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Large, publicly available collections of expressed sequence tags (ESTs) have been generated from Arabidopsis
thaliana and rice (Oryza sativa). A potential, but relatively unexplored application of this data is in the study of
plant gene expression. Other EST data, mainly from human and mouse, have been successfully used to point
out genes exhibiting tissue- or disease-specific expression, as well as for identification of alternative transcripts. In
this report, we go a step further in showing that computer analyses of plant EST data can be used to generate
evidence of correlated expression patterns of genes across various tissues. Furthermore, tissue types and organs
can be classified with respect to one another on the basis of their global gene expression patterns. As in
previous studies, expression profiles are first estimated from EST counts. By clustering gene expression profiles
or whole cDNA library profiles, we show that genes with similar functions, or cDNA libraries expected to share
patterns of gene expression, are grouped together. Promising uses of this technique include functional genomics,
in which evidence of correlated expression might complement (or substitute for) those of sequence similarity in
the annotation of anonymous genes and identification of surrogate markers. The analysis presented here
combines the application of a correlation-based clustering method with a graphical color map allowing intuitive
visualization of patterns within a large table of expression measurements.

The development of distinct tissues and cell-types is a
fundamental characteristic of the growth of higher or-
ganisms. Tissue and cellular differentiation, in turn, is
highly dependent on specific patterns of gene expres-
sion and transcript accumulation.

In higher plants, a large volume of literature exists
documenting spatial and temporal regulation of gene
expression. It is increasingly clear that developmental
pathways can be considered as modular, and that de-
velopmental transitions are accompanied by global
changes in the expression of specific complements of
genes (Doebley and Lukens 1998). For example, the
intensively studied transition from etiolated to green-
ing seedling involves coordinate regulation of many
light-regulated genes (von Arnim and Deng 1996). Also
increasingly clear, is the notion that complements of
genes are best studied in parallel, which has become
feasible with the development of new technologies
(Schena et al. 1996, 1998; Wen et al. 1998).

Traditional approaches to the analysis of mRNA
abundance, such as Northern blotting, tend to be lim-
ited by the number of transcripts that can be simulta-
neously analyzed. More recent innovations, such as
hybridization to arrayed cDNA libraries or oligonucleo-
tide chips permit simultaneous analysis of the abun-
dance of thousands of transcripts (for review, see

Brown and Botstein 1999). These latter approaches can
be thought of as analog, because hybridization signal
intensity reflects transcript abundance. In plants, the
use of arrays of partially sequenced cDNAs has been
successfully applied to the analysis of gene expression
in light- and dark-grown seedlings of Arabidopsis (De-
sprez et al. 1998).

Digital analysis of gene expression can be achieved
by generation of tags to expressed genes and transcript
abundance inferred from the frequency of tags. This
approach has been used with both conventional ESTs
(Okubo et al. 1992; Lee et al. 1995; Takenaka et al.
1998) and in the SAGE technique with much shorter
(10 bp) tags (Velculescu et al. 1995, 1997; Zhang et al.
1997). The availability of significant collections of ex-
pressed sequence tags from plant genomes presents an
opportunity to analyze digital expression profiles for
plant tissues and genes. Several studies have observed
that the abundance of EST tags for many genes varies
according to the tissue of origin of the cDNA library.
(Uchimiya et al. 1992; Hofte et al. 1993; Umeda et al.
1994; Cooke et al. 1996; Yamamoto and Sasaki 1997).
Because EST data is inherently noisy (Aaronson et al.
1996; Hillier et al. 1996; Wolfsberg and Landsman
1997), a rigorous statistical test was derived to assess
the reliability of the identification of differentially ex-
pressed genes from EST counts sampled from different
libraries (Audic and Claverie 1997). EST data has also
been used to reveal alternative transcripts of the same
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gene, as well as their eventual library-specific distribu-
tion (Burke et al. 1998; Gautheret et al. 1998).

As of October 1998, there are ∼37,000 Arabidopsis
and 27,000 rice publicly available EST sequences, as
well as smaller collections from other plant species
(http://www.ncbi.nlm.nih.gov/dbEST). An important
difference between the Arabidopsis and rice ESTs (at
least for the purposes described in this report) is that a
large proportion of the Arabidopsis ESTs were generated
from a single cDNA library, prepared from a mixture of
tissues (Newman et al. 1994; Delseny et al. 1997),
whereas the rice ESTs are more evenly derived from a
set of tissue and organ-specific cDNA libraries, there-
fore making them a more suitable starting point for
gene expression studies (Yamamoto and Sasaki 1997).

A significant proportion of ESTs show no similar-
ity to sequences in existing databases (Adams et al.
1992; Claverie 1996). Ascribing functions to those
anonymous sequences has therefore become one of the
major bottlenecks in plant and animal genomics. One
way of gaining functional information on anonymous
genes is by use of the two-hybrid system (for review,
see Brent and Finley 1997). According to this approach,
direct physical interactions of the product of an un-
known gene are used to reveal its relationships with
the product of (hopefully) better-characterized ones.
Using publicly-available rice ESTs as a test set, we show
that a multidimensional analysis of EST data can pro-
vide similar types of information, albeit based on the
concept of statistical rather than physical interactions.
Functional relationships between genes may then be
inferred from the mathematical identification of sig-
nificant similarities between their expression patterns.

Using the rice ESTs available in dbEST (Boguski et
al.1993) we have computed an expression profile for
each gene represented by at least 5 ESTs in 10 different
cDNA libraries. For each of those genes, the expression
profile is therefore derived from 10 expression mea-
surements (EST counts). Correlation analysis was then
used to point out significant similarities in the expres-
sion profiles of genes as well as to generate a graphical
representation of gene clusters exhibiting related ex-
pression patterns. Our results indicate that genes with
similar functions, or tissues expected to share patterns
of gene expression, can be recognized by use of this
type of analysis. The multidimensional analysis of EST
data, in a way quite parallel to microarray experiments
(DeRisi et al. 1996; Eisen et al. 1998), may thus consti-
tute a new approach to the functional annotation of
anonymous genes and to a more global understanding
of plant physiology.

RESULTS

EST Database and Contigs
A breakdown of the rice cDNA libraries represented in

dbEST (as of 10/98) is shown in Table 1. Preliminary
investigations in which expression profiles were gen-
erated from all libraries with >100 ESTs showed that
the smaller libraries gave misleading results (data not
shown). Therefore, of the 27 cDNA libraries that con-
tribute to the EST set, only the 10 largest (representing
95% of the total ESTs) were used in the analysis pre-
sented here. These 10 cDNA libraries contribute vary-
ing numbers of ESTs to the dataset used; the difference
between the largest and smallest rice cDNA libraries
used here is approximately fivefold (library 1073 has
5094 ESTs, library 1009 has 890 ESTs).

Rice ESTs were organized into clusters and contig
(consensus) sequences derived by a protocol adapted
from Gautheret et al. (1998) (see Methods). Selected

Table 1. Breakdown of Rice cDNA Libraries
Represented in dbEST

dbEST library
identifier Library description

Number of
ESTs

1073 immature seed (5 days after
pollination)

5094

307 green shoot (8 days old) 3790
961 callus 3542
75 callus 3229

193 etiolated shoot (8 days old) 3148
499 panicle (at flowering stage) 2025
101 seedling root 1884
535 panicle (at ripening stage) 1478

1275 acallus (H. Uchimiya) 1431
1009 panicle (shorter than 3 cm) 890
967 panicle (longer than 10 cm) 365

1010 immature leaf including
apical meristem

358

322 FDRSC 310
621 etiolated leaf tissue 132
966 panicle (between 3 and 10

cm)
74

968 etiolated shoot 43
1404 late flower (panicle size 1–2

cm)
42

1396 etiolated leaf 32
1281 suspension culture 29
466 FDRRC 13

1137 bseed (A. Suzuki) 6
969 leaf (photoperiod insensitive) 2

1395 early flower (panicle size <1
cm)

2

1321 early embryogenesis 2
1243 — 2
1176 salt stressed 2
1266 cetiolated shoot (Y. Jiang) 1

Data as of October 1998. For each library, the dbEST identifier
is shown with a short description if available (taken from
dbEST). Only the 10 cDNA libraries contributing significant
numbers of ESTs (libraries 1073 to 1009) were further used in
this study.
aH. Uchimiya, University of Tokyo, Japan.
bA. Suzuki, National Institute of Agrobiological Resources,
Tsukuba, Japan.
cY. Jiang, Fudan University, Shanghai, China.
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statistics of the clustered set of rice ESTs are shown in
Table 2.

Derivation of Expression Profiles
Expression profiles were derived for each of the 707
contigs with 5 or more constituent ESTs. The cDNA
library of origin was scored for each constituent EST of
each contig, producing a two-way, contig versus li-
brary, table of raw EST counts (see Fig. 1). The content
of this table was the primary data for all subsequent
computations.

In a preliminary investigation, an alternative pro-
tocol was explored in which the raw EST counts were
further reduced to a binary scale, such that simply the
presence or absence of a given gene in a given library
was recorded (one or more EST=1, none=0). The sub-
sequent statistical analysis of this binary data (with,
e.g., Fisher’s 2 2 2 exact test) was found to be much
less sensitive and meaningful than the analyses per-
formed with the raw EST counts. The remainder of this
report, therefore, focuses on the identification of cor-
related expression patterns with a statistical analysis of
actual EST counts.

Assessing the Pairwise Similarity
Between Expression Profiles
The first aim of our analysis is to identify pairs of genes
(represented here by EST contigs) exhibiting a similar,
multicondition (i.e., cDNA library) expression pattern.
For each gene, the data consists of 10 numbers (EST
counts) defining an expression profile (see Fig. 1 for
overview of entire procedure). If two genes are ex-
pressed in a coordinated manner, we expect their ex-

pression profiles to have similar shapes, that is, the two
series of EST counts to follow the same up or down
trend. Given that the absolute EST counts vary widely

Table 2. Statistics of EST Clustering and Contiging

(a) Preparation of rice EST clusters

ESTs analyzed 27877
ESTs remaining after quality control 27710
Clusters 3400
Singletons 11233

(b) Breakdown of clusters with 5 or more ESTs

With 5 or more ESTs 707
With 100 or more ESTs 9
With between 10 and 99 ESTs 220
With between 5 and 9 ESTs 478

(c) Contig sequence matches

Contig sequences finding homolog 602
Contig sequences with no homolog 105

aUsing all available ESTs as of October 1998.
bESTs from smaller cDNA libraries excluded; see Table 1.
cMatches to SWISS-PROT/TrEMBL, at scores >100 (default
scoring matrix).

Figure 1 Overview of the procedure. (A)Derivation of expres-
sion profiles from each valid contig sequence (those representing
five or more ESTs from the 10 cDNA libraries used) to form the
primary data table in which contig sequence are arrayed in rows
and cDNA libraries in columns. In the illustration, a hypothetical
matrix of 3 contigs (1–3) by 10 libraries (A–J) is shown. (B,C)
Pairwise calculation of similarity (Pearson correlation coefficient)
between contig (row) and library (column) profiles, respectively.
(D,E) Calculation of Euclidean distances for each contig/contig or
library/library pair from Pearson coefficient matrices, and genera-
tion of contig (D) and library (E) dendrograms. (F) Separate re-
ordering of rows (contigs) and columns (libraries) in the original
data table, according to the hierarchical order in the contig and
library dendrograms. In the reordered data table, similar contigs
or similar libraries are adjacent. (G) Representation of the reor-
dered data table as a clustered correlation map, in which the
color in an individual cell reflects the underlying EST count.
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between contigs (the number of constituent ESTs per
contig ranges between 308 and 5) and libraries (there is
a fivefold difference between the number of ESTs con-
tributed by the largest and by the smallest cDNA librar-
ies—see Table 1), a meaningful measure of expression
profile similarity had to be independent of those abso-
lute numbers. Within these constraints, the Pearson
linear correlation coefficient (see Methods) represents
a natural, easy to compute, similarity measure. The
value of this coefficient varies from 11 to 1; a value
close to 1 indicates a high similarity of the compared
expression profiles (i.e., proportionality between the
EST counts of two genes), whereas a value close to zero
indicates no coordinated expression. A useful property
of this coefficient is its capacity to also point out pairs
of genes exhibiting opposite expression behavior (anti-
correlated profiles, for example, sequences expressed in
mutually exclusive sets of libraries), potentially an-
other form of biologically interesting gene coupling. In

this latter case, the Pearson coefficient value ap-
proaches 11.

Finally, a significance level (P value) is associated
with the computation of this correlation coefficient,
allowing the evidence of pairwise coordinated gene ex-
pression to be ranked according to reliability [as with
BLAST (Altschul et al. 1990) for sequence similarity].

To first confirm that computing Pearson’s correla-
tion coefficient is an appropriate way of identifying
correlated expression profiles, groups of contigs with
highly correlated profiles were analyzed. First, pairs of
contigs with high correlation coefficients (in this case,
r > 0.94), were identified within the 707 2 707 (sym-
metrical) matrix of pairwise gene expression profile
correlation coefficients. These pairs of contigs were
then organized into mutually matching clusters,
whereby each profile in a cluster matches all of the
others in the same cluster at the required stringency
(r > 0.94). Table 3 shows two such clusters of contigs.

Table 3. Two Clusters of Correlated Contig Sequences a and b, with Highly Correlated (r > 0.94) Expression Profiles

Contig Putative identity

Library EST counts

1073 535 307 499 961 75 1275 193 101 1009

(a)

1 PRO2_ORYSA 13-kD Prolamin 293 15 0 0 0 0 0 0 0 0
4 GLU5_ORYSA glutelin 183 9 0 0 0 0 0 0 0 0
5 GLU2_ORYSA glutelin type II 145 28 0 0 0 0 0 0 0 0
7 PRO1_ORYSA 10-kD prolamin 145 10 0 0 0 0 0 0 0 0

12 — 74 0 0 0 0 0 0 0 0 0
15 — 63 0 0 0 0 0 0 0 0 0
34 PRO7_ORYSA prolamin 29 4 0 0 0 0 0 0 0 0
35 GLU3_ORYSA glutelin type-A III 27 3 0 0 0 0 0 0 0 0
41 GLGB_ORYSA 1,4-a-glucan branching enzyme 26 1 0 0 0 0 0 0 0 0
53 GLGB_MAIZE 1,4-a-glucan branching enzyme IIB 21 0 0 0 0 0 0 0 0 0
83 — 11 0 0 0 0 1 0 0 0 0

125 PODK_MAIZE pyruvate phosphate dikinase 12 0 0 0 0 0 0 0 0 0
148 PHSL_VICFA a-1,4 glucan phosphorylase 10 0 0 0 0 1 0 0 0 0
171 ASPR_HORVU phytepsin 10 0 0 0 0 0 0 0 0 0
209 UGST_ORYSA granule-bound starch synthase 8 1 0 0 0 0 0 0 0 0
304 SUS2_HORVU sucrose synthase 2 6 1 0 0 0 0 0 0 0 0
366 — 6 0 0 0 0 0 0 0 0 0
367 — 6 0 0 0 0 0 0 0 0 0
378 — 5 1 0 0 0 0 0 0 0 0

(b)

3 RA05_ORYSA seed allergenic protein RA5 59 170 0 0 0 0 0 0 0 0
20 — 9 57 0 0 0 0 0 0 0 0
52 RA17_ORYSA seed allergenic protein RA17 5 21 0 0 0 0 0 0 0 0
95 IAA1_HORVU a-amylase inhibitor BMAI-1 2 16 0 0 0 0 0 0 0 0

114 P93615 ABA-induced plasma membrane protein 2 14 0 0 0 0 0 0 0 0
282 CDP1_ORYSA calcium-dependent protein kinase 0 8 0 0 0 0 0 0 0 0
308 P322_SOLTU probable protease inhibitor P322 1 7 0 0 0 0 0 0 0 0
481 OLE1_ORYSA oleosin 16 kD 0 6 0 0 0 0 0 0 0 0
488 — 0 6 0 0 0 0 0 0 0 0

Contigs are listed with a putative identification, if available, corresponding to the best match in the SWISS-PROT/TrEMBL databases
(score > 100; default scoring matrix). The expression profile for each contig is shown for the 10 libraries used (identified by dbEST
library identifiers), arranged in the same order as in the library dendrogram (see Fig. 2).
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The expression profile and putative identity is shown
for each contig. Profiles in both groups of contigs are
characterized principally by expression in libraries
1073 and 535 (immature seed and panicle at ripening
stage). However, the contigs form two discrete clusters
on the basis of linear correlation. Thus, for the group of
contigs in Table 3a, expression is several fold higher in
library 1073 than in library 535, whereas the converse
is true for the group of contigs in Table 3b. Most of the
contigs in the two clusters encode proteins with seed-
related functions, in particular storage proteins, con-
curring with previous observations of over-representa-
tion of prolamin and glutelin transcripts in rice seed
cDNA libraries (Liu et al. 1995; Yamamoto and Sasaki
1997).

The Pearson correlation coefficient therefore per-
mits fine-scale identification of sequences with corre-
lated expression profiles.

Assessing the Pairwise Similarity
Between cDNA Libraries
The degree of pairwise similarity between whole cDNA
libraries can be similarly assessed with the Pearson cor-
relation coefficient. The same table of multi-condition
expression data is used, although with rows and col-
umns exchanging roles. For each of the 10 sampled
libraries, the profiles now consist of the 707 numbers
(EST counts) characterizing the level of expression of
each gene. If two tissues express a similar complement
of genes, we expect the EST sampling of the corre-
sponding cDNA libraries to exhibit similar profiles,
hence, to be characterized by a high pairwise correla-
tion coefficient. The computation of Pearson’s coeffi-
cient between all cDNA libraries results in a 10 2 10
(symmetrical) matrix that will be used in building the
graphical representation of the expression data.

A Two-Dimensional Graphical Representation
Revealing Gene Clusters
The second aim of our study is to build a graphical
representation of the whole table of multi-condition
expression measurements, as a way to visualize clusters
of genes obeying similar expression patterns.

To combine the library and contig data into a
single representation, we adapted the clustered corre-
lation approach pioneered by Weinstein et al. (1997)
(Fig. 1). This technique involves reordering the results
of multidimensional assays (in the latter study, N com-
pounds vs. M tumors) so as to reveal discrete islands of
regularities (e.g., different compounds affecting a simi-
lar subset of tumors, or different tumors affected by a
common subset of compounds). This is performed by
reordering the rows (and columns) of the data table so
that the most similar ones are adjacent to each other.
In our case, the data table consists of the expression

measurements of 707 genes (rows) in 10 cDNA libraries
(columns).

In the first step, a N 2 N row pairwise metric dis-
tance matrix is computed (see Methods) and then used
to build a dendrogram that assembles all rows into a
single tree. The rows are then reordered according to
their hierarchical position in this tree. In our case, the
contig/gene pairwise distance matrix is derived (see
Methods) from the matrix of pairwise correlation co-
efficients described above. Adjacent genes then have
similar expression profiles (Fig. 1). Given the large
number of contigs (707), the complete contig dendro-
gram has not been reproduced here, although frag-
ments are shown in Fig. 3, below. (The complete den-
drogram and other data is available from the authors).

The same procedure is used to assign pairwise dis-
tances to cDNA libraries (Fig. 1) and reorder them in
the table of EST counts. Adjacent libraries are then
those apparently expressing the most similar subsets of
genes (Fig. 1). The tree derived from the library corre-
lation analysis is shown in Figure 2. As would be pre-
dicted, libraries derived from similar tissue types (callus
libraries 1275, 961, and 75) or libraries derived from
overlapping tissues (library 535 from panicle at ripen-
ing stage and library 1073 from immature seed) cluster
together. This validates our method, and suggests that
the cDNA libraries analyzed are reliable sources of ex-
pression data.

Other nearest neighbours on the tree include li-
braries 499 and 307 (panicle at flowering and green
shoot at 8-days old, respectively). Interestingly, library
193 (etiolated shoot 8-days old) and library 307 (green
shoot at 8 days old), are not paired, suggesting signifi-
cant differences in expression patterns between these
tissues. This is explained by the massive induction of
light-regulated transcripts that occurs during the
greening process, which are present in green but not

Figure 2 Dendrogram showing cDNA library similarities. Each
library is identified by the dbEST library identifier and a short
description.
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etiolated tissue. These differences are also illustrated in
the clustered correlation map shown in Figure 3.

Once optimally reordered according to both con-
tig and to library similarity, the expression measure-
ment table can be graphically represented as a map,
with the color in a given cell reflecting the underlying
EST count (Fig. 1). Following the reordering of rows
and columns, clusters of genes exhibiting coordinated
expression appear as blocks of similar color, and are
readily identified either by visual inspection, or auto-
matically via the use of classical image-processing tech-
niques.

Figure 3 shows the complete clustered correlation
map generated from the rice data. To illustrate ways in
which the data may be explored, two fractions of the
map have been expanded and annotated with contig
numbers and putative identities (Fig. 3B, C). These

show that contigs in close proximity on the map may
represent genes with related functions. In addition, re-
gions indicated by arrows on the map correspond to
clusters of contigs expressed more or less specifically in
a particular library; for example the green arrow indi-
cates contig sequences expressed at high levels in li-
brary 307 (green shoot, 8-days old), many of which
encode chloroplast component precursors.

The clustered correlation map therefore enables
expression patterns of interest to be selected prior to
identification of specific sequences. The clustered cor-
relation map and associated results are available from
the authors.

DISCUSSION
This report presents a new protocol for the analysis of
EST data aimed at discovering correlated patterns of

Figure 3 Clustered correlation map of the rice EST data. (A) The complete clustered correlation map of 707 contig sequences vs. 10
cDNA libraries is shown. Library identifiers (dbEST library identifiers, see Table 1) identify each library; contig identifiers are not shown in
full, but are shown for each of the expanded regions in B and C. Absolute numbers of ESTs are represented according to the color scale
shown below the map. Note that because of restrictions on the number of distinguishable colors, the color scale has been chosen so as
to optimally represent a portion of the data (those cells with EST counts between 5 and 55; all cells with a value >55 are assigned the color
red). The green and yellow arrows have been placed to show how the map might be used to identify groups of genes with particular
expression patterns. In this case, the green arrow indicates a block of genes principally expressed in library 307 (green shoot, 8 days old)
and the yellow arrow a block of genes principally expressed in library 193 (etiolated shoot, 8-days old). (B,C) Expanded regions of the
clustered correlation map. To the right of each region, contigs are identified by contig number and putative identification (SWISS-PROT/
TrEMBL identifier and description), if available. To the left of each region, the relevant portion of the dendrogram used to reorder the
original data table is shown. Note the differences in color scale for A, B, and C, as the color scale was chosen in each case to optimally
represent the required interval of EST counts.
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gene expression between different tissues, with the rice
EST database as a test set. Despite the inherent noise of
EST data, and the relatively small size of the data set
analyzed, our results show that coherent patterns of
gene expression can be revealed. The approach permits
both the association of tissues via their common pat-
terns of gene expression and the association of genes
via their tissue-dependent expression patterns.

The set of cDNA libraries used to generate the rice
ESTs are sufficiently varied to cover each of the princi-
pal tissues in the plant life cycle (Yamamoto and Sasaki
1997). In addition, groups of libraries representing the
same tissues at different developmental stages (e.g., li-
braries from panicle tissues) or the same tissue type
under different growth conditions (e.g. libraries from
callus tissue) are present within the 10 libraries ana-
lyzed in our study. By use of this data set, our methods
show how whole transcriptomes from different tissues
can be compared in a statistical manner. Tissues for
which gene expression profiles would be expected to
overlap, such as 1073 and 535 (immature seed and
panicle at ripening stage, respectively), or 961, 75, and
1275 (all from callus), are found to have overlapping
profiles. Similarly, genes with inter-related functions,
such as those involved in seedling physiology shown
in Table 3, are found to have correlated expression pro-
files. The strength of the method lies in the fact that
clustering is based on expression profiles; prior knowl-
edge of sequence identity is not required. Furthermore,
the anonymous sequences in Table 3 (i.e., contigs 12,
15, 83, 366, 367, and 378 in the first cluster) illustrate
how expression profile clustering might aid candidate
gene selection; in this particular example, the anony-
mous sequences in Table 3 would be good candidates
for identification of novel genes involved in seed me-
tabolism.

Clustering genes by expression profile may also
enable identification of novel regulatory elements, as
genes with correlated profiles might be expected to
have regulatory elements in common (DeRisi et al.
1997; Brazma et al. 1998). Other possible uses include
the identification of surrogate markers (e.g., Figueroa
et al. 1998; Johnson et al. 1998), whereby a conve-
niently assayed biomarker allows monitoring or pre-
diction of a particular condition (e.g., a gene or cluster
of genes whose expression profiles consistently corre-
late with an agricultural trait of interest).

Overall similarities between tissues are clearly re-
vealed by the dendrogram or the two-dimensional
clustered correlation map representation of expression
profiles. These types of observations may contribute to
a new understanding of the interrelationships between
different tissues and developmental pathways. For ex-
ample, it has long been hypothesized that leaves and
certain floral organs derive from a common ancestral
organ, an idea supported by documented instances of

common regulatory processes during leaf and floral
morphogenesis (Arber and Parkin 1907; Satina and
Blakeslee 1941; Steeves and Sussex 1989; Bowman et al.
1993; Hofer et al. 1997). Large-scale studies of gene
expression may support these hypotheses by identify-
ing tissues with similar or overlapping patterns of gene
expression.

The value of expression profiles from EST collec-
tions, and the potential for functional prediction are
entirely dependent on the available data. In addition,
certain assumptions are implicit when using EST col-
lections for transcript profiling. First, to ensure that tag
frequency correlates with the actual transcript abun-
dance in a given tissue, the cDNA libraries should have
been prepared in a comparable manner. For example,
normalized cDNA libraries (e.g., Patanjali et al.1991),
in which the frequencies of clones representing abun-
dant and rare transcripts are normalized with respect
to one another, are not suitable for a study of this type
(although some large effect might still be detectable by
a binary presence/absence coding of the original multi-
condition EST counts). In addition, ESTs should be
contributed to the databases without prior selection for
novel sequences (in some cases redundancy within EST
sets is reduced by first screening the existing EST set
and then only submitting sequences not already pre-
sent). Potential errors may also originate from the EST-
clustering procedure. For instance, ESTs derived from
the 58 and 38 ends of a long transcript may constitute
discrete contigs. However, this is not anticipated to be
a major problem in the technique presented here.

The potential of large-scale gene expression analy-
sis is most often discussed in the context of hybridiza-
tion techniques such as cDNA microarrays (see Duggan
et al. 1999) or synthetic oligonucleotide arrays (for a
recent review, see Lipshutz et al. 1999). These tech-
nologies have been applied in several systems includ-
ing two independent studies of the yeast transcriptome
(Wodicka et al. 1997; Eisen et al. 1998), the monitoring
of 1000 human genes in activated human T-cells
(Schena et al. 1996), and the analysis of the fibroblast
transcriptional response to serum (Iyer et al. 1999).
Studies have also been performed on subsets of Arabi-
dopsis cDNAs (Schena et al. 1995; Desprez et al. 1998)
and on a subset of human genes related to inflamma-
tion (Heller et al. 1997). These accomplishments
should not hide the fact that the high-density micro-
array technology is still only marginally accessible to
academic laboratories (Cheung et al. 1999). On the
other hand, the established EST (Adams et al. 1992;
Okubo et al. 1992) or SAGE (Velculescu et al. 1995)
approaches have proven their capacity in monitoring
gene expression in a large variety of experimental sys-
tems (Lee et al. 1995; Anderson and Seilhamer 1997;
Madden et al. 1997; Velculescu et al. 1997; Zhang et al.
1997; He et al. 1998; Hibi et al. 1998; Takenaka et al.
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1998; de Waard et al. 1999), including plants (Uch-
imiya et al. 1992; Hofte et al. 1993; Liu et al. 1995;
Yamamoto et al. 1997). The EST approach is unique in
allowing both expression measurements and the dis-
covery of new genes at the same time, whereas micro-
array techniques are limited to a repertoire of previ-
ously identified sequences. Furthermore, ESTs have a
wide range of applications including mapping and
studies of colinearity (Sasaki 1996). Several studies
have shown that EST/SAGE sampling experiments can
reliably identify differentially expressed genes (Lee et
al. 1995; Audic and Claverie 1997; He et al. 1998; Grel-
ler and Tobin 1999). In more recent work, it has been
shown that the analysis of EST data can provide valu-
able insight into the existence and the expression pat-
terns of alternative transcript forms (Burke et al. 1998;
Gautheret et al. 1998). In the present article, we show
that the analysis of this data can be extended beyond
the simple recognition of differential expression to the
identification of gene subsets exhibiting coordinated
expression patterns.

From a statistical point of view, multicondition
expression data obtained from hybridization arrays or
cDNA tag sampling are quite similar. They both result
in gene abundance estimates stored in a gene versus
cDNA library table. Thus, it is expected that after a first
step of signal processing (such as noise filtering, pixel
detection, thresholding, and normalization) specific to
the microarray technique involved, similar statistical
treatment could be applied. In the case of EST or tag
data, initial signal processing consists mainly of select-
ing genes and libraries for which total tag counts are
large enough to eventually lead to statistically signifi-
cant inferences (in our own study, selecting contigs
representing five or more ESTs, and those cDNA librar-
ies from which >800 ESTs have been generated). Our
analysis is then quite similar to the approach indepen-
dently followed by Eisen et al. (1998) to identify coor-
dinated gene expression in yeast using cDNA microar-
rays. For instance, both use the Pearson correlation co-
efficient as the primary statistical parameter to
quantify the similarity of expression profiles. However,
slightly different metrics for the subsequent hierarchi-
cal clustering of genes were used; whereas Eisen et al.
(1998) directly used the pairwise correlation coefficient
between genes, we computed a true Euclidean distance
from the whole gene versus gene correlation coeffi-
cient matrix. The distance between two genes is thus
computed from the similarity of their expression with
all other genes in the matrix, and not from a single
pairwise correlation. This procedure, which minimizes
the influence of random fluctuation in tag counting,
might also serve in smoothing the noise of microarray
pixel data. The sensitivity of expression analysis from
EST data depends to an extent on the number of ESTs
sequenced. Theoretically, expression profiles could be

derived for even very weakly expressed genes if suffi-
cient numbers of ESTs were generated. This contrasts
with current limitations of microarray technology, in
which sensitivity is limited by the quantity of RNA
used per hybridization, making detection of very
weakly expressed transcripts difficult (see Duggan et al.
1999).

The nature of our multicondition expression data
also allowed us to perform hierarchical clustering of
both rows (genes) and columns (cDNA libraries), re-
sulting in a two-dimensional clustering (following
Weinstein et al. 1997) indicative of both gene and li-
brary expression similarity. Similar genes are thus
graphically clustered into islands of simple shape (Fig.
3). In a subsequent development of our display pro-
gram, the visual recognition of these islands will be
supplemented by standard image processing algo-
rithms, an attractive alternative to the complexity of
more abstract clustering algorithms.

With increased definition of EST collections, (e.g.,
cDNA libraries prepared from tighter developmental
windows, or cDNA libraries prepared from specific cell
types), digital expression profiles will become increas-
ingly valuable sources of expression information. This
information, alongside expression data from other
large-scale approaches, has an important role to play in
our efforts to assign function to anonymous sequences.

METHODS

EST Database and Contigs
Rice ESTs were extracted from GenBank version 107 with
Batch Entrez at the National Center for Biotechnology Infor-
mation (http://www.ncbi.nlm.nih.gov/Entrez/batch.html).
dbEST (Boguski et al. 1993) reports were obtained with the
Sequence Retrieval System (SRS) at the Human Genome Map-
ping Project (http://iron.hgmp.mrc.ac.uk/).

Rice ESTs were quality controlled and organized into
contigs as described elsewhere (Ewing et al. 1999; http://igs-
server.cnrs-mrs.fr/ewing). The protocol involved a classical
preliminary cleaning of the EST data (vector removal, elimi-
nation of low quality sequences), a stringent pairwise com-
parison of all cleaned EST sequences, followed by the separate
contiging of overlapping ESTs. Because our aim is a statistical
analysis of gene expression profiles, contigs derived from
fewer than five constituent ESTs were excluded from the
study. Putative identities (Table 2) were assigned to every re-
sulting contig sequence by querying them against the SWISS-
PROT/TrEMBL (36.0) database (Bairoch and Apweiler 1998)
with gapped BLASTx (Altschul et al. 1997).

Contig and Library Correlation Analysis
The similarity between contigs (genes) or cDNA library ex-
pression profiles was estimated by Pearson’s r coefficient,
quantifying the degree of linear correlation between two vari-
ables, X = (x1,x2,...,xN) and Y = (y1,y2,...,yN).

Given a sample of N pairs of score, r quantifies the extent
to which we can make useful predictions on the value of Y
from the knowledge of the corresponding X score. The mea-
sure of correlation, r, is computed as
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and has a value between 11 and +1. Values of r near to 0
indicate a low degree of correlation. Positive values of r indi-
cate that high values of X are associated with high values of Y.
Negative values of r indicate that low values of X are associ-
ated with high values of Y (anti-correlation) or vice versa.

The pairwise gene expression correlation coefficients
were computed by the repetitive use of the above formula, in
which X and Y are different genes associated with their cor-
responding EST counts (x1,x2, . . . ,xN) and (y1,y2,, . . . ,yN)
measured in cDNA libraries 1,2 ,N (with N = 10). The result of
these computations constitutes a 707 2 707 symmetrical ma-
trix of correlation values and a matrix of pairwise gene dis-
tances was subsequently derived from it as described below.

Alternatively, a table of the pairwise library correlation
coefficient was computed, now taking X and Y as different
libraries associated with the EST counts (x1,x2, . . . ,xN) and
(y1,y2, . . . ,yN) corresponding to the various genes 1,2, . . . ,N
(with N = 707). The result of these computations constitutes a
10 2 10 symmetrical matrix of correlation values. As for the
gene distance values, a matrix of pairwise library distances
was derived as described below.

Hierarchical Classification of Genes and Libraries
The hierarchical classification (dendrogram) of objects re-
quires the calculation of the distance between all pairs of ob-
jects. From the gene correlation matrix constructed previ-
ously (the elements of which are r values ranging from 11 to
1), a pairwise Euclidean distance matrix was derived as fol-
lows. The Euclidean distance d, between two sets,
X = (x1,x2, . . . ,xN) and Y = (y1,y2, . . . ,yN) is simply computed
as

d~X,Y! =Î(
i=0

i=N

~x
i

− y
i
!2

The above formula can then be used for all pairs of genes
X and Y defined by their list of correlation coefficients
(x1,x2, . . . ,xN) and (y1,y2, . . . ,yN).

By the same method, the 10 2 10 matrix of library cor-
relation coefficients was used to derive pairwise distance val-
ues between libraries. The gene and library distance matrices
were then used to build their associated dendrograms accord-
ing to the UPGMA algorithm (Sokal and Michener 1958),
implemented in the neighbor program (Kuhner and Felsen-
stein 1994). Dendrograms were plotted with the njplot pro-
gram (Perriere and Gouy 1996). The order of contigs and li-
braries in their respective dendrograms were used to reorder
the original data table. The reordered data table was then used
as the basis for plotting the clustered correlation map, gener-
ated with Matlab 5.2 (MathWorks, Inc.).
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