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A B S T R A C T

Cosmic microwave background and large-scale structure data will shortly improve

dramatically with the Microwave Anisotropy Probe and Planck Surveyor, and the Anglo-

Australian 2-Degree Field and Sloan Digital Sky Survey. It is therefore timely to ask which

of the microwave background and large-scale structure will provide a better probe of

primordial non-Gaussianity. In this paper we consider this question, using the bispectrum as

a discriminating statistic. We consider several non-Gaussian models and find that in each

case the microwave background will provide a better probe of primordial non-Gaussianity.

Our results suggest that if microwave background maps appear Gaussian, then apparent

deviations from Gaussian initial conditions in galaxy surveys can be attributed with

confidence to the effects of biasing. We demonstrate this precisely for the spatial bispectrum

induced by local non-linear biasing.

Key words: methods: analytical ± cosmic microwave background ± cosmology: theory ±

large-scale structure of Universe.

1 I N T R O D U C T I O N

It is widely accepted that the large-scale structures we observe in

the Universe today originated from gravitational evolution of

small primordial fluctuations in the matter density. Information

about the physical processes that generated these primordial

fluctuations can be gleaned by testing whether their statistical

distribution is well approximated by a Gaussian random field. In

particular, the simplest versions of inflation predict Gaussian

initial fluctuations (e.g. Guth & Pi 1982; Hawking 1982;

Starobinsky 1982; Bardeen, Steinhardt & Turner 1983), but

there are other models of inflation (Allen, Grinstein & Wise 1987;

Kofman & Pogosyan 1988; Salopek, Bond & Bardeen 1989), and

models where structure is seeded by topological defects (Vilenkin

1985; Vachaspati 1986; Hill, Schramm & Fry 1989; Turok 1989;

Albrecht & Stebbins 1992) that generate non-Gaussian fluctua-

tions. By looking at cosmic microwave background (CMB)

anisotropies we can probe cosmic fluctuations at a time when their

statistical distribution should have been close to its original form.

At present, the limited signal-to-noise ratio or sky coverage of

existing experiments is not sufficient to provide conclusive

evidence either for or against non-Gaussianity (e.g. Heavens

1998; Ferreira, Magueijo & Gorski 1998; Kamionkowski & Jaffe

1998; Pando, Valls-Gabaud & Fang 1998; Bromley & Tegmark

1999). An alternative approach is to analyse the present-day

statistics of density or velocity fields of large-scale structure

(LSS). In principle, this is a more complicated approach, since

gravitational instability and bias can introduce non-Gaussian

features in an initially Gaussian field, and these may mask the

signal we desire to measure. The CMB and LSS data will shortly

improve dramatically with the Microwave Anisotropy Probe

(MAP) and Planck Surveyor satellites and the Anglo-Australian

2-Degree Field (2dF) and Sloan Digital Sky Survey (SDSS). For

this reason it is timely to ask whether the CMB or LSS is the better

placed to detect a primordial non-Gaussian signal.

In this paper, we use the skewness and bispectrum to determine

whether the CMB or LSS provides a better probe of non-

Gaussianity. To do so, we consider several models with a

primordial non-Gaussianity whose amplitude can be dialed from

zero (the Gaussian limit). Throughout we neglect complications of

pixel noise and foreground in the CMB, although we include shot

noise in LSS. We then calculate the smallest non-Gaussian

amplitude that can be detected with a MAP/Planck map and with

2dF/SDSS. In each case, we find that the smallest non-Gaussian

amplitude detectable with the CMB map is smaller than that from

a galaxy survey, even if we neglect the complicating effects of

biasing.

Of course, there are an infinitude of possible deviations from

Gaussianity and we cannot address them all. However, physical

mechanisms that produce non-Gaussianity generically produce a

non-vanishing bispectrum. Of the correlation functions that are

zero for Gaussian fields, the bispectrum is the lowest order and

usually the most easily detectable. Although this argument is not

fully general, we show that it holds in several non-Gaussian

models that have been considered in the recent literature. Our

results suggest that if the CMB maps provided by MAP and
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Planck are consistent with Gaussian initial conditions, then any

signatures of non-Gaussianity found in galaxy surveys (apart from

those from non-linear clustering) can be attributed to biasing.

Even though the overall amplitude of the signal is smaller for the

CMB than for LSS, every non-zero detection of CMB bispectrum

is a direct detection of primordial non-Gaussianity, while the

perturbative non-Gaussian contributions to the LSS bispectrum

swamp the desired signal.

2 T H E S K E W N E S S

In order to determine whether a field is Gaussian, we need a

discriminating statistic. We shall principally be concerned with the

bispectrum, as it is the Fourier counterpart of the lowest-order

connected correlation function that generically arises in physical

mechanisms that produce non-Gaussianity, and it is able in

principle to distinguish between various sources of non-Gaussian-

ity (e.g. primordial, non-linear growth, bias). However, we begin

by discussing the skewness in LSS and the CMB. The skewness is

related to the bispectrum but contains less information; however,

as a real space statistic, it is conceptually simpler. Section 2 is

largely for illustration; detailed calculations are presented for the

bispectrum in Section 3.

2.1 Skewness in large-scale structure

The statistical properties of the fluctuations in the cosmological

mass density field d�x� � �r�x�2 �r�= �r can be characterized by

the n-point moments, kdnl. By definition, kd�x�l � 0. If the fluc-

tuation field is Gaussian, then the probability distribution for d is

p�d� � � ������2p
p

s�21 exp�2d2=�2s2��; �1�
from which the moments �n � 0; 1;¼� can be calculated to be

kd2nl � �2n 2 1�!!kd2ln � �2n 2 1�!!s2n; �2�
where s2 ; kd2l. The odd moments are of course zero. To linear

order in perturbation theory, d grows by an overall normalization

factor, d�x; t� � D�t�d�x; t0�, so an initially Gaussian distribution

will remain Gaussian as long as linear perturbation theory holds.

To higher order in perturbation theory, gravitational instability

will induce departures from Gaussianity. To describe the evolution

of non-linear fluctuations in perturbation theory we expand the

fluctuation field in a series,

d � d�1� � d�2� �¼; �3�
where d�n� , O�dn� (e.g. Goroff et al. 1986; Fry & Scherrer 1994).

In the weakly non-linear regime, the series can be truncated to

second order. The lowest-order deviation from Gaussianity is

described by kd3l. In the weakly non-linear regime, Gaussian

initial conditions give rise to a non-vanishing skewness (e.g.

Peebles 1980),

S3 ;
kd3l
kd2l2

� 34

7
; �4�

in second-order perturbation theory.

For generic non-Gaussian initial conditions, Fry & Scherrer

(1994) found the skewness in second-order perturbation theory to be

S3 � S3;0� 34

7
2

26

21

kd3
0l2

kd2
0l3

2
8

7
kd3

0l
I�j�3�0�
kd2

0l3
� 10

7

j�4�0
kd2

0l2
� 6

7

I�j�4�0�
kd2

0l2
;

�5�

where the subscript 0 denotes the quantity linearly evolved from

the initial density field [e.g. in an Einstein±de Sitter universe,

d0 � d�zi��1� zi�] to the present epoch. The quantity I[j (n)0]

(n � 3; 4� is an integral that depends on the specific linearly

evolved connected (or irreducible) three- and four-point functions,

j (3)0 and j (4)0, respectively. (For Gaussian initial conditions,

j�n�0 � 0 for n $ 3.) Fry & Scherrer (1994) find that I�j�n�0� #
j�n�0�0� for n � 3; 4 for several non-Gaussian models they explore

(see also Gaztanaga & Fosalba 1998). All terms on the right-hand

side of equation (5) are time-independent apart from S3,0 which

scales like S3;0�z� / S3;0�z � 0� �1� z� in an Einstein±de Sitter

universe.

It is therefore useful to define the time-independent quantities

p3 � j�3�;0=s3 (normalized skewness) and p4 � j�4�;0=s4 (normal-

ized kurtosis). When written in terms of the relevant quantities at

decoupling (i.e., at z . 1100),

S3 .
34

7
� p3

1100s�z � 1100� 2 d1p2
3 � d2p4; �6�

where d1 . d2 . 2.

Now suppose we have a survey of N independent volumes

among which the rms fractional density contrast is s . Then, from

equations (2) and (4), it follows that, in the mildly non-linear

regime, the standard error due to cosmic variance with which the

skewness can be recovered is

DS3 � 1����
N
p

���������������������
15

s2
� 17S2

3

r
; �7�

where we have used Dkd3l �
������������������������������
15s6 � 10kd3l2

q
and Dkd2l ,��������

2s4
p

: Of course, since the mass will be traced by discrete objects

(i.e. galaxies), the shot noise will increase the error estimate in

equation (7).

So now let us consider the 2dF and/or SDSS. The present-day

skewness in volumes of side 10 h21 Mpc (where h is the Hubble

parameter in units of 100 km s21 Mpc21) could be measured with

a standard error of at least DS3 , 20 N21=2 , 1021 (see also

Colombi, Szapudi & Szalay 1998), where N is the number of such

cubes in the survey volume. Thus, equation (6) tells us that a

primordial normalized skewness on the 10 h21 Mpc scale could be

identified in a statistically significant manner in 2dF and/or SDSS

only if p3 exceeded about 1022.

2.2 Skewness in the CMB

For simplicity, consider an Einstein±de Sitter universe. Then a

region of comoving size 10 h21 Mpc subtends an angle of 0.18. Now

suppose that a full-sky cosmic-variance-limited 0.18-resolution

CMB map (close to the specifications of Planck Surveyor) finds

that the distribution of temperature fluctuations DT/T is consistent

with Gaussian with a variance s2 � k�dr=r�2 , 0:1�dT=T�2 ,
�1024�2 (where dr /r is the fractional density perturbation at a

redshift z . 1100, when the CMB decouples). The largest

primordial normalized skewness p3 ; k�dr=r�3=s3 that would

be consistent with such a map is
����������������
15=Npix

p
, 1023, where Npix ,

107 is the number of 0:18 � 0:18 pixels. We have neglected

instrumental noise and assumed that systematic effects will be

under control. Still, a sensitivity to a value as small as p3 , 1023,

or perhaps an order of magnitude larger, is a realistic expectation

of CMB maps.

If we compare this with the nominal smallest normalized

skewness p3 , 1022 accessible with LSS, it appears that the CMB
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Large-scale structure and the CMB 143

has perhaps an extra order of magnitude in sensitivity. On the

other hand, there may be systematic effects in both the CMB and

LSS measurements that may affect both estimates, and our

argument was only qualitative. Thus, we conclude from this

exercise that the CMB and LSS should provide roughly

comparable sensitivity to a primordial skewness on 10 h21 Mpc

scales, with perhaps a slight edge to the CMB. In practice, noise

and foreground contamination may restrict the CMB analysis to

scales larger than 0.18, later we will investigate CMB fluctuations

on scales larger than 18. On these physical scales the cosmic

variance in LSS would lose all sensitivity to a primordial

bispectrum. Since these heuristic arguments are inconclusive to

orders of magnitude as to which of the CMB and LSS provides a

better probe of primordial non-Gaussianity, we now proceed to

consider realistic models more carefully.

3 C M B A N D L S S B I S P E C T R A

The skewness is a specific case of the three-point function, and, as

such, contains less information. We might therefore hope to learn

more by studying the full three-point function. In practice, we

prefer to investigate its Fourier-space counterpart, the bispectrum,

for reasons that have been rehearsed before (e.g. Matarrese, Verde

& Heavens 1997, hereafter MVH97). In addition, various

theoretical models for structure formation yield Fourier-space

quantities directly, so the bispectrum allows a more straight-

forward relation between measurable quantities and theoretical

predictions.

3.1 LSS bispectrum

We define the Fourier transform of the fractional overdensity

perturbation by dk �
�

d3xd�x� exp�2ik ´ x�=�2p�3. The spatial

bispectrum B(k1, k2, k3) is defined by

kdk1
dk2

dk3
l � B�k1; k2; k3�dD�k1 � k2 � k3�; �8�

where the angle brackets denotes an ensemble average or, under

the fair sample hypothesis, the average over a large volume, and

dD is the Dirac delta function.

To second order in perturbation theory, the bispectrum may be

written as the sum of a part induced by gravitational instability

(Fry 1984) and a primordial part:

B�k1; k2; k3� . B0�k1; k2; k3� � �2J�k1; k2�P0�k1�P0�k2� � cyc:�

�
�

d3ka�J�ka; k3 2 ka�Tc�ka; k3 2 ka; k1; k2� � cyc:�; �9�

where `cyc.' denotes cyclical permutations and J(ka, kb) is a

function almost independent of the non-relativistic-matter density

V0 and cosmological constant L (Bouchet et al. 1992, 1995;

Bernardeau 1994; Scoccimarro et al. 1998; Kamionkowski &

Buchalter 1998). Its detailed form need not concern us here. Here,

B0 is the primordial bispectrum (which we wish to probe) linearly

evolved to redshift z, P0 is the power spectrum, and T c denotes the

connected trispectrum, which is the Fourier transform of the

connected four-point correlation function. The last two terms arise

from non-linear gravitational instability (see e.g. Catelan &

Moscardini 1994). In principle, this last term �; BT � may be

important, as it grows as fast as the usual disconnected part. We

will show later that this term is very small for a range of proposed

models.

As already seen for the skewness, in an Einstein±de Sitter

universe, B0�z� / �1� z�23 and �P0�z��2 / �1� z�24, so the

primordial bispectrum redshifts away in comparison with that

arising from non-linear gravitational clustering.1

If we suppose that the galaxies (subscript g) are locally biased

with respect to the mass, then the density of galaxies dg can be

Taylor-expanded in the mass density to second order,

dg � b0 � b1d� b2d
2=2, for some biasing coefficients bi. The

quantity b0 affects only k� 0, so it can be ignored. The bispectrum

for the galaxies is then

Bg�k1; k2; k3� . b3
1B0�k1; k2; k3�
� {P0�k1�P0�k2��b3

12J�k1; k2� � b2b2
1�}

� cyc:� b3
1BT : �10�

So, assuming that the initial (or the linear) power spectrum is

precisely known, we can do a likelihood analysis only if we also

have a model for the initial (or linear) bispectrum and trispectrum

as a function of the three wavenumbers. As we found previously,

the primordial bispectrum redshifts away, and realistically we can

detect non-Gaussianity only if BT is significant. In Section 4.1 we

will quantify this argument further by showing that for all the

models considered BT ! B0. Let us parametrize the observed

bispectrum as

Bg�k1; k2; k3� � P0�k1�P0�k2��c12J�k1; k2� � c2� � cyc: �11�
In order to assess the precision with which the bias could be

measured, MVH97 evaluated the precision with which the

parameters c1 and c2 could be recovered from a likelihood

analysis of the 2dF and/or SDSS. From their fig. 7, we conclude

that if the positions of all of the galaxies in the survey volume are

known, then (i) c1 can be determined with an error of ,6 � 1023 if

c2 is fixed; (ii) c2 can be determined with an error of ,1 � 1022 if

c1 is fixed; and (iii) the joint determination of the two parameters

allows c1 and c2 to be recovered with errors of 1 � 1022 and

4 � 1022, respectively. The analysis of MVH97 further shows that

the bispectrum signal comes primarily from k . 0:1 2 1 h Mpc21.

(All of these estimates would be reduced only by a factor of about

20 if we could map the mass throughout the entire Hubble volume

rather than just in the survey volume.) We will use these results,

which include shot noise, to assess the smallest detectable

primordial non-Gaussianity.

3.2 CMB bispectrum

A CMB map of the temperature T(nÃ ) as a function of position nÃ on

the sky can be decomposed into spherical harmonics,

DT�n̂�
T

�
X
`m

a`mY`m�n̂�; �12�

where the multipole coefficients are given by the inverse

transformation,

a`m �
�

dn̂Y`m
* �n̂� DT�n̂�

T
: �13�

q 2000 RAS, MNRAS 313, 141±147

1 In a non-Einstein±de Sitter model, the suppression factor �1� z� is

replaced by g(z)(1 1 z), but, for reasonable values of V0 and L, this factor

is 0:3 & g�z� & 1. Thus, we will assume an Einstein±de Sitter model from

now on, noting that the general arguments are essentially unchanged in

more general models.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/313/1/141/1072987 by C
alifornia Institute of Technology user on 19 M

ay 2020



144 L. Verde et al.

The CMB bispectrum B`1`2`3
is defined by

kam1

`1
am2

`2
am3

`3
l � B`1`2`3

`1 `2 `3

m1 m2 m3

 !
; �14�

where the factorization ensures statistical isotropy, and the last

term is the Wigner 3J symbol. The bispectrum is an attractive

statistic in that error bars can be assigned in a straightforward way,

but, in the case of partial sky coverage and correlated noise, it is

computationally expensive to calculate (Heavens 1998).

If we parametrize the bispectrum by an overall amplitude f

times some fixed function F, i.e. B`1`2`3
� f F`1`2`3

, then the

error on f is given by (e.g. MVH97)

s22
f � 2

­2 lnL
­f 2

� �
.

X
`1#`2#`3

�F`1`2`3
�2

nC`1
C`2

C`3

�
X

m1;m2 ;m3

`1 `2 `3

m1 m2 m3

 !2

N�mi;`i� ; �15�

where L denotes the likelihood function and C` ; kjam
` jl is the

power spectrum of the sky fluctuation. Here we assume

that the estimators of B`1`2`3
, i.e. am1

`1
am2

`2
am3

`3
, are uncorrelated, that

the departures from Gaussianity are small and therefore that the

covariance matrix can be approximated by the covariance of a

Gaussian field that has the same power spectrum (Jungman et al.

1996; Heavens 1998), and we ignore the mixing that arises from

partial sky coverage.

If one considers only the real part of kam1

`1
am2

`2
am3

`3
l (see MVH97)

then n � 1=2. The quantity N(mi, `i) is the number of non-zero

terms like C`1
C`2

C`3
in the covariance and ranges from 1 to 30.

Equation (15) is valid as long as the noise does not dominate the

signal. If N � 1, then the sum over the Wigner 3J symbols is

unity; the fact that N is not equal to one reduces the sum by a only

few per cent, so

s22
f , 2

X
`1#`2#`3

�F`1`2`3
�2

C`1
C`2

C`3

: �16�

This expression ignores the effects of pixel noise and foreground

contamination. However, the results we show below use ` & 100

only, and for these modes the pixel-noise variance in MAP and

Planck will be negligible compared to the cosmic variance. For

foregrounds, the main concern on these scales is probably dust and it

is an open question whether the effects can be adequately modelled.

4 S O M E N O N - G AU S S I A N M O D E L S

We now proceed to consider several classes of physically

motivated models with primordial non-Gaussianity in order to

investigate more precisely the relative sensitivities of the CMB

and LSS. Since current measurements of CMB and LSS power

spectra are roughly compatible with cold dark matter (CDM)

models for structure formation, we first consider CDM-like

models and introduce some non-Gaussianity in several different

ways. Specifically, we consider models in which the gravitational

potential contains a part that is the square of a Gaussian random

field, and models in which the density contains a part that is the

square of a Gaussian random field. We note that such non-

Gaussianity may arise in slow-roll and/or non-standard (e.g. two-

field) inflation models (Luo 1994; Falk, Rangarajan & Srednicki

1993; Gangui et al. 1994; Fan & Bardeen 1992). Moreover, both

of these models may be considered as Taylor expansions of more

general fields, and are thus a fairly generic form of non-Gaussianity.

We also consider O(N)±s models, as these will approximate the

non-Gaussianity expected in topological-defect models.

4.1 Quadratic model for the potential

We start by considering a model in which the gravitational

potential F (in conformal Newtonian gauge) is a linear

combination of a Gaussian random field f and a term proportional

to the square of the same random field,

F � f� aF�f2 2 kf2l�; �17�
where aF parametrizes the non-Gaussianity; in the limit aF ! 0,

the model becomes Gaussian.2 These models contain a primordial

bispectrum for the gravitational potential:

BF�k1; k2; k3� . 2aF�PF�k1�PF�k2� � cyc:�: �18�
The leading terms in the connected trispectrum for the F field will

be

Tc
F�k1;¼; k4� . 4a2

FPF�k1�PF�k2��PF�jk1 � k3j�
� PF�jk1 � k4j�� � cyc: �19�

We use a scale-invariant primordial spectrum, PF � AHk23,

where the amplitude is fixed by COBE to be, in our Fourier

transform conventions, AH . 10210.

The relative contribution to the bispectrum of B0 and BT,

R ; B0=BT , can be obtained from equations (9) and (19). By

evaluating the integral we find

R , (aFAH�21: �20�
The BT contribution to the bispectrum will therefore be negligible

compared with B0 as long as aF ! �AH�21 , 1010.

The Fourier coefficients F(k) for the gravitational potential

remain constant to linear order in perturbation theory in an Einstein±

de Sitter universe. The Fourier coefficients d (k, z) of the density

field evolve with time and are related to those of the gravitational

potential by the Poisson equation, which can be written

d�k; z� �M k�z�F�k�; where M k�z� � 2k2T�k��1� z�
3H2

0

: �21�

In passing, we note that Poisson's equation in Fourier space

ensures that the signal-to-noise ratio for measuring the non-

Gaussianity is the same for the density field and the potential field.

The inverse of the functionM k�z � 0� is plotted as a function of

wavenumber k in Fig. 1. Thus, the linearly evolved power

spectrum for the mass, P0(k, z), at redshift z is related to that for

the gravitational potential (which remains constant in an Einstein±

de Sitter universe) by

P0�k; z� � �M k�z��2PF�k�; �22�
where the transfer function is (e.g. Bardeen et al. 1986)

T�k� . �1� Bk � Ck3=2 � Dk2�21; �23�

q 2000 RAS, MNRAS 313, 141±147

2 We note that such non-Gaussianity can arise in standard slow-roll

inflation, and the parameter aF , 1 can be related to inflaton-potential

parameters (e.g. Falk et al. 1993; Gangui et al. 1994; Wang &

Kamionkowski 1999).
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where B � 1:7 Mpc�Vh2�21; C � 9 Mpc3=2�Vh2�23=2 and D �
1 Mpc2�Vh2�22: The bispectrum for the mass in this model is thus

B�k1; k2; k3� . P�k1�P�k2� 2aF
M k3

M k1
M k2

� �
� 2J�k1; k2�

� �� �
� cyc: �24�

Comparing equation (24) with equation (1), we see that this

particular form of primordial non-Gaussianity leads to a present-

day bispectrum that looks like a scale-dependent non-linear bias.

In particular, for equilateral configurations, equation (24) becomes

identical to equation (11) if we identify c2 � 2aF=M k. We can

therefore use the results of MVH97 to determine the smallest aF

that would be detectable by 2dF/SDSS, under the assumption that

there is no non-linear biasing.3 Because of phase-space considera-

tions, most of the signal comes from the largest wavenumbers for

which second-order perturbation theory holds, i.e. k , 0:6 or

M 21
k . 1025±1026. Thus, we conclude that the smallest aF that

would give rise to an observable signal in the 2dF/SDSS

bispectrum is aF , 103±104.

The primordial gravitational-potential bispectrum in equation

(18) will lead to a non-zero bispectrum in the CMB via the Sachs±

Wolfe effect, and this bispectrum can be calculated to be (Luo

1994; Wang & Kamionkowski 1999),4

B`1`2`3
�

����������������������������������������������������������
�2`1 � 1��2`2 � 1��2`3 � 1�

4p

r
`1 `2 `3

0 0 0

 !

� 2aF

ASW

�C`1
C`2
� C`1

C`3
� C`2

C`3
�; �25�

where ASW . 1=3 is the Sach±Wolfe coefficient. Plugging this

bispectrum (and a scale-invariant set of C`) into equation (16), we

learn that the smallest aF that could be detectable with a CMB

map (using only ` # 100) is , 20.5 (The dashed curve in Fig. 2

shows the smallest aF detectable with the CMB as a function of

the largest multipole moment ` used in the analysis.) Thus, we

conclude that the CMB will be at least two orders of magnitude

more sensitive to a non-zero value of aF than LSS.

4.2 Quadratic model for the density

We now consider an alternative model in which the density field

(rather than the gravitational potential) contains a term that is the

square of a Gaussian random field:

d � f� ad�f2 2 kf2l�; �26�
where now f is some other Gaussian random field. Such a model

has been considered in some two-field inflation models (e.g. Luo

& Schramm 1993).6

Since the density perturbation evolves with time in linear theory

(unlike the gravitational potential), we must specify the epoch at

which the density perturbation d is related to f through equation

(26). We choose this epoch to be the current epoch, z � 0. Doing

so, the spatial mass bispectrum today due to primordial non-

Gaussianity is

B0�k1; k2; k3� . 2adP�k1�P�k2� � cyc:; �27�
and Luo & Schramm (1993) have shown that the contribution to

the present-day bispectrum from the primordial trispectrum is

negligible compared with this �BT ! B0�, as long as 2OPT holds.

q 2000 RAS, MNRAS 313, 141±147

Figure 1. The inverse of the function Mk evaluated at redshift z � 0. In

the regime where second-order perturbation theory holds, this coefficient is

between 1025 and 1026.

Figure 2. The smallest non-Gaussian amplitude a that can be detected

with the CMB as a function of the largest multipole moment ` used in the

analysis. The solid line is for a model in which the present-day fractional

overdensity field contains a term that is the square of a Gaussian random

field; the dashed line is for a model in which the gravitational potential

contains a term that is the square of Gaussian random field; and the dotted

line refers to the O(N) s models.

3 In the analysis of MVH97, equilateral and degenerate (a repeated vector

and one of twice the amplitude and opposite direction) configurations are

used; since the inverse of the functionMk is not strongly k-dependent on

the scales where most of the signal comes from, c2 � 2aF=M k is still a

good approximation.
4 Actually, our calculation ignores the physics that gives rise to the acoustic

peaks at l * 100. However, we restrict our analysis to l & 100. A more

accurate treatment would change our results by no more than an order of

magnitude, and this level of precision is sufficient for our purposes.

5 This result is in rough agreement with the conclusion that the a ,
10±100 (Luo 1994; Gangui et al. 1994; Mollerach et al. 1995) non-

Gaussian signal from non-linear evolution prior to z . 1100 is at best

marginally detectable (Spergel & Goldberg 1999a,b).
6Here ad is a phenomenological parameter that varies from model to

model; for example, it could be arbitrarily large in some multifield

inflation models (e.g. Peebles 1998a,b).
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By comparing equation (27) with equation (11), we see that this

form of primordial non-Gaussianity gives rises to a present-day

skewness that mimics precisely that due to a scale-independent

non-linear bias. Again, from the results of MVH97, the smallest

detectable ad in this model is ,0:01.

Now let us consider the CMB bispectrum of this model. The

spatial bispectrum for the gravitational potential here is

BF�k1; k2; k3� � 2adM k1
M k2

M k3

�PF�k1�PF�k2�� � cyc: �28�

Although we have not carried out an exact calculation, it is easily

seen (at least in the ` @ 1 limit) that

B`1`2`3
.

����������������������������������������������������������
�2`1 � 1��2`2 � 1��2`3 � 1�

4p

r
`1 `2 `3

0 0 0

 !

� 2ad

ASW

2

3
C`1

C`2

`
2
1`

2
2

`
2
3

� cyc:

" #
: �29�

Applying equation (16), we find that the smallest detectable ad in

this model is ,0:01 (using only ` # 100; results for other `max

are shown in Fig. 2), which is comparable to the LSS error.

However, since this model has more power in the CMB

bispectrum at larger `, the smallest detectable ad decreases by

roughly an order of magnitude even if we go out only to

`max � 200. Also, in this case we find that the CMB will provide

a more precise probe of a primordial bispectrum. Moreover, as a

corollary, this particular result demonstrates that if the maps

provided by MAP and Planck are consistent with Gaussian, then

any measurement of a non-zero c2 from the LSS bispectrum can

be interpreted unambiguously as evidence for non-linear biasing,

rather than as some primordial non-Gaussianity.

4.3 O(N)-s models

The O(N)-s model provides an approximation to the non-

Gaussianity expected in topological-defect or scalar-field-align-

ment models (Turok & Spergel 1991; Jaffe 1994). The N � 1

model has domain walls; N � 2 has global strings; N � 3 has

global monopoles; N � 4 has global textures; and higher N

correspond to non-topological-defect models. For large N this

model approaches the Gaussian model, so we take as � N21=2;
and as as ! 0 the models become asymptotically Gaussian. Since

calculations of power spectra and higher-order statistics for the

CMB and LSS are quite involved for these models, our analysis

will be only approximate. As we will see below, these order-of-

magnitude estimates will be sufficiently precise for our purposes.

For equilateral-triangle configurations and for values of k that

can be probed with 2dF/SDSS, an ansatz for the LSS power

spectrum, bispectrum and trispectrum in the linear regime is (Jaffe

1994)

P . 12:5K 2kT2�k�; B0 . 1:6K 3asT3�k�; �30�

Tc . K 4 1

ka2
s

T4�k�; �31�

where K . 30±100 Mpc2 h22 [although Jaffe (1994) did not

include the transfer functions]. From equations (30) and (31), BT is

found to be always &0:4B0. Since B0 will be the dominant

contribution to the bispectrum we conclude that the non-Gaussianity

of this model will act like a scale-dependent non-linear-bias

contribution with

c2 . B0=P2 . as�K k2102T�k��21: �32�
For the scales probed by SDSS/2dF, c2 & as=300, and therefore

the minimum as detectable from LSS will be ,30.

Precise calculation of the CMB bispectrum for these models is

well beyond the scope of this paper. To obtain an order-of-

magnitude estimate, we assume that the spatial polyspectra for this

model, equations (30)±(31), give rise to potential polyspectra

through the Poisson equation, and then that the CMB anisotropy is

proportional to the potential perturbation at the surface of last

scatter. Doing so, we find7

B`1`2`3
,

����������������������������������������������������������
�2`1 � 1��2`2 � 1��2`3 � 1�

4p

r
`1 `2 `3

0 0 0

 !

� 5000as�C`1
C`2

C`3
�2=3: �33�

Using equation (16), we find that the smallest detectable as

would be ,0:1 (using multipole moments up to `max � 100; the

dependence on `max is indicated in Fig. 2). Thus, we again

conclude that the CMB will provide a more precise probe of a

primordial non-Gaussianity.

5 C O N C L U S I O N S

We addressed the question of which of the CMB and LSS is better

poised to detect primordial non-Gaussianity of several varieties.

We used the bispectrum as a discriminating statistic since it is the

lowest-order quantity that has zero expectation value for a

Gaussian field. We considered three forms of non-Gaussianity:

one in which the gravitational potential contained a term that was

the square of a Gaussian field; another in which the density field

was the square of a Gaussian field; and a third that resembled that

expected from topological defects. We showed that, in all cases,

the CMB is likely to provide a better probe of such non-

Gaussianity. One of these models produced a mass bispectrum that

mimicked a scale-dependent non-linear bias, and the others

mimicked a scale-independent non-linear bias.

Of course, our results are not fully general. In principle, it is

possible to think of some other type of non-Gaussianity for which

our conclusions would not hold, such as, for example, a model in

which the primordial fluctuations are Gaussian only on CMB

scales. However, plausible physical mechanisms that produce

nearly scale-invariant power spectra should generically produce

non-Gaussian signals that have scale dependences roughly like

those that we investigated. Thus we may conclude that if CMB

maps turn out to be consistent with Gaussian initial conditions,

any non-Gaussianity seen in the LSS bispectrum can be

unambiguously attributed to the effects of biasing.
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