, J. M. Hepojoki, V. Simon, and F. Krammer. 2020. A serological assay
349		to detect SARS-CoV-2 seroconversion in humans. Nat Med 26: 1033-1036.
350	7.	Baden, L. R., H. M. El Sahly, B. Essink, K. Kotloff, S. Frey, R. Novak, D.
351		Diemert, S. A. Spector, N. Rouphael, C. B. Creech, J. McGettigan, S. Khetan, N.
352		Segall, J. Solis, A. Brosz, C. Fierro, H. Schwartz, K. Neuzil, L. Corey, P. Gilbert,
353		H. Janes, D. Follmann, M. Marovich, J. Mascola, L. Polakowski, J. Ledgerwood,
354		B. S. Graham, H. Bennett, R. Pajon, C. Knightly, B. Leav, W. Deng, H. Zhou, S.
355		Han, M. Ivarsson, J. Miller, and T. Zaks. 2021. Efficacy and Safety of the
356		mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med 384: 403-416.
357	8.	Batool, H., O. Chughtai, M. D. Khan, A. S. Chughtai, S. Ashraf, and M. J. Khan.
358		2021. Seroprevalence of COVID-19 IgG antibodies among healthcare workers of
359		Pakistan: a cross-sectional study assessing exposure to COVID-19 and
360		identification of high-risk subgroups. BMJ Open 11:e046276.
361	9.	den Hartog, G., R. M. Schepp, M. Kuijer, C. GeurtsvanKessel, J. van Beek, N.
362		Rots, M. P. G. Koopmans, F. R. M. van der Klis, and R. S. van Binnendijk. 2020.

363		SARS-CoV-2-Specific Antibody Detection for Seroepidemiology: A Multiplex
364		Analysis Approach Accounting for Accurate Seroprevalence. J Infect Dis
365		222: 1452-1461.
366	10.	Egger, M., C. Bundschuh, K. Wiesinger, C. Gabriel, M. Clodi, T. Mueller, and
367		B. Dieplinger. 2020. Comparison of the Elecsys(R) Anti-SARS-CoV-2
368		immunoassay with the EDI enzyme linked immunosorbent assays for the
369		detection of SARS-CoV-2 antibodies in human plasma. Clin Chim Acta 509:18-
370		21.
371	11.	Furukawa, K., J. Arii, M. Nishimura, L. H. Tjan, A. Lystia Poetranto, Z. Ren, S.
372		Aktar, J. R. Huang, S. Sutandhio, Y. Kurahashi, A. Nishino, S. Shigekuni, Y.
373		Takeda, K. Uto, K. Matsui, I. Sato, Y. Inui, K. Endo, Y. Kosaka, T. Oota, J.
374		Saegusa, and Y. Mori. 2021. Seroepidemiological Survey of the Antibody for
375		Severe Acute Respiratory Syndrome Coronavirus 2 with Neutralizing Activity at
376		Hospitals: A Cross-sectional Study in Hyogo Prefecture, Japan. JMA J 4: 41-49.
377	12.	Gaebler, C., Z. Wang, J. C. C. Lorenzi, F. Muecksch, S. Finkin, M. Tokuyama,
378		A. Cho, M. Jankovic, D. Schaefer-Babajew, T. Y. Oliveira, M. Cipolla, C. Viant,
379		C. O. Barnes, Y. Bram, G. Breton, T. Hagglof, P. Mendoza, A. Hurley, M.
380		Turroja, K. Gordon, K. G. Millard, V. Ramos, F. Schmidt, Y. Weisblum, D. Jha,

381		M. Tankelevich, G. Martinez-Delgado, J. Yee, R. Patel, J. Dizon, C. Unson-
382		O'Brien, I. Shimeliovich, D. F. Robbiani, Z. Zhao, A. Gazumyan, R. E. Schwartz,
383		T. Hatziioannou, P. J. Bjorkman, S. Mehandru, P. D. Bieniasz, M. Caskey, and
384		M. C. Nussenzweig. 2021. Evolution of antibody immunity to SARS-CoV-2.
385		Nature 591: 639-644.
386	13.	Harris, R. J., H. J. Whitaker, N. J. Andrews, F. Aiano, Z. Amin-Chowdhury, J.
387		Flood, R. Borrow, E. Linley, S. Ahmad, L. Stapley, B. Hallis, G. Amirthalingam,
388		K. Hoschler, B. Parker, A. Horsley, T. J. G. Brooks, K. E. Brown, M. E. Ramsay,
389		and S. N. Ladhani. 2021. Serological surveillance of SARS-CoV-2: Six-month
390		trends and antibody response in a cohort of public health workers. J Infect
391		82: 162-169.
392	14.	Hirotsu, Y., K. Amemiya, H. Sugiura, M. Shinohara, M. Takatori, H. Mochizuki,
393		and M. Omata. 2021. Robust Antibody Responses to the BNT162b2 mRNA
394		Vaccine Occur Within a Week After the First Dose in Previously Infected
395		Individuals and After the Second Dose in Uninfected Individuals. Front
396		Immunol 12: 722766.
397	15.	Hsieh, C. L., J. A. Goldsmith, J. M. Schaub, A. M. DiVenere, H. C. Kuo, K.
398		Javanmardi, K. C. Le, D. Wrapp, A. G. Lee, Y. Liu, C. W. Chou, P. O. Byrne, C.

399		K. Hjorth, N. V. Johnson, J. Ludes-Meyers, A. W. Nguyen, J. Park, N. Wang, D.
400		Amengor, J. J. Lavinder, G. C. Ippolito, J. A. Maynard, I. J. Finkelstein, and J. S.
401		McLellan. 2020. Structure-based design of prefusion-stabilized SARS-CoV-2
402		spikes. Science 369: 1501-1505.
403	16.	Ito, K., C. Piantham, and H. Nishiura. 2021. Predicted dominance of variant
404		Delta of SARS-CoV-2 before Tokyo Olympic Games, Japan, July 2021. Euro
405		Surveill 26 .
406	17.	Izda, V., M. A. Jeffries, and A. H. Sawalha. 2021. COVID-19: A review of
407		therapeutic strategies and vaccine candidates. Clin Immunol 222: 108634.
408	18.	Izumo, T., N. Kuse, N. Awano, M. Tone, K. Sakamoto, K. Takada, Y. Muto, K.
409		Fujimoto, A. Saiki, Y. Ito, H. Matsumoto, and M. Inomata. 2021. Side effects
410		and antibody titer transition of the BNT162b2 messenger ribonucleic acid
411		coronavirus disease 2019 vaccine in Japan. Respir Investig 59: 635-642.
412	19.	Kosaka, M., T. Hashimoto, A. Ozaki, T. Tanimoto, and M. Kami. 2021. Delayed
413		COVID-19 vaccine roll-out in Japan. Lancet 397: 2334-2335.
414	20.	Lopez Bernal, J., N. Andrews, C. Gower, C. Robertson, J. Stowe, E. Tessier, R.
415		Simmons, S. Cottrell, R. Roberts, M. O'Doherty, K. Brown, C. Cameron, D.
416		Stockton, J. McMenamin, and M. Ramsay. 2021. Effectiveness of the Pfizer-

BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms,

418		hospital admissions, and mortality in older adults in England: test negative case-
419		control study. BMJ 373: n1088.
420	21.	Megasari, N. L. A., T. Utsumi, L. N. Yamani, Juniastuti, E. Gunawan, K.
421		Furukawa, M. Nishimura, M. I. Lusida, and Y. Mori. 2021. Seroepidemiological
422		study of SARS-CoV-2 infection in East Java, Indonesia. PLoS One 16:e0251234.
423	22.	Murayama, H., T. Kayano, and H. Nishiura. 2021. Estimating COVID-19 cases
424		infected with the variant alpha (VOC 202012/01): an analysis of screening data
425		in Tokyo, January-March 2021. Theor Biol Med Model 18:13.
426	23.	Naesens, R., H. Mertes, J. Clukers, S. Herzog, C. Brands, P. Vets, I. De Laet, P.
427		Bruynseels, P. De Schouwer, S. van der Maas, K. Bervoets, N. Hens, and P. Van
428		Damme. 2021. SARS-CoV-2 seroprevalence survey among health care providers
429		in a Belgian public multiple-site hospital. Epidemiol Infect 149:e172.
430	24.	Niwa, H., K. Yamamura, and J. Miyazaki. 1991. Efficient selection for high-
431		expression transfectants with a novel eukaryotic vector. Gene 108: 193-9.
432	25.	Polack, F. P., S. J. Thomas, N. Kitchin, J. Absalon, A. Gurtman, S. Lockhart, J.
433		L. Perez, G. Perez Marc, E. D. Moreira, C. Zerbini, R. Bailey, K. A. Swanson, S.
434		Roychoudhury, K. Koury, P. Li, W. V. Kalina, D. Cooper, R. W. Frenck, Jr., L. L.

435		Hammitt, O. Tureci, H. Nell, A. Schaefer, S. Unal, D. B. Tresnan, S. Mather, P.
436		R. Dormitzer, U. Sahin, K. U. Jansen, and W. C. Gruber. 2020. Safety and
437		Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med 383: 2603-
438		2615.
439	26.	Santosh, C. S., D. P. Tukaram, K. Maharudra, A. Balkrishna, G. Chinmay, I.
440		Aniket, K. Kinge, and J. Nilam. 2021. Seroprevalence of SARS-CoV-2
441		Antibodies and Associated Factors in Health Care Workers. J Assoc Physicians
442		India 69: 11-12.
443	27.	Selvaraju, S., M. S. Kumar, J. W. V. Thangaraj, T. Bhatnagar, V. Saravanakumar,
444		C. P. G. Kumar, K. Sekar, E. Ilayaperumal, R. Sabarinathan, M. Jagadeesan, M.
445		S. Hemalatha, and M. V. Murhekar. 2021. Population-Based Serosurvey for
446		Severe Acute Respiratory Syndrome Coronavirus 2 Transmission, Chennai,
447		India. Emerg Infect Dis 27:586-589.
448	28.	Smigelskas, K., K. Petrikonis, V. Kasiulevicius, R. Kalediene, A. Jakaitiene, S.
449		Kaseliene, S. Sauliune, A. Berzanskyte, and M. Stankunas. 2021. SARS-CoV-2
450		Seroprevalence in Lithuania: Results of National Population Survey. Acta Med
451		Litu 28: 48-58.

452 29. Steensels, D., N. Pierlet, J. Penders, D. Mesotten, and L. Heylen. 2021.

453	Compariso	on of SARS	-CoV-2	2 Antibody	Response]	Following	Vaccination	With

- 454 BNT162b2 and mRNA-1273. JAMA.
- 455 30. Tokuda, Y., and T. Kuniya. 2021. Prediction of COVID-19 cases during Tokyo's
- 456 Olympic and Paralympic Games. J Gen Fam Med **22:**171-172.
- 457 31. Wang, Z., F. Schmidt, Y. Weisblum, F. Muecksch, C. O. Barnes, S. Finkin, D.
- 458 Schaefer-Babajew, M. Cipolla, C. Gaebler, J. A. Lieberman, T. Y. Oliveira, Z.
- 459 Yang, M. E. Abernathy, K. E. Huey-Tubman, A. Hurley, M. Turroja, K. A. West,
- 460 K. Gordon, K. G. Millard, V. Ramos, J. Da Silva, J. Xu, R. A. Colbert, R. Patel, J.
- 461 Dizon, C. Unson-O'Brien, I. Shimeliovich, A. Gazumyan, M. Caskey, P. J.
- 462 Bjorkman, R. Casellas, T. Hatziioannou, P. D. Bieniasz, and M. C. Nussenzweig.
- 463 2021. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating
- 464 variants. Nature **592:**616-622.
- 465 32. Whitaker, H. J., S. Elgohari, C. Rowe, A. D. Otter, T. Brooks, E. Linley, I.
- 466 Hayden, S. Ribeiro, J. Hewson, A. Lakhani, E. Clarke, C. Tsang, C. N. Campbell,
- 467 M. Ramsay, K. Brown, and G. Amirthalingam. 2021. Impact of COVID-19
- 468 vaccination program on seroprevalence in blood donors in England, 2021. J
- 469 Infect **83:**237-279.
- 470 33. Yazaki, S., T. Yoshida, Y. Kojima, S. Yagishita, H. Nakahama, K. Okinaka, H.

471		Matsushita, M. Shiotsuka, O. Kobayashi, S. Iwata, Y. Narita, A. Ohba, M.
472		Takahashi, S. Iwasa, K. Kobayashi, Y. Ohe, A. Hamada, T. Doi, and N.
473		Yamamoto. 2021. Difference in SARS-CoV-2 Antibody Status Between Patients
474		With Cancer and Health Care Workers During the COVID-19 Pandemic in
475		Japan. JAMA Oncol 7: 1141-1148.
476	34.	Yoshimura, Y., H. Sasaki, N. Miyata, K. Miyazaki, and N. Tachikawa. 2021.
477		Antibody response after COVID-19 vaccine BNT162b2 on health care workers
478		in Japan. J Infect Chemother.
479	35.	Zurcher, K., C. Mugglin, F. Suter-Riniker, P. M. Keller, M. Egger, S. Muller, M.
480		Fluri, M. Hoffmann, and L. Fenner. 2021. Seroprevalence of SARS-CoV-2 in
481		healthcare workers from outpatient facilities and retirement or nursing homes in
482		a Swiss canton. Swiss Med Wkly 151.
483		

Figure 1

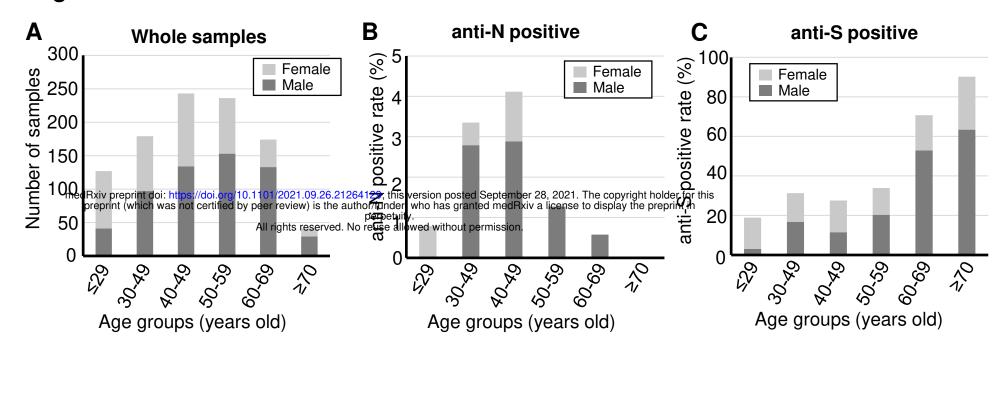


Figure 2

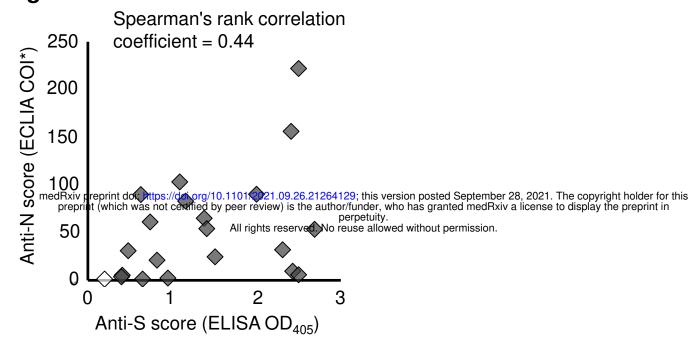
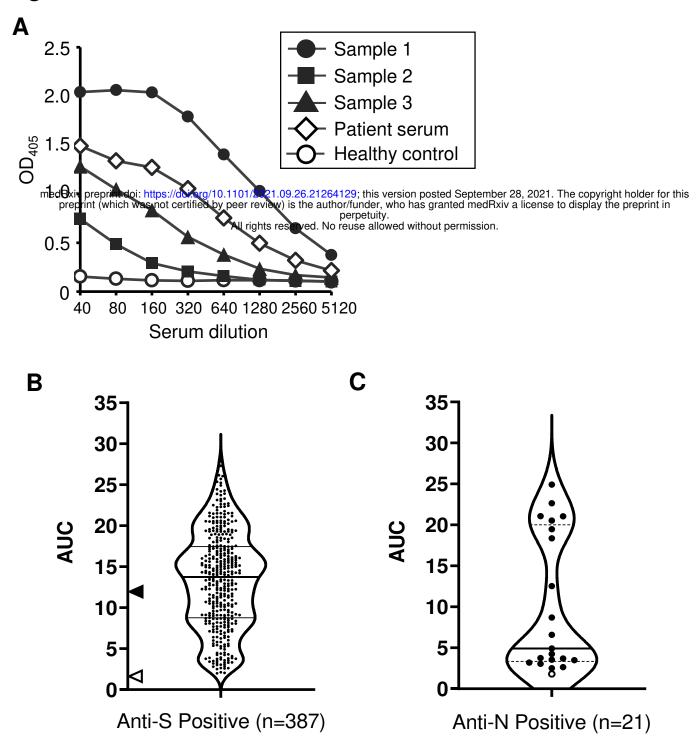



Figure 3

