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Large Scale Structure and Galaxies

Ravi K. Sheth

Center for Particle Cosmology, University of Pennsylvania,
209 S 33rd Street, Philadelphia, PA 19104

Abstract. These notes sketch the motivation for and ingredients of the Halo Model of nonlinear
and biased structures in the Universe. A key part of this approach is the relation between halo
abundances and their large scale clustering. These come from the excursion set approach, so I
have taken the opportunity to collect together all the formulae associated with this approach into
one place. These include expressions for: the unconditional mass function, the conditional mass
function, the environmental dependence of the mass function, halo bias, merger rates, creation and
destruction rates, the distribution of half-mass assembly times, masses and mass at fixed assembly
time. In addition, I discuss how the approach can be used to describe voids, filaments and sheets,
as well as the nonlinear counts in cells distribution, and provide analytic formulae for a number of
these statistics.

Together these formulae show that, in hierarchical models: massive halos assemble their mass
later than low mass halos; halos which assemble their mass abnormally late for their mass will tend
to have experienced a recent major merger; if one is interested in the mass assembled in pieces which
are above some mininum mass, then this happens earlier for the more massive halos; for similar
reasons, the mass fraction in pieces which are between a fixed mass range reaches a maximum at
higher redshifts for halos which are more massive today. The first trend may explain why the oldest
stars tend to sit in massive objects; the second may be why star formation in massive objects ended
earlier. This approach also shows that the mass function in dense regions should be ‘top-heavy’,
and that more massive halos should be more strongly clustered. If galaxy properties are determined
primarily by the mass of their parent halo, then many observed correlations with environment are a
simple consequence of these trends.

Finally, I summarize the Halo Model of galaxy clustering. I discuss how it describes type-
dependent clustering, particularly dependence on luminosity and color, and sketch how to use it to
build accurate mock catalogs which include information about stellar mass, dust, and star formation
history.

Keywords: cosmology – dark matter – dark energy – large scale structures – galaxy formation
PACS: 98.65.Dx

OBSERVATIONS AND MOTIVATION

The next decade will be the age of precision cosmology. Much of this precision will

come from surveys of objects for which gastrophysics has been important – supernovae,

galaxies and galaxy clusters. These surveys follow-on from where the SDSS left-off,

with the SDSS itself being the most recent in long and fruitful history of survey astron-

omy. The optimists argue that we will constrain cosmological models in which baryons

are thought to make up less than 10 percent of the total mass-energy budget, to one

percent precision, despite the fact that most of our observations are of baryons, and our

understanding of the associated gastrophysics is nowhere near 10 percent. The following

notes lay out the basis for this optimism.

We have known for just under a century that ours is but one of many galaxies. We
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have known for 80 years that galaxies are clustered, for 40 years that this clustering

signal is almost a power law, and for about 30 years that not all galaxies cluster similarly.

Departures from a power law are now routinely measured: these depend on galaxy type,

and type-dependent clustering now provides important insights into galaxy formation.

Since different galaxy types are differently biased tracers of the underlying mass

distribution, the question arises as to how one can develop a unifi ed statistical language

for describing different point processes which all arise from the same underying density

fi eld. This language is known as the Halo Model [13]. It provides a unifi ed framework

for relating galaxies and galaxy clusters to the underlying nonlinear dark matter – it is

the language in which a nonlinear biased description of the dark matter is most easily

discussed.

Before showing how this model is built, it is worth making the following point

explicitly: Discussions of galaxy formation generally fall into two types, those in which

smoothed density, pressure and temperature fi elds are thought to be important, and those

in which discrete objects, so-called dark matter halos, are the fundmental units. The Halo

Model, in its current implementation, makes one further assumption – that the mass of

these units is the most important parameter. This approach has shown that a description

based on mass rather than smoothed density is by far more effi cient and effective when

discussing nonlinear structures: the Halo Model can be used to predict the smoothed

density, pressure and temperature fi elds, whereas the opposite has yet to be done. (This is

analogous to the choice between coordinate and Fourier-space basis of Gaussian random

fi elds: although both are equivalent, the effects of smoothing, quasi-linear evolution, etc.

are much easier in the Fourier description.) The physical reason for this is that, at late

times, the sizes of the fundamental units are small compared to their typical separations.

Thus, the Halo Model has been successful for describing observations of clusters and

galaxies, but there is at yet no halo model description of the Lyman-α forest.

To illustrate this point, the right-hand panel of Figure 1 shows the correlation function

(the fractional excess of pairs over random) of galaxies in the SDSS. The fi lled circles

show the full sample (for the specialists, these are all galaxies above some luminosity in a

volume limited catalog). The other symbols show the result of measuring the clustering

signal in subsamples of this one, made by selecting galaxies based on the number of

neighbours within some fi xed (projected) distance (in this case 8h−1 Mpc). The open

triangles show that the 10% in the densest regions cluster more strongly than if this cut

is relaxed to include the upper 30% of the objects (fi lled triangles). In turn, these cluster

more strongly than the full sample. Except on very small scales, the 30% in the least

dense regions are even less clustered (fi lled squares), but making a more extreme cut,

so that only the densest 10% are included, results in stronger clustering (open squares).

Thus, clustering is not a monotonic function of environment!

These trends are well reproduced in the panel on the right, which shows measurements

in a dark-matter only simulation that was turned into a mock SDSS catalog using a Halo

Model motivated approach. The catalog was tuned to reproduce the fi lled circles; all

the others are predictions or tests of the approach. Figure 2 shows that, in addition to

getting the non-monotonicity of the signal right, it accurately reproduces all the bumps

and wiggles seen in the data.

The notes which follow are intended to show why measurements like these will soon

provide excellent constraints on generic predictions of hierarchical models: the shift in
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FIGURE 1. Environmental dependence of clustering in the SDSS (right) and in a mock catalog (left)

which was based on ingredients from the Halo Model [from 1].

amplitude on scales above 10h−1Mpc is sensitive to the fact that the mass function of

halos in dense regions is ‘top-heavy’; the jump on scales ∼ 0.2h1Mpc, and the tendency

for this to happen on smaller scales in the underdense regions is another manifestation

of this, because the Halo Model says this feature marks the virial radii of halos (halos

are expected to have the same density whatever their mass, so virial radii are predicted

to increase as the one-third power of halo mass); the non-monotonic behaviour with

large scale environment arises naturally if the initial conditions were Gaussian, although

the small scale signal is also sensitive to halo concentrations, and hence their formation

histories. And fi nally, the fact that the simulations appear to slightly overpredict the
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FIGURE 2. Same as previous figure, but now all symbols and curves have been normalized by those

for the full sample [from 1].

trends seen in the data suggests that the simulations assumed too large a value for the

amplitude of the initial fluctuations (known in the jargon as σ8).

The notes assume that the linear theory of gravitational instability is familiar: the

linear theory growth factor for the overdensity will be written as D(t); that for the

potential as D(t)/a(t), where a is the expansion factor. Explicit expressions for D(t),
and of the evolution of the background cosmological parameters Ω and Λ may be found

in textbooks [35, 37? ] or review articles [6, 13]. The linear theory power spectrum of

the density fluctuation fi eld at time t is PL(k, t). When the fi eld is smoothed with a fi lter
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of comoving scale R, then the spectral moments play a special role. These are

σ2
j (R, t) ≡

∫
dk

k

k3 PL(k, t)

2π2
k2 j |W (kR)|2, and we defi ne S(R, t) ≡ σ2

0 (R, t) (1)

because the case j = 0 is particularly important.

NONLINEAR EVOLUTION

One of the standard predictions of nonlinear hierarchical structure formation models is

the abundance of virialized structures [38, 54, 20]. Simulations show that this abundance

depends on the large scale environment: the ratio of massive to low mass objects is

larger in dense regions [e.g., 15]. Recent measurements in galaxy surveys appear to bear

this out: the virial radii of objects in underdense regions are smaller, consistent with

their having smaller masses (Figures 1 and 2). The following section uses the spherical

evolution model to show why this happens. Although much of this is standard, I have

added some discussion of what changes if the gravitational force law is modifi ed from

an inverse square.

Spherical evolution: Collapse and expansion

The spherical evolution model describes the evolution of the size R of a spherical

region in an expanding universe [19, 40, 37, 35, 6]. Since realistic structures are neither

spherical nor smooth, that it works at all is because it is, at heart, a statement of the

constraints imposed by mass and energy conservation.

The model begins by stating that F = ma, so

d2R

dt2
= −GM(< R)

R2
+

Λ
3

R, (2)

where M = 4πR3
i ρ̄(ti)(1 + δi) is the mass enclosed by the perturbation, and Λ is the

cosmological constant (which we assume is constant in space and time). Models with

evolving dark energy will have Λ(t), and if the dark energy clusters, then Λ(t)[1+λ (t)],
where λ is the fluctuation, but we will not consider these here.

Multiplying both sides of this expression by 2dR/dt yields

d(dR/dt)2

dt
= 2

dR

dt

[

−GM(< R)

R2
+

Λ
3

R

]

. (3)

Multiplying both sides by dt and then integrating once (recall M(< R) is constant) yields

(

dR

dt

)2

=
2GM

R
+

Λ
3

R2 −Ei, (4)
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where Ei is the constant of integration. One way to set this constant is by requiring that

the initial velocity and density perturbations satisfy linear theory:

(

dR

dt

)2

i

= (HiRi)
2(1−δi/3)2 =

2GM

Ri
+

Λ
3

R2
i −Ei, (5)

If the perturbation is suffi ciently dense initially, it will reach a maximum size before

turning around and collapsing. At turnaround, dR/dt = 0, so

2GM

Rta

+
Λ
3

R2
ta = Ei =

2GM

Ri

+
Λ
3

R2
i − (HiRi)

2(1−δi/3)2 (6)

Dividing throughout by (HiRi)
2, and recalling that M ∝ R3

i shows that this is a cubic

equation for Rta/Ri, so it can be solved analytically. Note in particular that Ri/Rta

depends on δi and the background cosmology, but that this dependence is the same for

all Ri.

To get a feel for the solution, suppose Λ = 0. Then, because 2GM/Ri = ρi (1 +
δi)(8πG/3H2

i )(HiRi)
2 = Ωmi(1+δi)(HiRi)

2 this becomes

Ri

Rta
= 1− (1−δi/3)2

Ωmi(1+δi)
≈ 1− 1−5δi/3

Ωmi
(7)

Since Ωmi ≈ 1 in most models, Rta/Ri ∝ (5δi/3)−1 decreases as δi increases. This shows

that initially denser perturbations turnaround after fewer expansion factors, i.e., sooner,

than less dense ones. In fact, the turnaround time can be got from the fact that

tta − ti =
∫ Rta

Ri

dR

dR/dt
= ti

∫ Rta/Ri

1

dR/Ri

d(R/Ri)/d(t/ti)
(8)

where it is good approximation to set the lower limit to zero. The subsequent collapse

takes the same amount of time, so the time to fi nal collapse and virialization is just a

factor of two times larger that that at turnaround. Similarly, the physical size of the fi nal

virialized object is about a factor of two smaller than at turnaround. This comes from

energy conservation: at turnaround, all the energy is potential, whereas at virialization,

−W = 2K so the total energy is half the potential: GM/Rta = GM/2rvir. (The presence

of dark energy modifi es this slightly, but not substantially.)

The density at virialization is large – much larger than linear theory would predict. For

example, in an Einstein de-Sitter universe, (avir/ata)= (tvir/tta)
2/3 = 22/3, so the comov-

ing density at virialization is (Ri/ai)
3/(Rvir/avir)

3 = 23 (Ri/ai)
3 (Rta/ata)

3 (avir/ata)
3 =

23 22 (Ri/ai)
3/(Rta/ata)

3; it has increased by a factor of 32 relative to the comoving

density at turnaround. This is substantially more than the factor of (avir/ata) = 22/3 one

would predict from linear theory. In contrast, the ratio of the nonlinear potential to that

in linear theory is

GM/Rvir

(ai/avir)(GM/Ri)
=

Ri/ai

Rvir/avir
= 2

Ri/ai

Rta/avir
=

10

3

avir

ai
δi. (9)
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This suggests that a description based on the potential rather than density fi elds will lead

to promising results. We will not have space to explore this further, but note that the

spherical model for nonlinear structure formation has generally emphasized the density,

not the potential.

In general models with dark energy, one must solve numerically for the evolution of

Ri/R as a function of t. Since linear theory makes a prediction for the linear growth, it is

conventional to express Ri/R(t) as a function of D(t)δi/Di. This relation is cumbersome,

even in the simplest case of an Einstein de Sitter universe. However, it is rather well

approximated by

(

Ri/ai

R(t)/a(t)

)3

≡ 1+∆ ≈
(

1− δL(t)

δsc(t)

)

−δsc(t)

, where δL(t) ≡ D(t)

Di
δi, (10)

and δsc(t) is the critical density required for collapse at t evolved from ti to t using linear

theory. It happens that δsc depends very weakly on cosmology – it is 1.686 for Ω = 1

and tends to 1.5 as Ω → 0, with nonzero Λ making only a small difference – so it is a

very weak function of t. Infall speeds vpec can be got by differentiating this expression

with respect to t. Note that this expression is also accurate for underdensities, i.e., when

∆ < 0.

Environment as effective cosmology

It is an interesting exercise to show that, in the spherical evolution model, the growth

of structure in an initially over- or underdense region is just like that in a universe with a

different background cosmology. To correctly estimate the background cosmology asso-

ciated with, say, an underdense void, one must account not only for the lower density, but

for the fact that the effective Hubble constant of the void cosmology is larger than in the

background [e.g., 18]. One way of thinking about the effective Hubble constant is that

it ensures that the effective cosmology has the same age as the background cosmology.

(The cosmological constant is, of course, constant, but when expressed in units of the

critical density in the effective model, it is modifi ed because the critical density depends

on the effective Hubble constant.) Because the spherical model does this automatically,

the excursion set approach in the next section incorporates this self-consistently, without

having to appeal to the concept of an effective cosmology [27]. This is a direct conse-

quence of Birkhoff’s theorem.

Modified gravity and Birkhoff’s theorem

There are two special features of equation (2) which are peculiar to standard inverse-

square-law gravity. The fi rst is that, of the two terms in it, one scales as R−2, and the

other as R. These are the only two force laws which produce stable closed orbits – so

one wonders if theories which modify gravity should worry about this.

The second point is that, when solving for the evolution of R(t), it was enough to

study the evolution of the boundary of the perturbation: an initially tophat perturbation

164

Downloaded 21 Dec 2010 to 130.91.117.41. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



remains so (until it has fully collapsed). This is a consequence of Birkhoff’s theorem.

Modifi cations to gravity typically mean that Birkhoff’s theorem no longer applies. This

complicates the spherical model, because now each shell must be evolved separately:

Generically, a top hat perturbation will not remain a tophat. In addition, because such

theories often introduce a scale beyond which gravity is modifi ed, perturbations which

never cross this scale don’t know the difference. As a result, δsc, which was the same for

all masses in standard gravity, becomes mass dependent. See [28] for the fi rst analysis

which incorporates these subtleties.

Typically, in these theories, even linear theory is modifi ed in a rather profound way.

Whereas the linear theory growth factor is the same function of time for all k modes

in standard gravity, it is k-dependent in modifi ed theories [e.g. 58, 59]. As a result, a

smooth spherical region within which the density is the same as the background universe

will evolve. This qualitatively different behavior from standard gravity has not been

emphasized – so it is worth showing the argument explicitly.

Consider the density fi eld smoothed on scale R at some early time ti. We can write this

fi eld in terms of its Fourier modes and the (Fourier Transform of the) smoothing kernel

as

δR(x, ti) =
∫

dk exp(ik ·x)δ (k)W (kR). (11)

The linearly evolved fi eld is

δR(x, t) =
∫

dk exp(ik ·x)
D(k, t)

D(k, ti)
δ (k)W (kR), (12)

where D is the linear theory growth factor. In standard gravity, D is independent of

k, so if δR(x, ti) = 0 then δR(x, t) = 0 also. But if D depends on k, then if δR(x) = 0

at some time t, it will, in general, be non-zero at other times (the exception being if

the k-dependence of W happens to exactly cancels that of D). Thus, we are led to the

rather remarkable conclusion that, when the gravitational potential has been modifi ed,

then linear theory predicts that a spherical tophat patch within which the density is the

same as the background will evolve! The reason why can be traced to the fact that

Birkhoff’s Theorem no longer applies once the Newtonian potential has been modifi ed.

Without this Theorem, the spherical top hat fi lter is no longer special, and our common

sense prejudice from standard gravity – that initially overdense regions become denser,

underdense regions less dense, but regions within which the density is the same as the

background do not evolve – must be treated with caution.

Since the argument above is true for any R, one might wonder what happens in

the limit of large R. If the fi lter removes modes on scales of order kR > 1 then a

uniform average density patch will not evolve only if D(k, t) becomes independent of

k-dependent at small k. Else, linear theory would predict that inhomogeneities would

arise even from a perfectly unperturbed universe. Perhaps the requirement of large scale

homogeneity can be used constrain such modifi ed gravity theories. In any case, the

equivalence between environment and effective background cosmology, which is part

of standard gravity, almost certainly breaks down in these modifi ed theories.
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FIGURE 3. Physical (left) and comoving (right) evolution of axis lengths in the triaxial collapse model.

The times at which the different axes freeze-out are determined by the initial values of (e, p,δ ) and by the

background cosmological model. Dot-dashed curves in the panels on the right show the simple analytic

approximation of equation (15).

Triaxial evolution

The spherical cow approximation, while useful, is not realistic. To describe the evo-

lution of non-spherical structures one needs a model of non-spherical collapse. While

there is a long history of studies of triaxial collapse, the formulation of [10] is now gen-

erally adopted, because it reduces, at early times, to linear theory and the Zeldovich [69]

approximation. There is also now general agreement that dark matter halos should be

identifi ed with ellipsoids which have collapsed completely along all three principal axes

[53].

In this framework, the time required to collapse depends on the overdensity δ of the

initial patch and on the surrounding shear fi eld (Birkhoff’s theorem is gone because the
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e
p

e

e 
p

FIGURE 4. Left: Evolution in the axis ratio plane for a range of choices of e and p values. The value

of p determines the angle of initial descent, and e determines the values of c/a and b/a when the shortest

axis freezes out. The final axis ratios lie close to the line of initial descent. Right: Critical overdensity

required for collapse along one, two, and three axes (bottom to top) at z = 0 in a ΛCDM model with

Ω0 = 0.3 as a function of the initial shape parameters e and p.

spherical symmetry is gone!), parametrized by its ellipticity e and prolateness p. Here

e =
λ1 −λ3

2δi
, p =

λ1 −2λ2 +λ3

2δi
and δi = λ1 +λ2 +λ3, (13)

where the λ j are the eigenvalues of the initial deformation tensor, which itself is made

up of second derivatives of the initial potential fi eld. The sum of the eigenvalues is the

trace, and so the setting of δ j ≡ ∑ j λ j is really just Poisson’s equation.

As happens for the spherical model, the exact evolution of a triaxial perturbation must

be solved numerically, but the following approximation turns out to be quite accurate.

Start by considering the nonlinear density in the Zeldovich approximation (this assumes
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FIGURE 5. Comparison of predicted and measured dependence of critical initial density on shape

parameters e and p. Note that massive halos (larger ν) tend to have initial densities which are closer

to those predicted by the spherical model – which is also in agreement with the triaxial model.

that particles continue to move with their initial velocities forever.) In this case

1+∆Zel =
3

∏
j=1

(

1− D(t)

Di
λ j

)

−1

so 1+∆Zel−Sph =

(

1− D(t)

Di

δi

3

)

−3

. (14)

(a sphere has all three eigenvalues equal, so each equals δi/3). Comparison with equa-

tion (10) shows that the ‘Zeldovich sphere’ evolves as though δsc = 3. At early times

(Dt δi/Di ≪ 1) it matches the spherical model well, but it becomes increasingly inaccu-

rate at later times. This suggests setting

1+∆Ell−Coll ≈
(1+∆)Sph−Coll

(1+∆Zel−Sph)
(1+∆Zel), (15)
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where the two spherical models have δi = ∑ j λ j [26]. Figure 3 shows that this approxi-

mation describes the evolution of the collapse along the fi rst two axes reasonably well.

This analytic description aids considerably in understanding many features of the col-

lapse process, such as the overdensity required to collapse along one or two axes, and

the spin and axis ratio distributions of the fi nal collapsed objects (e.g., Figure 4).

However, for what follows, the object of most interest is δec(e, p|t); this is the analog

of δsc(t), which quantifi es how the critical density for collapse at t depends on e and p.

This is shown in the right hand panel of Figure 4; halos correspond to collapse along all

three axes: typically, the second axis collapses at about the same time the spherical model

predicts, so the third axis collapses later. As a result, the initial overdensity required for

collapse today must be higher than the spherical model predicts. Figure 5 compares the

predicted dependence of initial density on initial shape with that seen in simulations;

there is good qualitative agreement.

This is important because similar sized patches centred on different positions in a

Gaussian random fi eld may have a range of (e, p) values. This results in stochasticity

which may be the subject of similar lectures a few years from now. What is impor-

tant here is that the distribution of (e, p,δ ) values depends on the size of the patch:

g(e, p|δ ,R) [equation A3 in 53]. Since massive halos form from larger patches in the

initial conditions than do less massive halos, the distribution of initial (e, p) values, and

hence the distribution of fi nal axis ratios, also depends on halo mass. Thus, the model

comes with a prescription for determining halo shapes (see Figure 4). But it also means

that the model predicts massive halos to have smaller values of e and p. Figure 4 sug-

gests that, when averaged over all shapes, δec(m, t)/δsc(t) should be larger for small

mass halos [53]. Physically, this says that to hold themselves together against the sur-

rounding tidal fi eld, small mass objects need to have been denser initially. Alternatively,

tidal fi elds are more effi cient at stripping away material from the outskirts of low mass

halos, so the mass which remains around these objects today is the more tightly bound

stuff which accreted at some earlier time, for which D(t)δsc(tearly)/D(tearly).
The discussion above has concentrated on what it takes to collapse along all three

axes. Of course, the triaxial model provides analogous ‘critical densities’ for collapse

along just one or two axes[53]. Convenient approximations to these are:

δec(s)

δsc
= 1+β

(

δ 2
sc

s

)γ {

(γ,β ) = (0.55,−0.56) 1− axis

(γ,β ) = (0.28,0.012) 2− axes

(γ,β ) = (0.61,0.45) 3− axes

(16)

[44]. In this model, tidal forces enhance collapse along the fi rst axis and delay collapse

along the last axis relative to the spherical collapse model [53]—the expressions above

quantify these effects. Notice that the tidal fi elds may be strong enough to induce

collapse of a small region (large σ ), at least along one axis, even if it was under-dense

initially!

The differences among the three critical overdensities are larger for larger values of

σ , corresponding to ellipsoids of lower masses. The evolution of (initially large) high

mass objects is expected to have been more nearly spherical: they have δec(m, t)≈ δsc(t)
for all three axes. This is an important point to which we will return.
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FIGURE 6. Mass history associated with a random walk (jagged line). The critical density for spherical

collapse (dotted line) decreases as time increases, and mass decreases as S increases. If one imagines

sliding the dotted line downwards from great height, then filled circles show the pairs (S,δ ) at which the

walk would first cross this line. The horizonal jumps (connected by dashed lines) show places where the

mass changes dramatically – mergers [from 31].

THE EXCURSION SET APPROACH

To form, virialized objects had to fi ght the expansion of the Universe. This fi ght is more

easily won if they had a head start – if they grew from large initial perturbations. Thus,

given a model for gravity, the abundance of virialized objects contains information

about the initial fluctuation fi eld, and about the subsequent expansion history of the

universe. The excursion set approach was developed as a method for describing how

this information is encoded in the abundance and clustering of the nonlinear structures

present at later times, and in their formation histories.
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The key to this approach is the assumption that the nonlinear fi eld has some memory

of the initial conditions. Since the virial relation −W = 2K does not care about initial

conditions, it is not obvious that this is a good assumption. But arguments based on the

Zeldovich approximation suggest that this should be so, at least on large scales, so it is

plausible that this is also true for the abundance of objects, if not their internal structure.

Comparison with simulations has shown this to be the case. In what follows I use the

spherical model to illustrate the logic of the approach; the triaxial model is conceptually

similar, though technically more challenging.

The ansatz

Choose a random particle in the initial density fluctuation fi eld, and imagine smooth-

ing the fi eld around it with a fi lter of scale R. As one changes R, the overdensity within

the fi lter will change. Imagine making a plot of the value of the smoothed density around

this point as a function of R. For very large R (say, the Hubble volume), the overden-

sity in the smoothed fi lter should be negligible – the Universe is homogeneous on large

scales. As R decreases, the value of the smoothed overdensity will vary, sometimes up,

others down. The jagged line in Figure 6 shows that the result look like a random walk

– we will discuss whether the steps in the walk are truly independent shortly. The x-axis

is not quite R, but it is a monotonically decreasing function of R (see equation 1) for

reasons we discuss shortly. The y-axis shows the initial overdensity multiplied by the

linear theory growth factor D0/Di.

Although the walk starts from the origin, it will eventually reach height δsc (this

assumes there are fluctuations on arbitrarily small scales; while true for ΛCDM models,

it may not be true in general). This fi rst crossing of δsc (it may go on to cross δsc many

times at still smaller R) is signifi cant: it indicates that, when smoothed on this scale, the

fi eld was dense enough initially that it should have just collapsed and formed a virialized

object today. In the spherical collapse model, shells do not cross, so the mass associated

with this collapsed object is simply the mass that was originally within the smoothing

fi lter R. Since the fluctuations are all small, this mass is M ∝ R3. (This also shows why

the subsequent crossings of δsc are not so signifi cant – their mass is included in M. It is

only the fi rst crossing which is signifi cant.)

Moreover, in the spherical model, the critical density required for collapse at t is

independent of mass, and this critical density is a decreasing function of time. The dotted

line at δ ≈ 1.686 in Figure 6 represents this critical value for t0. At earlier times, this

critical value was larger. The dots show the result of sliding a horizontal line downwards

from great height, and recording the values of S at which the line fi rst touches the walk.

The set of (S,δ ) values obtained in this way is actually a set of (M, t) values: this set

can be thought of as describing the mass M of the collapsed object that this particle is in

at time t. The Figure shows that, in this model, the mass increases monotonically with

time, but the mass increases can sometimes be due to rather large ‘instantaneous’ jumps.

In more picturesque language, this is a model of the mass history of objects, in which

mass changes can be due to major or minor mergers, but the mass growth is hierarchical

– there is no fragmentation.
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FIGURE 7. Left: Schematic drawing of the initial spatial distribution of objects that gives rise to the

merger history tree shown on the right. The largest circle represents the comoving size of the initial region

associated with the final collapsed bound halo. As time evolves from the initial to the final, collapse time,

this comoving radius decreases. The assumption is that all the matter initially within this region remains

within it always. Thus, information about how the mass of a final object was partitioned into subhaloes

at a given time contains information about the halo distribution smoothed on a scale given by the radius

of the larger object at that time. Right: Schematic drawing of the associated merger history tree. Time

increases upwards: the initial time is at the bottom of the figure. The branch on the right is associated

with a region that, initially, was made up of many small objects that were close to each other, but rather

separated from any other objects. The branch on the left, on the other hand, is associated with a region

that was initially populated rather more homogenously.

Now, clearly, the shape of the walk, and the scale R on which the walk fi rst crosses

δsc, and indeed, the whole set of (M, t) values, will change from one initial position or

particle to another. If we imagine each object at time t as having been assembled by a

sequence of mergers, then the whole set of walks associated with the various positions in

the initial conditions contains information about the forest of all possible merger history

trees. The excursion set ansatz is that statistical averages over this bundle of walks can

provide information about various properties of this forest.

For example, in this approach, the fraction of walks that fi rst cross δsc when the

smoothing scale is R or greater equals the fraction of mass that is bound up in halos

of mass greater than M. Similarly, suppose one considers the subset of walks which fi rst

crossed δsc(T ) on scale R. For this subset, one can calculate the fraction of walks which

fi rst cross δsc(t) > δsc(T ) on scales between r and R (note r must be smaller than R).

The excursion set ansatz is that this equals the fraction of the total mass in clumps hving

M at time T that was in clumps of mass m or greater (of course, m ≤ M) at the earlier

time t.

There are a number of problems associated with this ansatz which we will soon

discuss. Before we do so, it is worth seeing the rich variety of phenomena that this

ansatz allows one to discuss.
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The calculation

In practice, to compute these averages, the excursion set approach makes another

assumption: that these spatial averages can be replaced with appropriate averages over

an ensemble of independent walks. Although this is clearly incorrect in general, we will

show what this assumption implies, and will then reconsider it later.

To estimate this fraction, it is convenient to make the following change of variables,

which is motivated by the fact that the distribution of fluctuations δ in a Gaussian random

fi eld is a function of δ/σ , where σ is the rms fluctuation. We will use S ≡ σ2 to denote

the variance of the fi eld. Our change of variables comes from noting that, at time ti, there

is a one-to-one mapping from M to S which is given by equation (1) at t = ti. Thus, S,

M and R are all equivalent variables. For a Gaussian fi eld, the variables (δi,Si) are the

natural ones for the random walk. These are almost the variables shown in Figure 6.

Recall that, to estimate abundances of objects at time t > ti, we are interested in the

value of Si at which the walk fi rst exceeds some critical value. The spherical model says

that, when expressed in units of the initial overdensity scaled using linear theory to time

t, this value is δsc(t) (although the dependence on t is weak). Therefore, had we shown

the walk in units (δi,Si) then the critical spherical collapse value in these units would

be δsci = δsc(t)D(ti)/D(t). Since D(t)/D(ti) increases with time, and δsc(t) does as well

(though much less strongly), this critical value decreases as t increases.

In standard gravity, the growth factor is independent of k. So if P(k) is evaluated

using linear theory at some time other than ti, then, this scales S by the square of

D(t)/D(ti). This means that if we show the random walk using linear theory S at t,

then the height of the walk should also be scaled by one factor of D(t)/D(ti). (Note

that this scales the y-axis by the square-root of the scaling applied to the x-axis – as

one would expect if one thinks of the problem as a one-dimensional ‘diffusion’ in the

y-direction, with the x-axis representing ‘time’.) Figure 6 shows the walk when it has

been scaled to the present time t0. In these units, the critical overdensity for spherical

collapse at the present is δsc0 = δsc(t0). At some earlier time, this critical value was

δsc(t)[D(ti)/D(t)][D(t0)/D(ti)] = δsc(t)[D(t0)/D(t)]. In these units, the critical value at

earlier times was higher than it is now.

Let f (δsc,S)dS denote the fraction of walks which fi rst cross δsc within dS of S. Next,

choose some δ greater than δsc, and consider the probability p(δ ,s) that the walk reaches

δ when the smoothing scale is s. Although we know p is Gaussian, we will now rewrite

this probability in a way that shows how p and f are related. This will allow us to use

our knowledge of p to determine f .

Since δ > δsc, all walks that reach (δ ,s) must have crossed δsc at some scale S < s. If

we label each walk by the value of S at which it fi rst crossed δsc, then it must be that

p(δ ,s) =
∫ s

0
dS f (δsc,S) p(δ ,s|δsc,S) =

∫ s

0
dS f (δsc,S) p(δ −δsc,s−S), (17)

where p(δ ,s|δsc,S) is the probability that a walk which starts from (δsc,S) passes

through (δ ,s). The second equality is only correct if the steps are independent, so

p(δ ,s|δsc,S) does not depend on how the walk reached (δsc,S). (This is not true in

general. However, for a special choice of fi lter, a tophat in k-space – a choice we will
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return to later – it is true for Gaussian random fi elds.) Therefore

∫ ∞

δsc

dδ p(δ ,s) =
∫ ∞

δsc

dδ
∫ s

0
dS f (δsc,S) p(δ −δsc,s−S) =

∫ s

0

dS f (δsc,S)

2
. (18)

where the fi nal expression – the factor of 1/2 – uses the fact that p is symmetric about

zero. (The brevity of the derivation above hides the fact that this factor of 2 has a long

history, which goes by the name of the ‘cloud-in-cloud’ problem [38, 9].) Differentiating

both sides with respect to s shows that the shape of f is related to that of p.

For a Gaussian distribution p, the left hand side can be written in terms of erfc, and

hence

f (δsc,s)ds =
ds

s

δsc√
2πs

exp

(

−δ 2
sc

2s

)

. (19)

To turn this estimate of the mass fraction into an estimate of halo abundances, simply

set
dn(δsc,m)

d lnm
d lnm ≡ ρ

m
f (δsc,s)ds. (20)

This suggests defi ning a characteristic mass from

δ 2
sc(z) ≡ s(m∗,z), so

m∗(z)

m∗(0)
= (1+ z)−(3+n)/3 (21)

where the fi nal expression assumes an Einstein de-Sitter universe in which Pi(k) ∝ kn.

Similarly, because a walk that starts at some (S,δ ) other than (0,0) is otherwise the

same as one which starts from the origin, the associated fi rst crossing distribution is

f (δsc − δ |s− S)ds. Thus, the conditional distribution of (m, t) objects which make up

(M,T ) halos is

m

M

dN(m, t|M,T )

d lnm
d lnm ≡ ds

s−S

δsc(t)−δsc(T )
√

2π(s−S)
exp

(

− [δsc(t)−δsc(T )]2

2(s−S)

)

(22)

[9, 25]. This expression can be used to quantify the tendency for massive objects

to assemble later in hierarchical models. Bayes rule says [dN(M,T |m, t)/dM] equals

[dN(m, t|M,T )/dm] [dn(M,T )/dM]/[dn(m, t)/dm], so taking the limit t → T provides

expressions for merger rates [25].

Since an object of mass M at T can have at most one piece of mass m ≥ M/2 at t ≤ T ,

the distribution of times when half the mass has been assembled in one piece, is simply

∂
∂ t

∫ t

0
dt p(t|M,T ) =

∂
∂ t

∫ M

m=M/2
dm

dN(m, t|M,T )

dm
(23)

≈ 2ω0.5 erfc

(

ω0.5√
2

)

∂ω0.5

∂δsc

∂δsc

∂ t
where ω0.5 ≡

δsc(tf)−δsc(T )√
S0.5 −S

,

where S0.5 ≡ S(M/2), and the derivative is to be evaluated at t = tf [25]. Strictly speak-

ing, this fi nal expression is only correct for a white noise power spectrum. However,
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FIGURE 8. Comparison [from 30] of the mass function measured in the GIF2 simulation (symbols)

with that derived from using equation (20) with the first crossing distribution of a constant barrier

(equation 19, dotted); a square-root barrier (equation 16 with (β ,γ) = (0.5,0.5) and lowered in height

by a factor q = 0.55) (solid); and an analytic approximation to this first crossing problem (dashed) from

[55]. Bottom panel shows the ratio of both data and theory curves to the functional form of [54].

when expressed in terms of ω0.5, this same formula provides a reasonable description of

simulations (see Figure 9).

The mass at this time can have any value between m/M = 1/2 and 1. It is slightly

more work to derive an expression for the distribution of this mass, so we simply state

the result:

p(µ)dµ =
2

π

√

1−µ
2µ −1

dµ
µ2

, where
1

2
≤ µ ≤ 1 and µ ≡ m

M
; (24)
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FIGURE 9. Distribution of scaled formation times in two different cosmological models, for haloes

identified at two different redshifts. In these scaled units, the formation time distribution is expected to be

independent of halo mass and final time. Solid curve shows the precise form which this universal formation

time distribution is expected to have (equation 24). In all panels, squares and hexagons show the simulation

results for parent haloes with masses in the range 4 ≤ M1/M∗(z1) < 8 and 16 ≤ M1/M∗(z1) < 32. Simple

bars in the panels on the left show results for slightly lower halo masses: M1/M∗(z1 = 0) ≤ 2. Error bars

were estimated assuming Poisson counts. Evidently, equation (24) provides a reasonable, but not perfect

description of halo formation times in the simulations (from [56]).

just prior to this time, the distribution is

q(µ)dµ =
1

π(1−µ)

(

√

µ
1−2µ

−
√

1−2µ
) dµ

µ2
, where

1

4
≤ µ ≤ 1

2
(25)

[34]. Figure 10 compares these distributions with measurements in simulations.
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FIGURE 10. The distribution of masses m at formation, for parent haloes which have mass M1 at

z1 = 0. Symbols show the simulation results for M1/M∗(z1) ≤ 1 (dots), 2 ≤ M1/M∗(z1) < 4 (triangles),

and M1/M∗(z1)≥ 8 (squares). Error bars were estimated assuming Poisson counts. Curves on the right and

the left of m/M1 = 1/2 show the distributions in equations (24) and (25) respectively. There is no obvious

trend with M1, although haloes in simulations appear to have m/M1 ≈ 1/2 slightly more frequently than

the model predicts. Results for formation masses of parent haloes identified at other redshifts are similar

(from [56]).

For haloes of fi xed mass M, the conditional distribution of formation masses m when

it is known that the formation time was zf is given by

p(µ|zf)dµ ≡ p(µ,zf)dµ
p(zf)

=
p(µ)dµ
s/S−1

exp
[

−ω2
0.5

2
(S0.5−S)
(s−S)

]

2erfc(ω0.5/
√

2)
, (26)

where s ≡ σ 2(m), S1 ≡ σ2(M1), Sf ≡ σ2(M1/2), and ω was defi ned in equation (24).

The factor which multiplies p(µ) is largest at s/S1 − 1 = ω2, so objects which form at
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FIGURE 11. Conditional distribution of masses m at formation, given that the mass of the parent halo

was in the range 1 < M1/M∗(z1) < 2 at z1 = 0.5, for a range of choices of the redshift of formation

(labeled in the middle of each panel). Symbols show the measurements in the simulations, and curves

show equation (26) (from [56]).

redshifts which are lower than the mean value for that mass (i.e., ω < 1), are expected

to have formation masses which are biased towards µ ≈ 1 (i.e., s ≈ S1). Conversely,

objects which form at abnormally high redshifts (ω > 1) are expected to have formation

masses which are closer to the minimum value allowed: µ ≈ 1/2. Presumably, this is a

consequence of the fact that, to have µ ≈ 1 requires two pieces each of size µ ≈ 1/2. In a

hierarchical model, the building blocks available to form the parent halo are, on average,

smaller at early times: when the probability of having an object of mass µ ≈ 1/2 is

small, the chance of having two such objects is smaller still. In effect, our formula (26)

quantifi es the importance of this effect. Figure 11 shows that it provides a reasonable

description of this trend in simulations.
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FIGURE 12. Conditional mass functions showing the mass fraction of M halos at the present that was

in m halos at z [from 30]. Different combinations of M and z but similar [ω ≡ δsc(z)− δsc(z = 0)]2/S0

and (s/S0 −1) yield similar conditional mass functions. Symbols show measurements in simulations and

curves show the predictions of [55].

Some implications

Haloes which form at abnormally early times are more likely to have formation

masses of order one-half that of the fi nal mass of the parent, whereas haloes which form

at abnormally late times are more likely to have formation masses which are closer to

that of the parent (Figure 26). One consequence of this is that haloes which form late are

more likely to have experienced a recent major merger. This is a generic consequence of

hierarchical formation.

Suppose star formation only occurs in halos that are above a minimum mass but

below a maximum mass. For argument’s sake, suppose that these masses are 0.006 and
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0.06 of M∗ today, and that these limits do not evolve. Figure 12 shows that the mass

fraction within this range increases at late times for low mass halos today (fi lled squares,

and m/M between 0.1 and 1), but decreases for higher mass halos (fi lled triangles,

0.001 ≤ m/M ≤ 0.01). As a result, massive halos in this model will host older stars, and

the typical mass object in which star formation occurs will decrease with time. These

are two aspects of the phenomenon known as ‘down-sizing’, and the discussion above

shows how this can be accomplished in hierarchical models [47, 33].

Finally, it is a curious fact that the abundance of dark matter halos of mass 1012h−1M⊙

is almost constant from z = 2 to the present [e.g. Fig. 2 in 39]. This happens to be

the mass of our Galaxy, it is approximately the transition scale from early to late type

galaxies, and it is also the value adopted in most current models of AGN activity at z∼ 2.

Correlations with environment: Bias and the peak-background split

The approach above allows a straightforward estimate of how halo abundances corre-

late with their large scale environment [29]. In the spherical model, the environment on

some scale V is described by its density. In triaxial collapse models, two other numbers

also matter: these may be related to fi laments and sheets. We show shortly that this pro-

vides a framework for discussing how halos populate the ‘cosmic web’. Here, we explore

the simpler defi nition of environment as ‘density’, without regard to ‘morphology’.

The mean number of halos of mass m in a cell depends on the mass M in the cell and

its volume V . In the spherical model, this volume was initially different, although the

mass was not. The factor 1+∆ ≡ M/ρ̄V describes how much the volume has changed.

In turn, 1+∆ depends on the initial overdensity of the patch (equation 10). This means

that we can estimate

dN(m,δsc|M,V )

dm
=

dN[m,δsc|M,δL(M/V )]

dm
, with δsc−δL(M/V )≈ δsc

(1+∆)1/δsc
, (27)

where the right hand side of the fi rst equality is given by equation (22) for the conditional

mass function, and, instead of writing the time variables which appear on the left hand

side of that expression, we have written the linear theory quantities which appear on

its right hand side. The result depends on δsc − δL; the second expression above uses

equation (10) to show that this means that the environment acts like an effective growth

factor. (See [27] for an explicit demonstration that this is consistent with the picture in

which the environment acts like an effective cosmology.) In terms of the excursion set

description, 1 + ∆ ≪ 1 in underdense regions, so the ‘barrier’ is higher than δsc; as a

result, the typical halo masses are expected to be smaller. Conversely, the mass function

is expected to be top-heavy in dense regions. In particular,

dN(m,δsc|M,V )

dm
6= (1+∆)

dn(m,δsc)

dm
V ; (28)

the shape of the mass function depends on M and V .

Figure 13 shows this explicitly: the simulation volume was divided up into into cubes,

each 10h−1Mpc on a side, and three subsets of cubes were chosen: the densest, and
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FIGURE 13. Mass functions as a function of local density in ΛCDM simulations (symbols with

error bars). Dotted curves show the spherical collapse prediction, and solid curves show the prediction

associated with ellipsoidal collapse [from 55, which also describes the dashed curves]. The curves have

been offset upwards by a factor of ten and a hundred, in the case of the middle and topmost curves,

respectively. The upper most curves show the densest cells.

least dense ten percent of the cells, and the ten percent around the median density.

The symbols show the halo abundances in these subsets. They clearly have different

shapes; while the spherical model describes the qualitative differences (dotted curves),

the ellipsoidal collapse model is more accurate (solid curves).

The approach above simplifi es when V is large, since then ∆ ≪ 1, and so m ≪ M

for all cells. In this case the other quantity in this expression s(m)− S(M) ≈ s(m), so

dN(m,δsc|M,V )/dm ≈ dn(m,δsc−δL)/dm. Thus dN(m,δsc|M,V )/dm can be got from

Taylor expanding dn(m,δsc)/dm around ∆ = 0. This is an extremely powerful result;

when written in terms of dn/dm, it is is known as the peak-background split [3]. It says
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FIGURE 14. The large scale bias relation at zobs = zform between haloes which are identified at zform,

and the mass at that time. Dotted curves show the relations which follow from the constant barrier model

(equation 30), and solid curves show that associated with a moving barrier [from 54].

that

〈dN(m,δc|M,V )/dm〉
V dn(m,δc)/dm

≡ 1+ 〈δh(m|M,V )〉 = 1+ ∑
k>0

bk(m,δsc)

k!

(

∆k −〈∆k〉
)

, (29)

where the bk are the coeffi cients of the Taylor series expansion, and the 〈∆k〉 terms are

required if one wishes to truncate the expansion at fi nite k but still enforce 〈δh(m)|∆〉 =
0. This expansion connects the excursion approach with what is known as the local

deterministic bias model [16]. But note that because the approach provides an analytic

formula, it can be used on scales where the Taylor expansion is no longer useful [52].

This expansion says that, if the halo mass function is given by equation (19), then

〈δmδh〉
〈δ 2

m〉
≈ b1(m,δsc) = 1+

δ 2
sc/s(m)−1

δsc
and

〈δ 2
h 〉

〈δ 2
m〉

≈ b2
1(m,δsc); (30)

the clustering of halos should be different from that of the mass. Figure 14 compares

measurements of the ratio of the halo and mass power spectra in simulations, Phh/Pmm

at k ≪ 1, with the predicted linear bias factor, b2
1. The near future will test if ξhh/ξmm

has the same value to percent precision, and if Phm/Pmm = ξhm/ξmm = . . . = b1. Notice

that b1 increases strongly at large m; this is the fundamental reason for most observed

correlations between galaxies and their environments (e.g., Figure 1). Formulae for the

other bk are in [41].
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FIGURE 15. Left: Examples of trajectories (thin jagged curves) traced out by the Lagrangian overden-

sity, δ0, as a function of linear variance, S0. The trajectories are absorbed at the barrier (thick solid line).

Here, the barrier shape is given by the spherical collapse model (equation 10), and S0 ∝ 1/V0 as it is for

white noise. Right: Dependence of the barrier shape on comoving Eulerian size R and redshift z. Solid

curves show B = δ0(R0|R,z) of equation (10), and dashed curves show what would happen if δsc = 1 in

this expression. For white noise, S0 ∝ 1/V0 ∝ 1/R3
0 [from 46].

Counts in cells

The discussion above suggests that Figure 6, which shows the initial overdensity δ as

a function of (Lagrangian) smoothing scale S(M), can be combined with the spherical

evolution model to infer how the evolved density 1+∆ = M/ρV around the same point

depends on (Eulerian) smoothing scale V at the later time t. This is because equation (10)

provides a relation between M, V , δ and t. To see this, suppose we fi x t. Then the

spherical model describes a family of curves in the space (δ ,M), which are parametrized

by V . But there is a one-to-one mapping from M to S, so (δ ,M) can be mapped to the

coordinates (δ ,S) which are shown in Figure 6. Figure 15 shows this explicitly, using

slightly different notation: B(R,z) denotes δL of equation (10), when the cell size is

V = 4πR3/3 and the time variable is the redshift z.

Note that, in the limit V → 0, B → δsc, so it is the same as the ‘barrier’ associated

with the halo mass function. Thus, for fi xed t, by recording the values of S (hence M) at

which the walk pierces the curves labeled by V , one obtains an estimate of the density

run (on scales larger than the virial radius) surrounding each halo. If one fi xes R instead,

and allows t to vary, then this allows one to quantify the way in which matter flows in

and out of (comoving) Eulerian cells. Finally, for a given V and t, the fraction of walks

which fi rst cross the spherical evolution curve on scale S provides an estimate of the

probability that a cell of size V in the evolved distribution contains mass M: the Eulerian

counts in cells distribution [46]. A good approximation to the relation implied by this

model is

(1+∆)2 p(∆|V ) ≈ exp

[

−B(S|V )2

2S

]

√

B(S|V )2

2πS

d lnS

d ln(1+∆)

∣

∣

∣

∣

1− ∂ lnB(S|V )

∂ lnS

∣

∣

∣

∣
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= exp

[

−δ 2
L

2S

]

√

δ 2
L

2πS

∣

∣

∣

∣

d ln(δL/S)

d ln(1+∆)

∣

∣

∣

∣

(31)

where δL is given by equation (10) (see [26] for details).

More standard perturbation theory methods for the nonlinear counts in cells distri-

bution [6] provide what is, in effect, a monotonic, deterministic mapping between the

initial and fi nal overdensities. Because the fi nal overdensity at a specifi ed position in

space is determined solely by the initial value at that position, this is sometimes also

called a ‘local’ mapping, since values of the initial fluctuation fi eld at other positions are

assumed to not affect the mapping. The excursion set approach outlined here accounts

for the fact that the evolution of a given region may actually be determined by less local

surroundings.

For example, consider the evolution of an underdense region which is surrounded by

a dense shell. If the shell is suffi ciently dense, then it will eventually collapse, crushing

the smaller region within it. The local approximation would have predicted expansion

rather than collapse for the smaller underdense region. Figure 17 below illustrates

this ‘void-in-cloud’ problem. Clearly, in such cases, the mapping between initial and

fi nal overdensities is not as ‘local’ as perturbation theory assumes, and accounting

for this ‘cloud-in-cloud’ problem is likely to be more important for small ‘clouds’. If

not accounted for, this effect will manifest both as stochasticity (since the same initial

overdensity may map to many different fi nal densities depending on the surroundings)

and, perhaps, as a bias. In this respect, the excursion set approach provides an algorithm

which accounts for this source of non-locality; of course, once the correct large scale

has been chosen, the mapping (equation 10) is assumed to be deterministic.

In triaxial collapse models, the nonlinear density is a deterministic function of three

quantities associated with the initial fluctuation fi eld. In the context of perturbation

theory models for the pdf, the mapping from initial density to fi nal density will appear

to be stochastic if the influence of the two other variables is not accounted for. In the

excursion set approach, this stochasticity is in addition to that which derives from the

cloud-in-cloud problem, which is now associated with all three variables. See [26] for a

discussion of how ellipsoidal collapse models can be incorporated into this approach.

Voids

So far, we have developed a description of structure formation that was based on

where the mass is. However, because the virialized structures are of order 100 times

denser than the background, they occupy one percent of the volume. Therefore, one

might wonder if an equivalent description of structure formation could be built by

studying where the mass is not. The resulting picture is one in which the matter in

the Universe accumulates in halos which populate sheets and fi laments whose spatial

arrangement is dictated by the growing underdense expanses which approximately fi ll

space.

Figure 16 shows the time evolution of an initially underdense region. As time evolves,

the region clearly builds up a dense and compact bounding “wall”. The right hand panel
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FIGURE 16. Spherical model for the evolution of voids in an Einstein de-Sitter universe. Left: a pure

(uncompensated) tophat void evolving up to the epoch of shell-crossing. Initial (linearly extrapolated)

density deficit was δL = −10.0, initial (comoving) radius Ri = 5.0h−1Mpc. Timesteps shown are at

a = 0.05,0.1,0.2 and 0.3. Right: Evolution of a void with the same δL and Ri, but with initial profile

given by [eq.7.10 in 3]. At late times, both profiles look similar, both having formed an obvious ridge (this

happens only if the initial profile is sufficiently steep) [from 57].

shows that the development of a ridge at the boundary is fairly generic; it is not restricted

to tophats. For a perfectly spherical void with a perfect tophat profi le this ridge forms

when the linearly extrapolated underdensity reaches a critical value: δv = −2.81 in an

Ω0 = 1 Universe. At this time, the comoving size of the patch is 1.7 times larger than

initially, so the density within the void is 0.2 times that of the background universe.

With these values in hand, one might have thought that one could estimate the abun-

dance of voids simply by inserting this value into the excursion set approach. However,

Figure 17 shows that there is an important difference between voids and clusters: voids

which happen to be surrounded by an overdensity will be squeezed to vanishingly small

size as the region surrounding them shrinks. Thus, in addition to accounting for the

‘void-in-void’ problem (the analogue of the ‘cloud-in-cloud’ problem for halos) one

must also account for the ‘void-in-cloud’ problem. This can be done by solving for the

fraction f (S,δv,δc) of walks which fi rst cross δv at S and have not crossed δc at any

s ≤ S. The exact solution is complicated [57], but for δc/|δv| ≥ 1/4 or so, it is well

approximated by

νv f (νv) ≈
√

νv

2π
exp

(

−νv

2

)

exp

(

−|δv|
δc

D2

4νv
−2

D4

ν2
v

)

, where D ≡ |δv|
(δc + |δv|)

(32)

and νv ≡ δ 2
v /S [57]. This shows that f (νv) cuts-off sharply at both small and large

values of ν: the distribution of void masses is reasonably well peaked about νv ≈ 1,

corresponding to a characteristic mass of order S(m) ≈ δ 2
v .
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FIGURE 17. Four basic modes of hierarchical clustering: the cloud-in-cloud, cloud-in-void, void-in-

void and void-in-cloud processes (from top to bottom). Each mode is illustrated using three frames.

Leftmost panels show the ‘random walk’, δL vs S, associated with the particle at the center, and dotted

horizontal lines show δsc and δv. The two frames on the right show the associated particle distribution at

early (middle) and later (right) times. Whereas halos within voids may be observable (second row), voids

within collapsed halos are not (bottom row shows a small void which will be squeezed to small size as the

surrounding halo collapses). This is what makes the calculation of void sizes qualitatively different from

that for halos [from 57].

When δc ≫ |δv|, then D → 0, and the second exponential tends to unity. In this limit,

the two-barrier distribution reduces to that associated with a single barrier at δv. This

shows explicitly that when the void-in-cloud process is unimportant (D → 0), then the

abundance of voids is given by accounting correctly for the void-in-void process. The

quantity
∫

dνv f (νv) ≈ 1−D is the mass fraction in voids (this expression is exact for

the exact solution), so the volume fraction in voids is 1.73 (1−D). For δv = −2.81 and

δc = 1.686, this ratio is larger than unity, indicating that the voids fi ll the universe. Thus,
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FIGURE 18. Same walk as in Figure 6, but now the barriers which must be crossed (by the same

random walk) have heights which increase as the square root of S (this should be a good approximation to

ellipsoidal collapse models). Some of the filled circles, which were part of the mass history in the spherical

model, are not part of the history associated with ellipsoidal collapse, illustrating that the forest of merger

histories depends on the details of the critical collapse threshold – i.e., on the model one uses to describe

nonlinear collapse.

we have a model in which about one third of the mass of the universe is associated with

voids which occupy most of the volume. The remaining seventy percent of the mass is

in between the voids, and occupies negligible volume (these are most of the halos!).
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Moving barrier models

The discussion above has focussed on the spherical evolution model, for which δsc

is independent of m. This simplifi es the excursion set approach. When the height of

the barrier depends on s (e.g. equation 16), then the expression for the fi rst crossing

distribution is more complicated. However, the logic of the entire approach is not. This

is illustrated in Figure 18. Unfortunately, analytic solutions to the fi rst crossing problem

are only known for special cases: δsc(s) = δc0 + β sγ , with γ = 0,1/2,1 or 2. For more

complicated cases, the solution must be obtained numerically using standard methods,

or by Monte-Carloing the walks. (But see [55] for a simple analytic approximation that

works reasonably well for a wide range of barrier shapes.)

In general, these barriers permit fewer symmetries than the constant barrier – essen-

tially because the equation for a straight line is only trivially modifi ed when one shifts

the origin, but the change in origin is more signifi cant for a curve. As a result, whereas

the solution to problems having two constant barriers can be written in terms of the scal-

ing variable ν10 = (δc1 −δc0)
2/(s−S), for a barrier which increases as the square-root

of S, such expressions have (δc1 −δc0)
2/S and (s/S−1) appearing separately [30].

We noted earlier that, in the large mass (small S) limit, δec ≈ δsc. This means that,

generically, the triaxial model should predict approximately the same number of mas-

sive objects as the spherical model. However, comparisons between the spherical and

ellipsoidal collapse models are usually presented (e.g. Figure 8!) by lowering all factors

of δsc in equation (16) by a factor of about
√

0.75. Only when this is done does this

model provide a good description of simulations [53]. As we describe below, the origin

of this factor may have little to do with the physics of the collapse: a fair comparison of

the models would include (essentially) the same factor to both δsc and δec.

Of course, in the triaxial collapse model, one should really solve a three dimensional

walk – in (δ ,e, p) rather than just δ . This is the subject of [55]; a moving barrier, one

whose height increases with s, is a convenient approximation for reducing (a little!)

the complexity of the problem (see equation 16 and associated discussion). If one only

studies walks in δ , and the true collapse is triaxial, then it may be more appropriate to

treat the barrier which must be crossed as being stochastic. This problem has not been

studied using the excursion set approach, although Figure 7 in [53] shows the ‘fuzziness’

of the barrier that one might expect [also see discussion in 55].

The cosmic web

The key output from the triaxial collapse models is an estimate of the typical overden-

sity required for collapse along one, two and three axes by redshift z. The dotted curves

in Figure 19 show how these three ‘barriers’ depend on mass. From bottom to top, the

curves show δec1, δec2 and δec3 of equation (16).

Notice that these barrier shapes depend both on σ(m) and on δsc(z). The presence of

these two terms reflects the fact that the collapse depends on the expansion history of the

universe, and on the initial spectrum of fluctuations. See [44] for the mass functions of

sheets, fi laments and halos at any given time, in any given cosmology, and for any given
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FIGURE 19. An example of a random walk (solid line) crossing the barriers (dotted lines) associated

with sheets, filaments and halos (bottom to top). The fraction of walks which first cross the lowest barrier

at σ(ms), then first cross the second barrier at σ(m f ) and finally cross the highest barrier at σ(mh)
represents the mass fraction in halos of mass mh which are embedded in filaments of mass m f > mh,

which themselves populate sheets of mass ms > m f (recall that σ is a decreasing function of m). The

precise barrier shapes depend on the collapse model; the dotted curves show the barriers in equation (16)

[from 44].

initial fluctuation spectrum, that this model implies.

Application to modified gravity models

In standard gravity, the linear growth factor is independent of k. However, in modifi ed

gravity models, the linear growth factor is k-dependent. As a result, although one can

still use the excursion set logic, one must be slightly more careful. This is because

D(k, t)/D(k, ti) cannot be taken out of the integral which defi nes the mapping between S

and M. In addition, the height of the walk at one time is not related to that at a different

time by the same multiplicative factor for all S. And, typically, δsc becomes a function

of smoothing scale R and hence mass scale M. In such cases, it is conceptually easier

to work with the random walk in the initial fi eld units (rather than linearly extrapolated

units). This means that one must convert from M to S using the initial power spectrum
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FIGURE 20. Mass fraction of 1013M⊙ sheets that is in filaments (solid) and halos (dashed) of mass

m all at z = 0. Dotted curve shows the mass fraction of 1013M⊙ filaments at z = 0 that is in halos. Dot-

dashed curve shows the mass fraction contained in halos of mass m within an average volume of the

universe of the same mass (1013M⊙). The differences between the dotted and dashed curves indicate that,

at fixed large-scale overdensity, the halo population is expected to be correlated with the morphology of

the surrounding large-scale structure [from 44].

Si(M), and one must use the critical density δsci(Si) for the initial fi eld, not the linearly

evolved one. But otherwise, the logic is the same [27].

Problems, approximations and progress

The excursion set approach cheats in two ways. First, in assuming that the different

steps in the walk are uncorrelated with previous ones. Second, in using the ergodic

hypothesis to replace spatial averages with ones over an ensemble – in effect, this is

an assumption that walks (rather than steps in each walk) are uncorrelated with one

another. (There is, of course, a third cheat, which is the assumption that the barrier to

be crossed is a well-defi ned deterministic function of δ or (δ ,e, p). Some fuzziness is

expected – this is what causes some of the scatter in Figure 5 – because even the triaxial

model represents a simple approximation to the full dynamics if collapse. We will not

address this below.)
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FIGURE 21. The mass of the halo in which a randomly chosen particle is, Mhalo, is plotted versus the

mass predicted by the spherical (left panel) and ellipsoidal collapse (right panel) models. The predicted

mass for ellipsoidal collapse is smaller, because δec increases as m decreases. A randomly chosen 104 of

the 106 particles in a simulation of an Einstein-de Sitter universe with white noise initial conditions were

used to make the plot; bjects with M ≫ m∗ are ‘massive’ [from 53].

The fi rst has been the subject of some study, because it is relatively straightforward

to generate walks with correctly correlated steps, and to then simulate the fi rst crossing

distribution. This was done in [9], who showed that one generally predicts a high mass

tail which is a factor of two smaller than associated with the analysis above (this has been

confi rmed by subsequent workers). These mass functions provide worse descriptions of

halo abundances in simulations, and so, because they have not yet been described using

a simple functional form, they have been largely ignored.

The second has been less studied, but is almost certainly more important. To see why,

imagine generating the walk associated with each grid point in the initial conditions.

The distribution of fi rst crossing times associated with this bundle of walks yields a

prediction for the mass function. This is unlikely to be that different from the approach

in which one uses an ensemble of independent walks, because correlations in the initial

conditions are not that long-ranged. The real problem induced by spatial correlations is

somewhat different.

Suppose one places a particle at each initial grid point, and one has used the excursion

set to predict the mass of the object it will be in at some later time. If one plots this

predicted mass versus the mass of the object in which it actually ends-up, the result (left

hand panel of Figure 21) is a scatter plot – something which was highlighted in [66].

Using the triaxial collapse model instead leads to smaller predicted masses (right hand

panel); this reduces some of the scatter, but the tendency for the particle to be in a more

massive halo than predicted by its walk remains.

What causes this? Consider two neighbouring particles in the initial conditions which

ended up in the same object, but for which the predicted mass is different. Which of
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the predictions came closer to the correct answer? [53] argued that it is likely to be the

larger of the two, for the same reason that the fi rst crossing distribution in the excursion

set approach is so special. Indeed, if the predicted mass is m, and it is correct, then this

means that the predictions of all the walks within Rm of it should be discarded, because

they are guaranteed to underestimate the correct mass, and so have no business playing

any further role in the determination of dn(m)/d lnm! Comparison with simulations

showed that, indeed, of the bundle of masses predicted for an object, the largest was

in general much closer to the actual mass. This brings us to an important realization:

the true halo abundance distribution must be shifted to larger masses than one predicts

when simply inserting equation (19) into (20). This is almost certainly the reason why

halo abundances in simulations are better described by a value for δsc that is about
√

0.75

lower than expected.

To account for this effect, the discussion above shows that one must insert one more

step between the fi rst crossing distribution and the mass function (between equations 19

and 20). For instance, consider a walk whose fi rst crossing distribution predicts mass m.

At the very least, one would like to ensure that

• all the other walks that are within Rm of this one predict smaller masses;

• and that this walk itself is further than RM from all walks for which the predicted

mass is M > m.

Incorporating this effect is a tough but interesting open problem, for which a crude

estimate can be got as follows.

Let φ(m) denote the quantity which should be on the right hand side of equation (20).

If p(M|m) denotes the probability that a walk which was predicted to have mass m

actually ends up in a halo of mass M, then

φ(M) = f (M)+
∫ M

0
dm f (m) p(M|m)− f (M)

∫ ∞

M
dM′ p(M′|M); (33)

the second term counts the increase in the abundance of M because of this effect, and

the third counts the decrease, as, for similar reasons, objects originally predicted to have

mass M are assigned to more massive objects. Rearranging the order of the integrals in

the second term shows that

φ(> M) = f (> M)+
∫ M

0
dm f (m)

∫ ∞

M
dM′ p(M′|m). (34)

Since all quantities in the fi nal term on the right hand side are positive, φ will be shifted

towards higher mass scales than f .

To proceed further, we require an estimate of p(M|m) which incorporates both the

effects itemized above. Of the two, the fi rst is easier to estimate, because it deals only

with the sphere of radius Rm, which we know has overdensity δsc when smoothed with

a fi lter of scale Rm. The overdensity smoothed with the same fi lter, but displaced r from

the center of this one, will have a distribution given by

pm(δ ,r|δsc,0)dδ ≈ exp(−y2/2)√
2π

dy, where y =
δ −ρ(m,r)δsc

√

S(m) [1−ρ2(m,r)]
, (35)
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and

S(m)ρ(m,r) ≡
∫

dk

k

k3 PL(k, t)

2π2
|W (kRm)|2 sinkr

kr
. (36)

The approximation in using the conditional Gaussian distribution assumes that the fact

that δM(0) < δsc for all larger smoothing scales centered on the origin matters little. The

expression above shows that there is some chance that δ (r) will exceed δsc. If it does,

then the spherical collapse model suggests that we should associate this patch, not with

mass m, but with some M > m. The chance that this happens somewhere within m is

given by integrating pm over the volume of m, so a fi rst estimate of p(M|m) comes from

setting

∫ ∞

m
dM p(M|m) ≈ 3

∫ Rm

0

dr r2

R3
m

∫ ∞

ymin

dδ
exp(−y2/2)√

2π
where ymin =

δsc√
S

√

1−ρ
1+ρ

.

(37)

and differentiating with respect to m. It will be interesting to see how accounting for this

effect changes the expected functional form (and the near universal scaling behaviour)

of the halo mass function.

THE HALO MODEL

The Halo Model [see 13, for a review] provides an easy way to see how different point

processes can all be related to the same underlying dark matter density fi eld. This

makes it a useful language for discussing how galaxy clustering depends on galaxy

type: galaxy bias. This approach represents the following shift in paradigm. Whereas

previous work (typically based on perturbation theory) used the dark matter density

fi eld as the fundamental quantity of interest, in the Halo Model, it is halo mass which is

fundamental. Thus, in the Halo Model, one predicts environmental trends for the galaxy

population because different galaxy types populate different mass halos, and the halo

mass function is top heavy in dense regions. As a result, one does not attempt to explain

correlations with environment (or measurements such as those shown in Figure 1) by

modeling the physical effects of the large scale density, pressure or temperature fi elds

on smaller scale galaxies. Rather, an extreme statement of this shift in paradigm is that

progress is best made by trying to model how the formation history of a halo determines

the properties of the galaxies it hosts, and that, since halo mass and formation history are

tightly correlated, one should think of any given galaxy population as a weighted sum

over the halo distribution.

Two-point statistics

The Halo Model is simplest in Fourier space, where real-space convolutions be-

come multiplications. The real-space two-point correlation function ξ (r) is obtained by

Fourier transforming the power spectrum P(k), which, in the halo model, is written as

the sum of two terms. One arises from galaxies within the same halo and the other from

193

Downloaded 21 Dec 2010 to 130.91.117.41. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



galaxies in different halos. Because halos are small compared to the separations between

them, the fi rst term, the 1-halo term, dominates on small scales, whereas the other, the

2-halo term, dominates on larger scales. The key insight gained from this approach is

that what is true for the statistics is also true of the physics. Thus, the 1-halo term incor-

porates the nonlinear physics associated with virialized structures, whereas the 2-halo

term exploits decades of work on perturbation theory. This also means that we expect to

see a feature on the scale where the signal changes from being dominated by the 1-halo

term to the other; this scale is related to the virial radii of the halos producing the signal.

Thus, we can begin to interpret physically the bumps and wiggles in Figures 1 and 2.

For galaxies, the halo model distinguishes between the central galaxy in a halo and

all the others, which are sometimes called satellites. (The galaxy is assumed to sit at the

halo center in halos which contain only one galaxy.) This is because, in semi-analytic

and SPH and galaxy formation models, central and satellite galaxies are rather different

populations [22, 49? ] Thus,

P(k) = P1h(k)+P2h(k), (38)

where

P1h(k) =
∫

dm
dn(m)

dm
〈Ncen|m〉

[

2〈Nsat|m〉ugal(k|m)

n̄2gal

+
〈Nsat(Nsat −1)|m〉ugal(k|m)2

n̄2gal

]

,

P2h(k) =

[∫
dm

dn(m)

dm
〈Ncen|m〉 1 + 〈Nsat|m〉ugal(k|m)

n̄gal

b1(m)

]2

PLin(k), (39)

where the number density of galaxies n̄gal is

n̄gal =
∫

dm
dn(m)

dm
〈Ncen|m〉

[

1+ 〈Nsat|m〉
]

(40)

and ugal(k|m) is the Fourier transform of the galaxy density profi le. (It is standard to

assume this has the same form as for the dark matter, for which there is a good fi tting

function [32, 41] but no complete theory!). The other inputs to these expressions are the

halo mass function dn/dm and halo bias factors b(m) (for which we developed models

in the previous sections), a prescription for how galaxies populate these halos (only the

fi rst and second moments of p(Ngal|m) matter for two-point statistics; n-point moments

matter for n-point statistics), and the linear perturbation theory power spectrum.

The two parts of the 1-halo term in equation (39) can be thought of as the ‘center-

satellite term’ and the ‘satellite-satellite term’. The distribution psat(Nsat|m) is expected

to be approximately Poisson [24] so 〈Nsat(Nsat−1)|m〉 = 〈Nsat|m〉2, and the entire model

is specifi ed by how 〈Ncen|m〉 and 〈Nsat|m〉 depend on halo mass.

Weights in the halo model

Galaxies have a range of luminosities, colors, environments, etc. The Halo Model was

originally formulated to describe the point process which is associated with selecting a
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galaxy sample based on one or more of these properties, and then treating all galaxies

in the sample as being equivalent. However, it is sometimes desirable (e.g. when sample

sizes are small) to include all galaxies, but weight each according to one or more of

these properties when computing the clustering signal. The halo model can also be used

to describe such measurements, which are known in the point-process literature as Mark

Statistics [48].

Use W (k) to denote the Fourier transform of the weighted correlation function. Like

the power spectrum, write this as the sum of 1- and 2-halo terms: W (k) = W1h(k) +
W2h(k). Since central and satellite galaxies have different properties, central and satellite

galaxies are weighted separately by their mean mass-dependent marks: 〈w|m〉cen and

〈w|m〉sat. Then

W1h(k) =
∫

dM
dn(M)

dM
〈Ncen|M〉

[

2wcen(M)〈wsat|M,Lmin〉〈Nsat|M〉ugal(k|M)

n̄2gal w̄2

+
〈Nsat|M〉2 〈wsat|M,Lmin〉2

u2
gal(k|M)

n̄2gal w̄2

]

, (41)

W2h(k)

PLin(k)
=

[∫
dM

dn(M)

dM
〈Ncen|M〉b(M)

wcen(M) + 〈Nsat|M〉〈wsat|M,Lmin〉ugal(k|M)

n̄gal w̄

]2

,

where the mean mark is

w̄ =
∫

dM
dn(M)

dM
〈Ncen|M〉wcen(M) + 〈Nsat|M〉〈wsat|M,Lmin〉

n̄gal

. (42)

Implementation: HODs, CLFs, SHAMs

To date, the Halo Model it has been used to provide a useful framework for modeling

the luminosity dependence of galaxy clustering, and the dependence of clustering on

environment. The fi rst is usually done in three rather different ways, which have come

to be known as the ‘halo occupation distribution’ (HOD; [HOD; 21, 4, 43, 41, 7, 70]

the ‘conditional luminosity function’ [CLF; 36, 68, 12, 65], and the ‘subhalo abundance

matching’ [SHAM; 23, 24, 64, 11] methods.

The HOD approach uses the abundance and spatial distribution of a given galaxy pop-

ulation (typically, just the two-point clustering statistics) to determine how the number

of galaxies depends on the mass of the parent halo. This is done by studying a sequence

of volume limited galaxy catalogs, each containing galaxies more luminous than some

threshold luminosity. The CLF method attempts, instead, to match the observed luminos-

ity function by specifying how the luminosity distribution in halos changes as a function

of halo mass. One can infer the CLF from the HOD approach, and vice-versa, so the

question arises as to which is the more effi cient description. For a given catalog, the

HOD method requires the fi tting of just two free parameters, so it is relatively straight-

forward. The CLF method requires many more parameters to be fi t simultaneously, but

uses fewer volume limited catalogs. SHAMs fi rst identify the subhalos within virialized
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halos in simulations, and then use subhalo properties to match the subhalo abundances

to the observed distribution of luminosities. Once this has been done, CLFs or HODs

can be measured in the simulations.

In the HOD and CLF approaches to the halo model, the central galaxy in a halo is

assumed to be very different all the others, which are called satellites. For example, the

CLF approach must provide a description of how the central and satellite luminosity

functions vary as a function of halo mass. The HOD-based analyses predict that the

satellite galaxy luminosity function should be approximately independent of halo mass,

and hence of group and/or cluster properties [60]. [61] present evidence from the SDSS

in support of this surprising and unexpected prediction. This independence can reduce

the required number of free parameters in CLF-based analyses. In contrast, CLF-based

approaches have yet to inform HOD-analyses.

The HOD-based approach also provides a rather simple way to understand how

galaxy clustering depends on color [62]. In essence, it provides a simple algorithm for

specifying how the joint CLF (i.e., the luminosity distribution in two different bands)

varies with halo mass. The method exploits the fact that, to a good approximation,

galaxies appear to be bimodal in their properties [8], and, in particular, the distribution

of colors at fi xed luminosity is bimodal [2, 67]. This is an important step towards the

ultimate goal of providing a description of how the properties of a galaxy, its morphology

and spectral energy distribution, are correlated with those of its neighbors.

Implicit assumptions and mock catalogs

The Halo Model description above makes three simplifying assumptions which are

worth discussing explicitly. First, although we assume halos are spherical and smooth,

the density run of satellites around halo centers is almost certainly neither. Generating

triaxial distributions is straightforward once prescriptions for how the triaxiality depends

on halo mass and how it correlates with environment are available. Once these are

known, they can be incorporated into the analytic halo-model description [63]. Similarly,

parametrizations of halo substructure can also be incorporated into the description [51].

Of course, both these types of correlations can be included in a ‘mock catalog’, if

one identifi es halos in a simulation, and then simply selects the appropriate number of

particles (satellites from a Poisson distribution with mean which depends on halo mass)

from the halo itself.

Second, note that the number of galaxies in a halo, the spatial distribution of galaxies

within a halo, and the assignment of luminosities all depend only on halo mass. None

of these depend on the surrounding large-scale structure. Therefore, a mock catalog

constructed in this way includes only those environmental effects which arise from the

environmental dependence of halo abundances.

Third, halos of the same mass will have had a variety of formation histories. Some

will have assembled their mass and their galaxy populations more recently than others.

Recent assembly means less time for dynamical friction, and, possibly, a younger stellar

population. So, at fi xed halo mass, one might expect to fi nd a correlation between the

age of a halo and the galaxy population within it. In particular, the number of galaxies
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in a halo, their luminosities and their colors may all be correlated with the formation

history. Our halo model description (and associated mock catalog) ignores all such

correlations. Had we used a SHAM to assign luminosities, then some of correlation

between formation history and the galaxy population will have been included. If one

is already carrying along the particle distribution from the simulation to construct the

mock, then the next level of complication is to also include additional information about

the merger history in the simulation, for use when making the mock.

Current implementations also assign colors to satellite galaxies without explicit con-

sideration of the color of the central galaxy, and they make no effort to incorporate color

gradients within a halo into our model. This is mainly because the measurements to date

are on large enough scales that gradients matter little (see [50, 42] for more discussion

and [48] for simple prescriptions for incorporating gradients.) These are all interesting

problems for the future (and they are almost certainly not independent problems!), but

the measurements to date, such as those shown in Figure 1, do not require these refi ne-

ments. In the future, the Halo Model approach will be used to understand the evolution

of galaxy clustering. This can be done because the evolution of the halo abundances, halo

bias, and halo profi les, are known, so the only required new ingredient is how p(Ngal|m)
evolves. See [50] for an alternative approach in which the halo abundance is kept fi xed.
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