
ANZIAM J. 50 (CTAC2008) pp.C166–C188, 2008 C166

Large scale simulation of fluid structure
interaction using Lattice Boltzmann methods

and the ‘physics engine’

J. Götz1 C. Feichtinger2 K. Iglberger3

S. Donath4 U. Rüde5

(Received 15 August 2008; revised 10 October 2008)

Abstract

We study the methodology behind the simulation of fluid flow with
up to 150,000 fully resolved rigid bodies incorporated in the flow. The
simulation is performed using a 3D Lattice Boltzmann solver for the
fluid flow and a so-called rigid body physics engine for the treatment of
the objects. The numerical methods, the necessary extensions and the
coupling between both methods are presented in detail. Furthermore,
the parallelisation is discussed and performance results are given for
different test cases with up to 150,000 rigid bodies on up to 1025 pro-
cessor cores. The approach enables a detailed simulation of large scale
particulate flows, which are relevant for many industrial applications.

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1445
gives this article, c© Austral. Mathematical Soc. 2008. Published October 29, 2008. issn
1446-8735. (Print two pages per sheet of paper.)

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1445

Contents C167

Contents

1 Introduction C167

2 Numerical methods C168
2.1 The Lattice Boltzmann method C169
2.2 The rigid body physics engine pe C170
2.3 Coupling Lattice Boltzmann to the physics engine C173

3 The waLBerla software framework C175

4 Parallelisation C176

5 Performance results C178

6 Conclusion C180

References C183

1 Introduction

The transport of solid particles and objects suspended in a fluid is crucial
for different physical and industrial processes and a detailed understanding
of the transport processes is becoming more important. In previous years
many numerical methods used to simulate particulate flows have appeared
in the literature, for example the method of Stokesian dynamics [4], Euler–
Lagrangian methods [12], distributed Lagrange multiplier methods [22] and
the family of discrete element methods [9, e.g.], just to mention a few. Ap-
proaches based on the Lattice Boltzmann method have been presented by
Ladd [17, 18], Aidun et al. [1] and Qi [27]. Most of these methods do not
attempt a fully resolved simulation of the fluid-structure interaction between
solid particles and fluid, rather they use approximations to reduce the compu-

2 Numerical methods C168

tational complexity. Some of them can only be applied in special flow regimes
(for example potential or Stokes flow) or they are using approximations of
particles as mass points.

In our approach we calculate the fluid flow using a Lattice Boltzmann
method (see Section 2.1) while the motion of rigid objects and their interac-
tions are evaluated by a ‘physics engine’ named pe (see Section 2.2). Since
both methods can only handle parts of the physics they need to be extended
and coupled together in order to simulate solid objects incorporated in the
flow. For this reason the fluid flow of the Lattice Boltzmann method is used
as input for the no-slip boundary condition of the objects resulting in hydro-
dynamic forces from the fluid to the objects, which are send to the physics
engine. Due to these forces, the movement and frictional collisions between
the rigid bodies are handled by pe. Then the moving objects are influencing
the fluid flow through Lattice Boltzmann boundary conditions. The complete
numerical method is incorporated in a software framework called waLBerla,
which is covered in Section 3. In the simulation the objects are not treated
as mere point masses, but are fully resolved as geometric entities within the
flow. For the entire simulation the same mesh is used, eliminating the need
for remeshing. Compared to other methods, where an automatic generation
of a body fitted mesh during the simulation is a difficult problem, this fixed
mesh is a great advantage in terms of performance.

2 Numerical methods

In this section we present the numerical algorithms used to simulate a large
number of moving objects incorporated in the fluid using an extended Lattice
Boltzmann solver for the fluid flow and a physics engine for the collision and
movement of the objects. Furthermore, the parallelisation of this approach
is shown in detail.

2 Numerical methods C169

2.1 The Lattice Boltzmann method

The Lattice Boltzmann method (lbm) is an alternative to classical Navier–
Stokes solvers for fluid flow and works on an equidistant grid of cells, called
lattice cells, which only interact with their direct neighbours. In this study
we use the common three dimensional D3Q19 model originally developed
by Qian, d’Humiéres and Lallemand [28] with N = 19 particle distribution
functions (pdfs) fα : Ω × T 7→ [0; 1), where Ω ⊂ R3 and T ⊂ R are the
physical and time domain, respectively, and the corresponding dimensionless
discrete velocity set {eα | α = 0, . . . ,N−1}. This model has been shown to be
both stable and efficient [19]. For the work presented in this article, we adopt
a Lattice Boltzmann Bhatnagar–Gross–Krook (lbgk) collision scheme [2, 28]

fα(xi + eα∆t, t+ ∆t) = fα(xi, t) −
1

τ

[
fα(xi, t) − f(eq)

α (xi, t)
]
, (1)

where xi is a cell in the discretised simulation domain, τ is the relaxation
time, t is the current time step whereas t + ∆t is the next time step, and
f
(eq)
α represents the equilibrium distribution, which in an incompressible lbgk

scheme reads [10]

f(eq)
α (xi, t) = wα

[
ρ(xi, t) + ρ0

(
3eαu(xi, t) +

9

2
(eαu(xi, t))

2 −
3

2
u(xi, t)

2

)]
.

Here, we choose ρ0 = 1 . The weighting factors wα are defined for the
D3Q19 discretisation scheme as

wα =


1/3,

1/18,

1/36,

eα = (0, 0, 0)

eα = (±1, 0, 0), (0,±1, 0), (0, 0,±1)
eα = (±1,±1, 0), (±1, 0,±1), (0,±1,±1) .

The macroscopic fluid density ρ and macroscopic velocity u are calculated
from the first two moments of the distributions

ρ(xi, t) = ρ0 + δρ(xi, t) =
∑
α

fα(xi, t) , (2)

2 Numerical methods C170

u(xi, t) =
1

ρ0

∑
α

eαfα(xi, t) . (3)

Equation (1) is separated into two steps, known as the collision step and the
streaming step, respectively

f̃α(xi, t) = fα(xi, t) −
1

τ

[
fα(xi, t) − f(eq)

α (xi, t)
]
, (4)

fα(xi + eα∆t, t+ ∆t) = f̃α(xi, t) , (5)

where f̃α denotes the post-collision state of the distribution function. While
the collision step is a local single time relaxation procedure towards equilib-
rium and is compute intensive, the streaming step advects all pdfs besides f0
to their neighbouring lattice site depending on the velocity, which is a mem-
ory intensive operation.

As a first order no-slip boundary condition often a simple bounce back
scheme is used, where distribution functions pointing to a neighbouring wall
cell are just reflected such that both normal and tangential velocities vanish

fᾱ(xf , t) = f̃α(xf , t) , (6)

with ᾱ representing the index of the opposite direction of α, eᾱ = −eα , and
xf explicitly denoting the fluid cell.

More details on the Lattice Boltzmann algorithm and its derivation are
found in the book of Succi [31] and in the article by Chen et al. [5].

2.2 The rigid body physics engine pe

In order to simulate the rigid objects in the flow, we use a rigid body physics
engine. The term physics engine is commonly used in virtual reality, robotics
and computer games communities and describes a software framework that

2 Numerical methods C171

simulates the physics related to the movement and interactions of rigid, com-
pletely undeformable objects (the rigidity assumption). In contrast to molec-
ular dynamics simulations, where only point masses are used and repulsive
potentials replace real collisions, the rigid bodies used in this approach have
a physical expansion and both linear movements and rotations of the arbi-
trarily formed objects are treated. Elastic and/or inelastic collisions between
rigid objects occur if the geometries of two objects touch; such collisions have
to be handled to keep the objects from penetrating each other.

The decision to use such a framework is easily justified by our require-
ment to allow arbitrarily shaped objects (and not only spheres, which would
be easy to handle) and the complex treatment of collisions between these
rigid objects. Most openly available physics engines are programmed for real
time simulations due to a focus on virtual reality environments or computer
games [20], which results in the use of faster algorithms that unfortunately
sometimes only crudely approximate the real physics. Consequently, we de-
cided to implement a new rigid body physics engine primarily focussing on
the physically accurate simulation of moving objects.

The pe engine offers everything that well established physics engines offer,
but uses appropriate algorithms to solve the movement and especially the
collisions of objects as accurately as possible [26, 29]. The movement of
objects for instance is treated by a Störmer–Verlet time discretisation of
Newton’s equations.

The major problem for the simulation of rigid objects is the treatment
of collisions. One goal of pe is the implementation of an interface that al-
lows for the integration of arbitrary collision treatment algorithms (includ-
ing algorithms for computer games). The majority of the algorithms for the
physically accurate treatment of collisions are handling the following linear

2 Numerical methods C172

complementarity problem [6] DT JTM−1JD DT JTM−1JN Eη
NT JTM−1JD NT JTM−1JN 0

−ETη µ 0

 ·
 ∆t~β

∆t~fn
~λ

+


DT JT

(
~v t + ∆tM−1~fext

)
NT JT

(
~v t + ∆tM−1~fext

)
~0

 ≥ ~0

complementary to

 ∆t~β

∆t~fn
~λ

 ≥ ~0 , (7)

whereN represents the matrix of all contact normals,D represents the matrix
of all frictional tangents of the contact points, J is the Jacobian matrix and
M the generalized mass matrix. The two matrices Eη and µ are defined as

µ =

 µ1 0
. . .

0 µK

 ∈ RK×K (8)

Eη =

 ~e ~0
. . .

~0 ~e

 ∈ R(η·K)×K , (9)

where K is the number of contact points and η the number of frictional
components per contact point. The vector ~fn is the solution vector of all
normal components of the acting forces, the vector ~β represents all frictional
components. ~λ is an auxiliary value to ensure the maximum dissipation of
the friction, ~vt are the relative contact velocities and ~fext the currently acting
external forces. The size of a single time step is represented by ∆t.

A classical solver for this kind of problem is, for example, the Lemke
pivoting algorithm [6]. Unfortunately, the complexity of O(N4) for this al-

2 Numerical methods C173

gorithm prohibits its application for a large number of rigid bodies. In order
to cope with thousands of rigid bodies, we use the projected Gauss–Seidel
algorithm [8], which has a complexity of O(N2) and is therefore better suited
for our purposes. However, since this algorithm can only handle positive def-
inite matrices (and most of the occurring positive semi-definite matrices),
the original formulation of the linear complementarity problem has to be
changed according to the requirements of this algorithm:(

DT JTM−1JD DT JTM−1JN

NT JTM−1JD NT JTM−1JN

)
·

(
∆t~β

∆t~fn

)
+ DT JT

(
~v t + ∆tM−1~fext

)
NT JT

(
~v t + ∆tM−1~fext

)  ≥ ~0

complementary to

(
∆t~β

∆t~fn

)
≥ ~0 . (10)

This formulation neglects the maximum dissipation requirement, which can
result in frictional collision responses that are not directly opposing the
causative velocities or accelerations. However, in our current simulations
we experienced no restrictions due to this formulation.

2.3 Coupling Lattice Boltzmann to the physics engine

In order to simulate moving objects with the lbm, the basic algorithm
for the fluid flow from Section 2.1 has to be extended and coupled to the
physics engine described in Section 2.2. The first extension is the coupling
of the objects to the fluid through the boundary treatment for objects. In
our implementation each lattice node with a cell center inside an object
is treated as a moving wall (depicted in Figure 1(a)). This results in the
following boundary condition for the moving objects [33]

fᾱ(xf , t) = f̃α(xf , t) + 6wαρweᾱ · uw , (11)

2 Numerical methods C174

where ρw is the fluid density close to the wall and the current velocity uw of
each object cell corresponds to the velocity of the object at the cell’s position.
Thus, rotational as well as translational velocities of the objects are taken
into account.

Furthermore, cell changes due to the movement of the objects must be
modified, which is done by adjusting the boundary conditions of the objects
in each lbm time step. Here, two cases occur (see Figure 1(b)): fluid cells xf

can turn into obstacles, which is treated by the conversion of the cell to a
moving wall; conversely, when obstacle cells turn into fluid cells the missing
distribution functions have to be determined. This is done by setting the
missing pdfs to equilibrium distributions f

(eq)
α (ρ,u), where the macroscopic

velocity u is set to the velocity uw of the former object cell and the density ρ
is averaged from the surrounding fluid cells. Iglberger et al. [14] described
further details.

To couple the lbm fluid flow simulation to the objects in the flow, the
hydrodynamic forces from the fluid to the objects need to be evaluated.
One possible approach to calculate the forces in the lbm is the momentum
exchange method [33], resulting in the acting force onto an object of

F =
∑
xb

19∑
α=1

eα

[
2f̃α(xf , t) + 6wαρweᾱ · uw

] ∆x
∆t
, (12)

where xb are all obstacle cells of the object neighbouring to at least one fluid
cell. Iglberger et al. [14] discussed a verification of the method described in
this section and Binder et al. [3] used the method to simulate the drag force
on object agglomerates.

3 The waLBerla software framework C175

(a) Initial setup: The velocities u
of the object cells xb are set to the
velocity uw(xb) of the object. In
this example the object only has
a translational velocity component.
Fluid cells are marked with xf .

(b) Updated setup: Two fluid cells
have to be transformed to object
cells and for two object cells the
pdfs have to be reconstructed.

Figure 1: 2D mapping example.

3 The waLBerla software framework

In computational fluid dynamics many applications of scientific interest share
physical and computational aspects. In research environments the usual
practice is one software for each application, leading to a reimplementation
of the shared physics, the common data structures and also the parallelisa-
tion, which often requires a considerable effort. Therefore, waLBerla (which
is an acronym for widely applicable Lattice Boltzmann from Erlangen) was
developed and serves as a flexible framework, facilitating the introduction of
extensions to the method to implement different computational fluid dynam-
ics applications. It offers generic tools for data management, communication,
and sequence control. For a 3D lbm using the D3Q19 discretisation model,
standard basics are already incorporated such as the most common collision
models (lbgk, trt, mrt), force exertion and handling of boundary condi-
tions.

4 Parallelisation C176

Since the waLBerla framework aims at high computing performance, all
tools are implemented in an optimised fashion suitable for large scale par-
allelisation. The domain is partitioned into smaller subregions of the fluid
domain, called patches (see Section 4), which can support different kind of
functionality, grid refinement, architecture optimized memory layouts, load
balancing and heterogeneous computations.

Currently, the list of applications under development using waLBerla in-
cludes blood flow [30], moving objects [14], charged colloids [13], Brownian
motion [21], free surfaces [23, 16], multi-component multi-phase and species
transport models. In order to simulate moving objects we incorporated the
physics engine pe from Section 2.2 in the waLBerla framework and extended
the algorithms appropriately.

4 Parallelisation

The parallelisation concept needed for fluid structure interaction can be split
into a lbm and a physics engine part. Although optimising and parallelising
the lbm has been studied intensively [15, 25, 32], in particular with respect to
cache and memory performance [7, 24, 34], the implementation of a flexible
adaptable parallelisation required by a framework supporting several kind of
functionality raises new problems.

In the waLBerla framework these problems are solved by our patch con-
cept together with a generic mpi communication. During the domain parti-
tioning the fluid is divided into patches, where several patches are assigned
to each process. This procedure can be seen in Figure 2, which depicts two
processes, both possessing 16 patches.

To reduce the startup time overhead, data is accumulated in byte buffers
before being sent to neighbouring processors. The buffer is of datatype byte
in order to be able to communicate floating point data as well as integer or

4 Parallelisation C177

Figure 2: Parallelisation concept of the waLBerla project. Two processes
are depicted, both having 16 patches. The communication is only shown
for one lattice direction and only from process I to II. The message send
from process I to process II is constructed from several smaller messages.
Each submessage begins with a type information, like structured data or
unstructured data and contains the data of one patch.

byte data.

Depending on the functionality, each patch may contain structured data
like the data for the pdfs, velocities and cell state data (Flags) as well as un-
structured data like the objects. For the structured data a constant amount
of data has to be communicated to the neighbouring processes in each time
step, but for the unstructured data messages of variable size must be sent.
As Figure 2 shows, this is supported by sending the message of process I
by an MPI ISend() and by probing the message for its actual size with a
MPI Probe() on the receiving process II.

5 Performance results C178

While the parallelisation of the lbm is comparatively straight forward,
the parallelisation of the physics engine is still an ongoing research area. As a
general problem, the rigidity assumption causes problems if rigid objects are
in contact across several processes. Our approach for the parallel simulation
of the coupled system therefore involves local pe instances for objects that
can be handled locally and a global pe instance for the treatment of groups
of rigid objects spanning several processes.

In case of a parallel simulation with N processes, N− 1 processes (called
“local workers”) are responsible for the simulation of the fluid and the local
objects, whereas one process (the global pe instance) deals with the remaining
objects. In a parallel simulation the objects are distributed to the processes
according to their physical position, which can result in objects that are cut
by process interfaces.

As described in Section 2.2, within the physics engine a system of equa-
tions is set up for all objects in each time step. In our algorithm, all rigid
objects, which can be treated locally (these cannot collide with objects from
other processes) are treated by the local workers. Only objects on process
interfaces and all objects which can collide with them in the current time
step are computed globally by transferring them to the global pe instance.
This instance resolves the collisions, computes the movement and sends the
updated information back to the local processes. Objects approaching the
boundary of the local domain are transferred to the appropriate neighboring
process. The complete procedure is shown in Algorithm 1.

5 Performance results

Section 2 presented numerical methods to perform fluid simulations interact-
ing with rigid bodies using an extended Lattice Boltzmann method coupled
to a physics engine. During a parallel simulation, only objects cut by process
interfaces are treated by one dedicated global pe instance (see Section 4).

5 Performance results C179

Algorithm 1 Coupled lbm-pe solver

1: for each time step do
2: LBM step
3: Add forces from fluid to rigid objects
4: for each object do
5: if Object near process interface then
6: Send object to global pe instance
7: else
8: Treat object locally
9: end if

10: end for
11: Move and collide objects on global pe instance
12: Send objects back to local workers
13: Update local objects
14: if Object detected near process interface then
15: Send object to neighboring process
16: end if
17: end for

6 Conclusion C180

However, since all local workers must wait for the updated values from the
global pe instance before proceeding with their work, the performance of
this approach strongly depends on the number Nglobal of objects transferred
and treated by the central process. This number is a function of the overall
number of rigid bodies, their size and the lattice domain size of the local
processes.

Efficiency measurements of our parallel algorithm to simulate rigid bod-
ies incorporated in the flow, compared to simulations without rigid bodies
are shown in Figure 3. These were run on the hlrb-2 sgi Altix system in
Munich [11] with up to 1025 processor cores. The efficiency for a moderate
number of objects is high (see the first scenario in Figure 3(a)), but drops
down to 45% for around 14,000 objects due to the large number of objects
treated by the central process. In order to simulate more rigid bodies effi-
ciently, in the second scenario shown in Figure 3(b) the lattice domain size
is larger, while the objects are smaller. When the overall number of rigid
bodies or their size is increased Nglobal also increases, whereas enlarging the
lattice domain size of the local processes leads to a reduction of Nglobal. Ad-
ditionally, the simulation performs better when the number of rigid bodies
in contact is low.

An example for simulating different types of rigid bodies in the flow is
shown in Figure 4.

6 Conclusion

We have discussed some aspects of implementing a software framework for a
large scale simulation of moving objects that is built from a combination of
a Lattice Boltzmann fluid simulation and a rigid body physics engine. Using
this coupled simulation system, we are able to simulate 150,000 objects as
fully resolved rigid bodies in a fluid flow including rotation and frictional
contacts. The scaling experiments show a strong dependency of the parallel

6 Conclusion C181

0 4000 8000 12000
Number of rigid bodies

0

20

40

60

80

100

E
ff

ic
ie

nc
y

in
 %

65 processes
129 processes
257 processes
513 processes

(a) The fluid domain size per process is
75×75×200 lattice cells, spheres are used
with a diameter of ten lattice cells.

0 40000 80000 120000
Number of rigid bodies

0

20

40

60

80

100

E
ff

ic
ie

nc
y

in
 %

513 processes
1025 processes

(b) The fluid domain size per process is
1803 lattice cells, spheres are used with a
diameter of six lattice cells.

Figure 3: Efficiency of simulations with rigid bodies incorporated in the
fluid compared to simulations of pure fluid flow.

efficiency on the number of objects that must be treated by a central physics
engine process. To further improve the efficiency of the simulation either
more objects have to be treated by the local processes, or the solution of the
global contact problem must be parallelised in a suitable way.

Acknowledgements The work was supported by the Kompetenznetzwerk
für Technisch-Wissenschaftliches Hoch- und Höchstleistungsrechnen in Bay-
ern (konwihr) under project Freewihr II, the European Union (eu) project
decode (grant 213295) and the Deutsche Forschungsgemeinschaft (dfg)
with the dime project (grant RU422/7-5).

6 Conclusion C182

(a) At t = 0 s. (b) At t = 1.5 s.

(c) At t = 3 s. (d) At t = 4.5 s.

Figure 4: Example of a simulation with 1000 different objects in a horn
using 31 processes and a fluid stream from bottom to top.

References C183

References

[1] C. K. Aidun, Y. Lu, and E.-J. Ding. Direct analysis of particulate
suspensions with inertia using the discrete Boltzmann equation. J.
Fluid Mech., 373:287–311, October 1998.
http://adsabs.harvard.edu/abs/1998JFM...373..287A. C167

[2] P. L. Bhatnagar, E. P. Gross, and M. Krook. A Model for Collision
Processes in Gases. I. Small Amplitude Processes in Charged and
Neutral One-Component Systems. Phys. Rev., 94(3):511–525, 1954.
doi:10.1103/PhysRev.94.511. C169

[3] C. Binder, C. Feichtinger, H.J. Schmid, N. Thürey, W. Peukert, and
U. Rüde. Simulation of the Hydrodynamic Drag of Aggregated
Particles. Journal of Colloid and Interface Science, 301:155–167, Jan
2006. doi:10.1016/j.jcis.2006.04.045. C174

[4] J. F. Brady and G. Bossis. Stokesian Dynamics. Annu. Rev. Fluid
Mech., 20(1):111–157, 1988. doi:10.1146/annurev.fl.20.010188.000551.
C167

[5] S. Chen and G. D. Doolen. Lattice Boltzmann method for fluid flows.
Annu. Rev. Fluid Mech., 30:329–364, 1998.
doi:10.1146/annurev.fluid.30.1.329. C170

[6] R. W. Cottle, J. S. Pang, and R. E. Stone. The Linear
Complementarity Problem. Academic Press, 1992. C172

[7] S. Donath, K. Iglberger, G. Wellein, T. Zeiser, and A. Nitsure.
Performance Comparison of Different Parallel Lattice Boltzmann
Implementations on Multi-core Multi-socket Systems. International
Journal of Computational Science and Engineering (IJCSE), accepted
for publication 2008. C176

http://adsabs.harvard.edu/abs/1998JFM...373..287A
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1016/j.jcis.2006.04.045
http://dx.doi.org/10.1146/annurev.fl.20.010188.000551
http://dx.doi.org/10.1146/annurev.fluid.30.1.329

References C184

[8] K. Erleben. Stable, Robust, and Versatile Multibody Dynamics
Animation. PhD thesis, University of Copenhagen (DIKU), 2005. ftp:
//ftp.diku.dk/diku/image/publications/erleben.050401.pdf.
C173

[9] M. Griebel, S. Knapek, and G. Zumbusch. Numerical Simulation in
Molecular Dynamics. Numerics, Algorithms, Parallelization,
Applications, volume 5 of Texts in Computational Science and
Engineering. Springer Verlag, 2007. doi:10.1007/978-3-540-68095-6.
C167

[10] X. He and L.-S. Luo. Lattice Boltzmann model for the incompressible
Navier-Stokes equation. J. Stat. Phys., 88:927–944, 1997.
doi:10.1023/B:JOSS.0000015179.12689.e4. C169

[11] Information on the HLRB 2.
http://www.lrz-muenchen.de/services/compute/hlrb/, Aug. 2008.
C180

[12] K. Höfler, M. Müller, S. Schwarzer, and B. Wachmann. Interacting
Particle-Liquid Systems. In E. Krause and W. Jäger, editors, High
Performance Computing in Science and Engineering ’98. Springer
Verlag, 1998. C167

[13] J. Horbach and D. Frenkel. Lattice-Boltzmann method for the
simulation of transport phenomena in charged colloids. Phys. Rev. E,
64(6):061507, 2001. doi:10.1103/PhysRevE.64.061507. C176

[14] K. Iglberger, N. Thürey, and U. Rüde. Simulation of moving particles
in 3D with the Lattice Boltzmann method. Comp. Math. Appl.,
55(7):1461–1468, 2008. doi:10.1016/j.camwa.2007.08.022. C174, C176

[15] C. Körner, T. Pohl, U. Rüde, N. Thürey, and T. Zeiser. Parallel
Lattice Boltzmann Methods for CFD Applications. In A.M. Bruaset
and A. Tveito, editors, Numerical Solution of Partial Differential

ftp://ftp.diku.dk/diku/image/publications/erleben.050401.pdf
ftp://ftp.diku.dk/diku/image/publications/erleben.050401.pdf
http://dx.doi.org/10.1007/978-3-540-68095-6
http://dx.doi.org/10.1023/B:JOSS.0000015179.12689.e4
http://www.lrz-muenchen.de/services/compute/hlrb/
http://dx.doi.org/10.1103/PhysRevE.64.061507
http://dx.doi.org/10.1016/j.camwa.2007.08.022

References C185

Equations on Parallel Computers, volume 51 of Lecture Notes for
Computational Science and Engineering, chapter 5, pages 439–465.
Springer Verlag, 2005. doi:10.1007/3-540-31619-113. C176

[16] C. Körner, M. Thies, T. Hofmann, N. Thürey, and U. Rüde. Lattice
Boltzmann Model for Free Surface Flow for Modeling Foaming.
Journal of Statistical Physics, 121:179–196, 2005.
doi:10.1007/s10955-005-8879-8. C176

[17] A. J. C. Ladd. Numerical simulations of particulate suspensions via a
discretized Boltzmann equation. Part 1. Theoretical foundation. J.
Fluid Mech., 271:285–309, 1994. doi:10.1017/S0022112094001771. C167

[18] A. J. C. Ladd. Numerical simulations of particulate suspensions via a
discretized Boltzmann equation. Part 2. Numerical results. J. Fluid
Mech., 271:311–339, 1994. doi:10.1017/S0022112094001783. C167

[19] R. Mei, W. Shyy, D. Yu, and L.-S. Luo. Lattice Boltzmann Method for
3-D Flows with Curved Boundary. J. Comp. Phys., 161:680–699, 2002.
doi:10.1006/jcph.2000.6522. C169

[20] I. Millington. Game Physics Engine Development. Series in Interactive
3D Technology. Morgan Kaufmann, 2007. CD included. C171

[21] P. Neumann. Numerical simulation of nanoparticles in Brownian
motion using the lattice Boltzmann method. Master’s thesis,
University of Erlangen-Nuremberg, Computer Science 10 –
Systemsimulation, 2008. C176

[22] T.-W. Pan, D. D. Joseph, R. Bai, R. Glowinski, and V. Sarin.
Fluidization of 1204 spheres: simulation and experiment. J. Fluid
Mech., 451:169–191, 2002. doi:10.1017/S0022112001006474. C167

[23] T. Pohl. High Performance Simulation of Free Surface Flows Using the
Lattice Boltzmann Method. PhD thesis, University of
Erlangen-Nuremberg, Computer Science 10 — Systemsimulation, July

http://dx.doi.org/10.1007/3-540-31619-1_13
http://dx.doi.org/10.1007/s10955-005-8879-8
http://dx.doi.org/10.1017/S0022112094001771
http://dx.doi.org/10.1017/S0022112094001783
http://dx.doi.org/10.1006/jcph.2000.6522
http://dx.doi.org/10.1017/S0022112001006474

References C186

2008. http://www10.informatik.uni-erlangen.de/Publications/
Dissertations/Pohl_080713.pdf. C176

[24] T. Pohl, M. Kowarschik, J. Wilke, K. Iglberger, and U. Rüde.
Optimization and Profiling of the Cache Performance of Parallel
Lattice Boltzmann Codes. Parallel Processing Letters, 13(4):549–560,
2003. doi:10.1142/S0129626403001501. C176

[25] T. Pohl, N. Thürey, F. Deserno, U. Rüde, P. Lammers, G. Wellein, and
T. Zeiser. Performance Evaluation of Parallel Large-Scale Lattice
Boltzmann Applications on Three Supercomputing Architectures. Nov
2004. Supercomputing Conference 04. doi:10.1109/SC.2004.37. C176

[26] T. Preclik. Frictional Rigid Body Dynamics. Master’s thesis,
University of Erlangen-Nuremberg, Computer Science 10 —
Systemsimulation, 2007. Computer Science Department 10 (System
Simulation), University of Erlangen-Nuermberg. C171

[27] D. Qi. Lattice-Boltzmann simulations of particles in
non-zero-Reynolds-number flows. J. Fluid Mech., 385:41–62, April
1999. http://adsabs.harvard.edu/abs/1999JFM...385...41Q.
C167

[28] Y. H. Qian, D. D’Humières, and P. Lallemand. Lattice BGK Models
for Navier–Stokes Equation. Europhysics Letters (EPL),
17(6):479–484, 1992. doi:10.1209/0295-5075/17/6/001. C169

[29] D. E. Stewart. Impact and Friction of Solids, Structures and
Machines, chapter Time-stepping methods and the mathematics of
rigid body dynamics. Birkhäuser, 2000. C171

[30] M. Stürmer, J. Götz, G. Richter, A. Dörfler, and U. Rüde. Fluid flow
simulation on the Cell Broadband Engine using the lattice Boltzmann
method. Comp. Math. App., submitted 2007, accepted 2008, to be
published. C176

http://www10.informatik.uni-erlangen.de/Publications/Dissertations/Pohl_080713.pdf
http://www10.informatik.uni-erlangen.de/Publications/Dissertations/Pohl_080713.pdf
http://dx.doi.org/10.1142/S0129626403001501
http://dx.doi.org/10.1109/SC.2004.37
http://adsabs.harvard.edu/abs/1999JFM...385...41Q
http://dx.doi.org/10.1209/0295-5075/17/6/001

References C187

[31] S. Succi. The Lattice Boltzmann Equation—For Fluid Dynamics and
Beyond. Clarendon Press, 2001. C170

[32] G. Wellein, T. Zeiser, S. Donath, and G. Hager. On the single
processor performance of simple lattice Boltzmann kernels. Computer
& Fluids, 35(8–9):910–919, 2005. doi:10.1016/j.compfluid.2005.02.008.
C176

[33] D. Yu, R. Mei, L.-S. Luo, and W. Shyy. Viscous flow computations
with the method of lattice Boltzmann equation. Prog. Aero. Sci.,
39(5):329–367, 2003. doi:10.1016/S0376-0421(03)00003-4. C173, C174

[34] T. Zeiser, G. Wellein, A. Nitsure, K. Iglberger, U. Rüde, and G. Hager.
Introducing a parallel cache oblivious blocking approach for the lattice
Boltzmann method. Progress in Computational Fluid Dynamics,
8(1-4):179–188, 2008. doi:10.1504/PCFD.2008.018088. C176

Author addresses

1. J. Götz, Chair for System Simulation, Department of Computer
Science, Friedrich–Alexander University of Erlangen–Nuremberg,
91058 Erlangen, Germany.
mailto:jan.goetz@informatik.uni-erlangen.de

2. C. Feichtinger, System Simulation, Department of Computer
Science, Friedrich–Alexander University of Erlangen–Nuremberg,
91058 Erlangen, Germany.

3. K. Iglberger, System Simulation, Department of Computer Science,
Friedrich–Alexander University of Erlangen–Nuremberg,
91058 Erlangen, Germany.

4. S. Donath, System Simulation, Department of Computer Science,
Friedrich–Alexander University of Erlangen–Nuremberg,
91058 Erlangen, Germany.

http://dx.doi.org/10.1016/j.compfluid.2005.02.008
http://dx.doi.org/10.1016/S0376-0421(03)00003-4
http://dx.doi.org/10.1504/PCFD.2008.018088
mailto:jan.goetz@informatik.uni-erlangen.de

References C188

5. U. Rüde, System Simulation, Department of Computer Science,
Friedrich–Alexander University of Erlangen–Nuremberg,
91058 Erlangen, Germany.

	Introduction
	Numerical methods
	The Lattice Boltzmann method
	The rigid body physics engine pe
	Coupling Lattice Boltzmann to the physics engine

	The waLBerla software framework
	Parallelisation
	Performance results
	Conclusion
	References

