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ABSTRACT

The dearth of intermediate magmatic compositions at the 

Earth’s surface, referred to as the Daly gap, remains a major issue in 

igneous petrology. The initially favored explanation invoking silicate 

liquid immiscibility during evolution of basalt to rhyolite has lost sup-

port because of the absence of any fi rm geological evidence for sepa-

ration of Fe- and Si-rich liquids in igneous rocks. This work presents 

a record of large-scale magmatic differentiation due to immiscibility 

in the tholeiitic Sept Iles intrusion (Canada), one of the largest layered 

plutonic bodies on Earth. Gabbroic cumulate rocks from the Criti-

cal Zone of this intrusion show a bimodal distribution in density and 

P
2
O

5
 content, despite identical major element chemistry of the prin-

cipal magmatic phases. Immiscibility is supported by the presence of 

contrasting Fe-rich and Si-rich melt inclusions trapped in cumulus 

apatite. Phase diagrams and well-documented occurrences of small-

scale immiscibility confi rm that liquid-liquid unmixing and the sepa-

ration of Fe-rich and Si-rich liquids may contribute signifi cantly to 

the Daly gap along the tholeiitic liquid line of descent.

INTRODUCTION

Silicate liquid immiscibility during late-stage differentiation of ter-

restrial and lunar basalts has been recognized to produce contrasting Fe-

rich (ferrobasalt) and Si-rich (rhyolite) liquid compositions, both experi-

mentally and in natural rocks (Roedder and Weiblen, 1970; Roedder, 1978; 

Dixon and Rutherford, 1979; Philpotts, 1982). However, only microscopic 

segregations have been observed, either as immiscible glass droplets in the 

groundmass of basalts or as distinct melt inclusions in silicates and apatite 

from plutonic rocks. Interest in immiscibility has been revived in the light 

of recent evidence for coexisting conjugate liquids in late-stage differenti-

ates of ferrobasaltic rocks of the Skaergaard intrusion, Greenland (Jakob-

sen et al., 2005, 2011; Holness et al., 2011; Humphreys, 2011). However, 

even in this case, although meter-scale segregations of ferrogabbros are 

found (McBirney, 1975), the overall effect on magmatic differentiation 

processes remains unclear (Veksler et al., 2007; Morse, 2008; Philpotts, 

2008). The general lack of evidence for large-scale immiscibility has led 

to the consensus that immiscibility does not play an important role on 

the relative paucity of intermediate compositions along the basalt-rhyolite 

liquid line of descent (Bowen, 1928). This is supported by experiments 

showing that the formation of silicic melt by fractional crystallization of 

basalt is possible (Sisson et al., 2005), and by the fact that the variation 

of liquid composition appears continuous from basalt to rhyolite in some 

volcanic suites (Carmichael, 1964), even if the proportion of intermediate 

compositions is low. Other alternatives include liquid viscosity and density 

barriers that prevent eruption of intermediate liquid compositions (Geist et 

al., 1995), critical crystallinity that only enables crystal-liquid separation 

in a narrow compositional range (Brophy, 1991; Dufek and Bachmann, 

2010), or the consequence of a rapid evolution of liquid composition for 

intermediate silica contents, producing low volumes of monzonitic melts 

(Peccerillo et al., 2003). However, these possibilities do not exclude a role 

of immiscibility in creating the Daly gap (Daly, 1914).

SEPT ILES LAYERED INTRUSION

In this study, records of large-scale silicate liquid immiscibility and 

its effect on differentiation of basalt in the Sept Iles layered intrusion, Can-

ada, are reported (Higgins, 2005). This igneous body is a circular intrusion 

~80 km in diameter, with a thickness of 5.5 km and an estimated volume of 

20,000 km3, making it one of the largest layered intrusions on Earth, after 

the Bushveld complex in South Africa and the Dufek intrusion in Antarc-

tica (Loncarevic et al., 1990). It is composed of a lower Layered Series 

made up of troctolite and gabbro, and an Upper Border Series comprising 

anorthosite capped by cupolas of granite (Namur et al., 2010) (Fig. 1A). 

This large magmatic event is dated at 564 ± 4 Ma (Higgins and van Bree-

men, 1998), contemporaneous with opening of the Iapetus Ocean. Chilled 

margin rocks suggest a parental tholeiitic basalt composition, close to that 

of the Skaergaard intrusion (Namur et al., 2010). The stratigraphic frac-

tional crystallization trend of liquidus phases is interrupted by two large 

and several small reversals to more primitive compositions interpreted as 

resulting from magma chamber replenishments by undifferentiated primi-

tive basalt and mixing with the resident magma (Fig. 1A).

A liquid line of descent for the Sept Iles layered intrusion has been 

obtained from consideration of the composition of fi ne-grained rocks that 

occur at the margin, in dikes within the layered series, and in the upper 

granitic cupolas (Namur et al., 2011). This evolution reveals the follow-

ing characteristics: (1) the parental magma (49 wt% SiO
2
, 15 wt% FeO

tot
) 

fi rst crystallizes plagioclase and olivine and evolves on a tholeiitic trend 

with Fe enrichment and no signifi cant variation of the SiO
2
 content; (2) 

the saturation of Fe-Ti oxides and clinopyroxene drives the residual liq-

uid to iron depletion and silica enrichment; (3) intermediate compositions 

(57–67 wt% SiO
2
) produced by fractional crystallization are absent (the 

Daly gap); and (4) granites with 67–76 wt% SiO
2
 are abundant in the 

upper part of the intrusion.

GABBROS OF THE CRITICAL ZONE

Rocks analyzed for this study were gabbros from the ~200-m-thick 

Critical Zone, which is at the top of the Layered Series. These rocks are 

made up of plagioclase, olivine, clinopyroxene, magnetite, ilmenite, and 

apatite (Figs. 2A and 2B), and their compositions are the most evolved 

of the Layered Series. Samples were collected along 20 cores, 65–190 m 

long, regularly drilled along a 3 km traverse (materials and methods in the 

GSA Data Repository1). They display clear bimodality in their P
2
O

5
 con-
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centrations and rock density, i.e., modal proportions of dense versus light 

minerals (Figs. 1B–1D). One group (Fig. 2A), representing ~66% of the 

samples, has an average density of 3.0–3.2 g/cm3 and contains 0–3.5 wt% 

P
2
O

5
. The other group (Fig. 2B), ~33% of the samples, has an average 

density of 3.6–3.8 g/cm3 with 3–12 wt% P
2
O

5
. Samples from the longer 

drill core and two additional samples collected in the fi eld were selected 

for the determination of mineral compositions, as they provide a continu-

ous record of the Critical Zone. The mineral compositions (Figs. 1E–1G; 

Tables DR1−DR3 in the Data Repository) display continuous evolution 

from the base to the top of the Critical Zone, with olivine ranging from 

Fo
60

 to Fo
20

, plagioclase from An
52

 to An
34

, and clinopyroxene from Mg#
73

 

to Mg#
55

. The composition of the minerals does not distinguish in any way 

the two groups of rocks.

IMMISCIBILITY IN MELT INCLUSIONS

Silicate melt inclusions are ubiquitously trapped in apatite of these 

gabbros and display negative crystal shapes. These features, as well as 

the distribution of the inclusions, indicate that they represent droplets of 

liquids, trapped during the growth of the host phase. Two types of inclu-

sions are clearly distinguished and both have crystallized daughter phases, 

grown from the trapped melt, in addition to glass. Dark inclusions contain 

chlorite, amphibole, plagioclase, Fe-Ti oxides, and fi ne-grained material. 

Their sizes range from 50 to 120 µm. Smaller light inclusions range from 

10 to 80 µm and contain albite, orthoclase, biotite, amphibole, fi ne-grained 

material, and rare quartz.

Inclusions trapped in apatite from two samples located at strati-

graphic heights of 7.3 and 78.1 m were rehomogenized using an optically 

controlled heating stage and a vertical drop-quench gas-mixing furnace. 
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Figure 1. Schematic 
stratigraphy of Sept 
Iles layered intrusion 
(Canada) and compo-
sitional and density 
variations of gabbros 
from Critical Zone. 
A: Stratigraphy and 
zones subdivision 
of intrusion (after 
Namur et al., 2010). 
The 0 m reference 
corresponds to ap-
pearance of apatite 
in Megacyclic Unit 2 
(MCU II) and marks 
base of Critical Zone. 
Curve displays sche-
matically evolution 
of cumulus phase 
compositions. Light 
gray bands in MCU II 
and at base of MCU 
III represent mix-
ing zones between 
resident magma and 
new magma inputs. 
UBS—Upper Border 
Series; US—Upper 
Series; Pl—plagio-
clase; Ol—olivine; 
Cpx—cl inopyrox-
ene; Mt—magnetite. 
B: Stratigraphic vari-
ations of P

2
O

5
 con-

tent in gabbros from Critical Zone. Stars indicate positions of samples studied for their melt inclusions at 7.3 and 78.1 m. C, D: Histograms 
of density (n = 228) and P

2
O

5
 content (n = 895) of gabbros from Critical Zone. E–G: Stratigraphic evolution of compositions of plagioclase, ol-

ivine, and clinopyroxene in Critical Zone. Black symbols are for dense P
2
O

5
-rich gabbros and white symbols are for light P

2
O

5
-poor gabbros.

Figure 2. Microphotographs of apatite-bearing gabbros and types of 
melt inclusions in Sept Iles layered intrusion (Canada). A: Polarized-
light microphotograph of Si-Al-Na–rich gabbro. Scale = 4 mm. B: Po-
larized-light microphotograph of Fe-Ti-P–rich gabbro. Scale = 4 mm. 
C: Si-rich granitic homogenized melt inclusion (sample at 7.3 m). 
Scale = 20 µm. D: Fe-rich ferrobasaltic homogenized melt inclusion 
(sample at 7.3 m). Scale = 20 µm. E: Homogenized melt inclusion 
containing two immiscible liquids (sample at 78.1 m). All melt inclu-
sions have shrinkage bubble. Scale = 20 µm.
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Homogenization temperatures ranged from 1060 to 1100 °C. After the 

experiments, the quenched melts were analyzed for major elements using 

an electron microprobe (Tables DR4 and DR5). They display bimodal 

compositions: granitic Si rich (Fig. 2C) and ferrobasaltic Fe rich (Fig. 2D). 

Single inclusions also show clear evidence of unmixing between the two 

compositions (Fig. 2E). We consider that the inclusions represent conju-

gate immiscible liquids, albeit on a small scale. Compositions of these liq-

uids are presented in Figures 3A–3D and compared to well-documented 

occurrences of silicate liquid immiscibility in both natural and experimen-

tal systems relevant to terrestrial (Dixon and Rutherford, 1979; Philpotts, 

1982) and lunar basalt petrogenesis (Longhi, 1990).

DISCUSSION

Unmixing of two immiscible melts results from the intersection of 

the liquid line of descent and a subliquidus immiscibility fi eld (Fig. 3E). 

The onset of liquid immiscibility in the Sept Iles layered intrusion occurs 

when the liquid line of descent reaches monzonitic compositions (55–57 

wt% SiO
2
 and 10–11 wt% FeO

tot
), thus after signifi cant silica enrichment 

and iron depletion, when the fraction of residual liquid was ~30% (Namur 

et al., 2011). The onset of silicate liquid immiscibility corresponds to the 

start of the Daly gap. With decreasing temperature, crystallization prod-

ucts of the two immiscible liquids, i.e., the same phases with the same 

compositions but different proportions, are subtracted from the bulk liquid 

composition, enriching the bulk composition in silica. One unexpected 

and original feature of our data is that the compositions of immiscible 

pairs converge with decreasing temperature, as illustrated by the less 

contrasted ferrobasaltic and granitic compositions of melt inclusions in 

samples at 78.1 m compared to those at 7.3 m (Tables DR4 and DR5). The 

crystallization products of the immiscible melts also become more similar 

with decreasing temperature, as illustrated by their P
2
O

5
 content (Fig. 1B).

Residual granitic rocks located at the top of the Sept Iles intrusion do 

not show any evidence of immiscibility, and their origin can be satisfac-

torily modeled by continuous fractional crystallization from the parental 

tholeiitic basalt (Namur et al., 2011). This observation provides further 

evidence in favor of the idea that the immiscibility fi eld closes at low tem-

perature, behavior perfectly consistent with phase relations in the system 

K
2
O-FeO-Al

2
O

3
-SiO

2
 (Visser and Koster van Groos, 1979), although we 

know of no data to assess whether this is true in complex natural systems. 

Closing of the miscibility gap at low temperature would have the con-

sequence that liquid unmixing would have no bearing on the geochemi-

cal signature of residual granitic compositions, but would nevertheless be 

responsible for the absence of intermediate liquid compositions, i.e., the 

Daly gap.

Silicate liquid immiscibility does not appear to have affected the 

entire mass of residual liquid in the magma chamber at the same time. 

Such a process would have resulted in simple segregation between the 

dense iron end member at the base of the Critical Zone and the light sil-

ica end member at the top. In the Sept Iles intrusion, the crystallization 

products of each end member alternate at a scale of 20–5 m (Fig. 1B), 

suggesting that immiscibility may occur repetitively in a basal boundary 

layer. This is supported by the thermal regime of large basaltic intru-

sions, which have static boundary layers unaffected by convection at the 

interface between the cumulate pile and the main magma body (Jaupart 

et al., 1984). The standard interpretations of layer-forming processes 

in mafi c intrusions by crystal settling and sorting or in situ oscillatory 

nucleation can produce the bimodal distribution of rock densities and 

bulk P
2
O

5
 contents with the same mineral compositions in the contrasted 

layers. Indeed, cumulates produced by the crystallization of a homoge-

neous melt followed by crystal sorting cannot be distinguished from the 

crystallization products of two immiscible melts. This is because these 

two liquids are in equilibrium and crystallize the same liquidus phases 

in different proportions. However, the presence of immiscible liquids in 

melt inclusions supports the idea that rocks of the Critical Zone crystal-

lized from an emulsion of two liquids.

The sole expressions of the immiscible excursion are the Daly gap 

and the occurrences of contrasted melt inclusions and cumulates that 

contain the same liquidus phases in different proportions. This stealthy 

expression of silicate liquid immiscibility compels a revision of processes 

responsible for the dearth of intermediate melts in tholeiitic suites and in 

other geological settings (Reubi and Blundy, 2009). Our results may also 

stimulate ideas about the differentiation of extraterrestrial basalts, particu-

larly during the late-stage evolution of the lunar magma ocean (Shearer et 
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Figure 3. Pseudoternary diagrams (wt%) with tie lines for various 
conjugate immiscible melt pairs and schematic model for develop-
ment of silicate liquid immiscibility. A: Immiscible ferrobasalts and 
granitic liquids obtained from melt inclusion compositions from sam-
ples at 7.3 and 78.1 m of Sept Iles layered intrusion. Single analyses 
are small circles and average compositions are large stars. B: Experi-
mental immiscible pairs in lunar basalts (Longhi, 1990). C: Natural 
immiscible pairs of glassy globules in tholeiitic basalts (Philpotts, 
1982). D: Experimental immiscible ferrobasalt and granitic liquids 
(Dixon and Rutherford, 1979). Gray area is projection of low-tem-
perature immiscibility fi eld in system leucite-fayalite-SiO

2
 (Roedder, 

1978). E: Schematic pseudobinary diagram illustrating development 
of silicate liquid immiscibility during liquid line of descent of Sept 
Iles tholeiitic parental magma. In the course of differentiation, liquid 
reaches solvus and splits into Fe-rich and Si-rich liquids. Bulk liquid 
composition follows silica enrichment due to subtraction of crystal-
lization products of immiscible liquid (Critical Zone). With decreas-
ing temperature, solvus closes and immiscibility terminates. Black 
circles are Fe-rich ferrobasalts and white circles are Si-rich granites.
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al., 2006), and for the origin of highly silicic compositions on the moon 

(Glotch et al., 2010) as well as during the crystallization of martian basalts 

that are rich in iron and phosphorous (McSween et al., 2004), two ele-

ments that expand the immiscibility fi eld (Naslund, 1983).
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