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Abstract. Compound plasmonic resonances arise due to the interaction between discrete and

continuous metallic nanostructures. Such combined nanostructures provide a versatility and tun-

ability beyond that of most other metallic nanostructures. In order to observe such resonances

and their tunability, multiple nanostructure arrays composed of periodic metallic gratings of

varying width and an underlying metallic film should be studied. Large-area compound plas-

monic structures composed of various Au grating arrays with sub-100 nm features spaced nano-

meters above an Au film were fabricated using extreme ultraviolet interference lithography.

Reflection spectra, via both numerical simulations and experimental measurements over

a wide range of incidence angles and excitation wavelengths, show the existence of not only

the usual propagating and localized plasmon resonances, but also compound plasmonic reso-

nances. These resonances exhibit not only propagative features, but also a spectral evolution with

varying grating width. Additionally, a reduction of the width of the grating elements results in

coupling with the localized dipolar resonance of the grating elements and thus plasmon hybridi-

zation. This newly acquired perspective on the various interactions present in such a plasmonic

system will aid in an increased understanding of the mechanisms at play when designing plas-

monic structures composed of both discrete and continuous elements. © 2014 Society of Photo-

Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JNP.8.083897]
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1 Introduction

Plasmonic systems composed of metallic nanostructures surrounded by a dielectric environment

support surface plasmons, i.e., optical resonances bound to the metal-dielectric interface that are

based on the excitation of free electrons in the metal.1–3 In small discrete systems, such as nano-

spheres, dimers, nanoprisms, and subwavelength gratings, these resonances exhibit a localized

response and are commonly referred to as localized surface plasmons (LSPs).3 In extended sys-

tems, such as a continuous film, long metallic strips, or gratings that extend over several wave-

lengths, they exhibit a delocalized/propagative response and are simply referred to as surface

plasmon-polaritons (SPPs).1,2,4,5

LSPs have shown to be useful in applications such as trapping,6,7 cancer treatment,8–11 sur-

face-enhanced Raman spectroscopy,12–15 and light harvesting,16,17 while SPPs have shown great

use in applications such as biosensing18,19 and as optical interconnects in conventional integrated

circuits.20–23 Systems composed of both continuous and discrete structures are of particular inter-

est since they exhibit enhanced optical properties,24–44 improved light harvesting,45–50 matching

of radiative and nonradiative losses,51 and additional degrees of freedom for the tuning of their

spectral properties.24–44
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The novelty of this paper is the numerical and experimental demonstration of such a system

that can also support new compound plasmonic resonances, i.e., resonances exhibiting both

a localized and propagative response.52 The studied interaction between a metallic grating and

a continuous film demonstrates the formation of such resonances, where the field not only prop-

agates along the continuous surface of the film, but is also localized around the grating elements.

In addition, unlike grating-assisted excitation of SPPs where it is primarily the periodicity that

determines the resonance frequency, here the width of grating elements also plays a critical role

in determining the resonance frequency, just as is the case for LSPs. Thus, such compound plas-

monic nanostructures provide a versatility and tunability beyond what can be achieved by struc-

tures that support only propagating or localized plasmon resonances. This fact is demonstrated

here through excellent agreement of both numerical and experimental results.

2 Methods

2.1 Experimental

The system that is fabricated and investigated consists of a single Au grating layer of period Λ ¼

250 nm and height h ¼ 15 nm placed at a distance s ¼ 20 nm from the surface of a continuous Au

film of thickness t ¼ 25 nm. The system is illuminated with TM polarized light over a wide range of

incidence angles θ ¼ 10 to 74 deg and investigated over a wavelength range of λ ¼ 500 to 1000 nm.

Float glass coverslips used for the substrate were cleaned in a Piranha bath. A continuous 25 nm

Au base-layer was thermally evaporated (99.99% purity, purchased from Balzers, Germany) with a

chromium adhesion layer of 1 nm to minimize damping.53 For the evaporation of the grating layer, a

double-layer photoresist mask was exposed, consisting of a 160-nm polymethyl methacrylate

(PMMA) film covered by 60 nm hydrogen silsesquioxane (HSQ). Extreme UV interference lithog-

raphy (EUV-IL)54 at the Swiss Light Source was used to create line patterns with a period of Λ ¼

250 nm over an area of 1 × 2 mm2. PMMAwas etched in oxygen plasma (30W RIE power with

20 sccmO2 flow rate) with the HSQ grating as the etch mask. A grating bilayer consisting of 20 nm

SiO2 followed by 15 nm of Au was then deposited via evaporation. A final liftoff of the photoresist

mask was done in acetone under gentle sonication.

SEM images of the structures both from above and along an x-z cross-section and a sche-

matic cross-section, Figs. 1(a) to 1(h), show a Λ ¼ 250 nm periodicity and grating widths

Fig. 1 The geometry being studied, a plasmonic system composed of a periodic Au grating layer

above an Au film. (a) SEM image of a cross-sectional cut in the x -z plane. (b) to (e) Tilted SEM top

views in the x -y plane showing grating widths of approximately w ¼ 80, 75, 65, and 60 nm, respec-

tively. (f) Close-up SEM image of an x -z cross-section. (g) Schematic of the simulated structure

with structural parameters s ¼ 20 nm, t ¼ 25 nm, w ¼ 80, 75, 65, and 60 nm, h ¼ 15 nm, and

Λ ¼ 250 nm. The structure is embedded in a glass background of permittivity ε ¼ 2.13.

(h) Tilted SEM top views in the x -y plane showing the large-scale uniformity of the gratings.
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varying from w ¼ 60 to 80 nm. Note that the 15 nm height of the gratings gives them a somewhat

grainy structure; thus, measured widths correspond to the average dimension and exclude grains

at the edges. Avery good agreement, however, is still seen between experiment and theory in the

subsequent figures, thereby demonstrating that the spectral response of the structures is very

resilient to fabrication imperfections. Experimental measurements in reflection are made via

the same homemade surface plasmon resonance spectrometer described in a previous

work,55 allowing for easy analysis over a wide range of incidence angles and wavelengths.

The sample was attached onto the cylindrical prism of the measurement setup from the grating

side via index matching gel, thus effectively providing a complete glass background.

2.2 Theoretical

Simulations were performed via a surface integral equation method adapted to periodic struc-

tures.56 Thicknesses of the various layers were taken directly from the evaporation parameters

and grating widths were taken from the SEM measurements shown in Fig. 1. The dielectric

permittivity of Au was taken from experimentally measured data57 and that of the glass back-

ground was set at ε ¼ 2.13.

3 Discussion of Results

In such a system three resonances are expected.52 The first is a long-range/odd SPP resonance

due almost purely to the grating periodicity. The second is a compound resonance based on the

Fig. 2 (a) Measured and (b) simulated reflection spectra at θ ¼ 45 deg incidence for gratings of

widths w ¼ 80, 75, 65, and 60 nm. Each curve is displaced by an amount of 0.2 from the previous

one for viewing purposes. (c) Surface charges for band 1 showing an odd surface plasmon-polar-

iton (SPP) resonance. (d) Surface charges for band 2 showing a parallel hybridization combination

of the even/compound SPP and the localized dipole+mirror image resonance. (e) Surface charges

for band 3 showing the antiparallel hybridization combination.
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short-range/even SPP, whose spectral position varies not only with the structural periodicity, but

also with the grating width. This is due to the fact that the charges along the width of the grating

elements effectively mirror the charges of the even SPP resonance in the film.52 The third

resonance is that of a dipole resonance in the grating elements coupled to its mirror image in

Fig. 3 Reflection spectra of the geometry shown in Fig. 1 for grating widths w ¼ 80, 75, 65, and

60 nm, respectively, via [(a) to (d)] experimental measurements and [(e) to (h)] numerical simu-

lations. The leftmost stationary band is that of the grating excited odd SPP resonance, while the

remaining two are the parallel and antiparallel hybridization of the even/compound SPP resonance

and the localized dipole+mirror image resonance.
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the underlying film. Its resonance thus varies much more with a change in the grating size.

As a consequence, if the widths of the grating elements are reduced sufficiently, this resonance

will be greatly blueshifted toward the even/compound SPP resonance and an additional coupling

interaction will occur between the two, resulting in a parallel and an antiparallel hybridization

combination.52

The measured and simulated reflection spectra shown in Figs. 2(a) and 2(b) for θ ¼ 45 deg

incidence and gratings of widths 80, 75, 65, and 60 nm exhibit exactly three bands. Additionally,

the dispersion of these three bands and their spectral interactions over a large range of incidence

angles agree remarkably well with the simulated reflection spectra of Figs. 3(a) to 3(h). The sharp-

est and most narrowband resonance whose spectral position does not vary with grating size is

simply the grating-induced odd (long-range) SPP. This can be verified by plotting the surface

charges at the resonance wavelength of λ ¼ 632 nm for grating widths of both w ¼ 60 and

80 nm [Fig. 2(c)]. Indeed, the two cases show surface charges that alternate between positive

and negative both along the length of the film and between the top and bottom interfaces, i.e.,

they exhibit an asymmetric charge distribution characteristic of the long-range SPP.5 The remain-

ing two bands are that of the even (short-range)/compound SPP resonance and the localized dipolar

resonance of the grating elements.52 For the grating widths studied here, the close spectral prox-

imity of these remaining two has resulted in a parallel and antiparallel hybridization combination

with the charge distributions shown in Figs. 2(d) and 2(e). It is easiest to understand this hybridi-

zation by first reviewing the response of the system when the two resonances are not hybridized.

When the spectral separation between the two bands is large, such hybridization is not

present. In this case, the second band, the even/compound SPP resonance, will exhibit symmetric

charges along the two sides of the film, which induce oppositely oriented charges in the grating

elements.52 The third band will simply exhibit a strong localized field and dipolar charge

response within the grating elements, which then induces opposite/mirror charges at the top

surface of the metallic film.52 The hybridization of these two will thus result in a combination

of the dipolar response within the grating elements and the even SPP of the film. The higher-

energy hybridized resonance will be a parallel combination of the dipolar charges in the grating

element and the symmetric charge distribution of the even SPP in the film, while the lower-

energy one will be an antiparallel combination (Fig. 4). In the antiparallel combination, the dipo-

lar charges in the grating elements are simply out of phase with those of symmetric charge

distribution in the metallic film. In the parallel hybridization combination, they begin in phase;

however, since localized dipolar charges spaced just nanometers above a metallic film always

induce mirror charges in the top surface of the film, one will obtain the charge distribution illus-

trated in Fig. 4. Here the induced charges along the top interface of the film that lie directly below

the grating elements are effectively reversed from those along the bottom interface of the film.

This hybridization can clearly be observed by viewing not only the surface charges of the two

at resonance [Figs. 2(d) and 2(e)], but also the spectral interaction of the two bands in Figs. 3(a)

to 3(h). In all of these plots, a clear anti-crossing is seen, specifically at higher incidence angles,

Fig. 4 Hybridization diagram of the even/compound SPP resonance and the localized dipole+mir-

ror image resonance. As the width w of the grating elements is reduced, a slight blueshift of one

resonance and a much larger blueshift of the other resonance places the two at the same fre-

quency, thus resulting in a coupling interaction, which in turn gives rise to a parallel and antiparallel

hybridization combination.
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where the normally nondispersive localized dipole+mirror image resonance is redshifted due to a

spectral overlap with the even/compound SPP resonance. Furthermore, it can clearly be deduced

that for gratings of much larger widths, the hybridization of the two resonances will cease, and

the system will tend back to that of two unhybridized resonances, the first being the even/com-

pound SPP resonance and the second the localized dipole+mirror image resonance.52

4 Conclusions

In conclusion, we have fabricated a large-area plasmonic grating with sub-100 nm features on

film structures via EUV-IL that support propagation of not only plasmon resonances, but also

hybridized compound plasmonic resonances. Experimentally measured reflection spectra over

a wide range of incidence angles and excitation wavelengths show the existence of these

resonances and their spectral evolution with varying grating size. These experimental findings

are confirmed with both numerically calculated reflection spectra—which show an excellent

agreement—and surface charge plots, thus revealing the underlying mechanisms associated

with each mode. These large-scale fabricated compound plasmonic structures exhibit highly

versatile tunability, enhanced optical properties, and resiliency to possible fabrication imperfec-

tions. We expect the simplicity in the fabrication of these structures, specifically on a large scale,

to be extendable to more complex multilayered structures exhibiting three-dimensional optical

metamaterial properties.
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