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ABSTRACT We used reverse transcription–coupled PCR
to produce a high-resolution temporal map of f luctuations in
mRNA expression of 112 genes during rat central nervous
system development, focusing on the cervical spinal cord. The
data provide a temporal gene expression ‘‘fingerprint’’ of
spinal cord development based on major families of inter- and
intracellular signaling genes. By using distance matrices for
the pair-wise comparison of these 112 temporal gene expres-
sion patterns as the basis for a cluster analysis, we found five
basic ‘‘waves’’ of expression that characterize distinct phases
of development. The results suggest functional relationships
among the genes f luctuating in parallel. We found that genes
belonging to distinct functional classes and gene families
clearly map to particular expression profiles. The concepts
and data analysis discussed herein may be useful in objectively
identifying coherent patterns and sequences of events in the
complex genetic signaling network of development. Functional
genomics approaches such as this may have applications in the
elucidation of complex developmental and degenerative dis-
orders.

The complexity of living organisms poses a challenge to
biologists: considering the rapid accumulation of vast amounts
of data in the fields of molecular and cell biology, how can we
begin to organize these data into a coherent functional whole?
To understand the nature of complex biological processes,
such as development, we must determine the specific gene
expression patterns and biochemical interactions within an
organism but, equally important, seek out the organizing
principles that allow them to function in a coherent way.
Herein, we present a practical experimental-computational
strategy that may allow us to advance our understanding of the
nature of the complex self-organizing process underlying mam-
malian central nervous system (CNS) development.

As a first step in this approach, we have addressed the
question of whether the temporal expression patterns of large
numbers of genes exhibit some degree of order across a tissue,
in this case, the developing cervical spinal cord. Further, we
are interested in forming hypotheses concerning possible
functional relationships between gene families, by examining
their patterns of expression over the course of development.

The differentiation and maintenance of a cell phenotype
may be viewed as the product of a system of well-coordinated
interactions, with some cell types influencing the development
of others. Therefore, we have taken a systems approach to CNS
development in which the tissue is treated as a whole. In vivo
gene expression patterns characteristic of stem cells, pluripo-
tent progenitor cells, and mature neurons and glia should be

reflected in the patterns of gene expression obtained at
different developmental time points.

Ongoing genome sequencing projects are based on the
concept that proteins mediating the functions of organisms are
strictly determined by the structure and activity of the genes
that encode them. Data from gene-knockout experiments and
molecular analysis of individual genes reflect combinatorial
regulation, as well as various degrees of redundancy of gene
function (1, 2). These characteristics imply a complex network,
the underlying principles of which have not yet been explained.
We conceptualize this extended genetic network as consisting
of two subsystems (3): the proximal genetic network, operating
through cis (control regions of DNA) and trans (gene products
that regulate cis regions) elements, and the distal genetic
network, involving protein–protein and protein–signaling fac-
tor interactions governing intra- and extracellular communi-
cation (again determined by genes encoding the participating
proteins).

Herein, we demonstrate the systematic measurement of
multiple gene expression time series, producing a temporal
map of developmental gene expression. We have clustered the
genes into related expression patterns as a step toward drawing
inferences about regulatory origins and interactions among
gene families. In regard to large-scale genomics, this study
emphasizes temporal patterns (nine time points) and mea-
surement precision [triplicate reverse transcription–coupled
PCR (RT-PCR) assays], rather than numbers of genes (112
genes; total 3,024 expression assays), as a strategy for drawing
inferences concerning gene interactions and functions. When
combined with studies of gene expression in individual cell
types, this strategy should be particularly useful in understand-
ing the changes in gene expression underlying the transition of
the CNS from a primarily proliferative to a highly differenti-
ated state.

MATERIALS AND METHODS

We have used an established RT-PCR protocol (4) to measure
the expression of 112 genes in CNS development. Cervical
spinal cord tissue was dissected from triplicate animals or
litters (Sprague–Dawley albino rats), in accordance with Na-
tional Institutes of Health guidelines, from embryonic days 11
through 21 (E11–E21; determined by crown–rump length),
postnatal days 0–14 (P0–P14), and adult (P90 or adult).
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Gene-specific primers were designed from GenBank se-
quences by using the OLIGO software (National Biosciences,
Plymouth, MN). RNA isolated from tissue samples by using
RNAstat 60 (Tel-Test, Friendswood, TX) was adjusted to 200
ngyml according to absorption at 260 nm, before RT-PCR
(Perkin–Elmer GeneAmp RNA PCR kit, Applied Biosys-
tems); PCR involved preheating a mixture of Taq antibody
(TaqStart, CLONTECH), primers, cDNA, and PCR compo-
nents to 97°C for 90 sec before amplification. The PCR cycle
was 30 sec at 95°C (dissociation), 45 sec at 60°C (annealing),
and 60 sec at 72°C (extension). Amplification was within the
exponential range (4). PCR product identities were confirmed
by restriction enzyme digestion. All RT reactions and PCRs
contained control RNA (transcribed from PAW 108 plasmid
DNA; Applied Biosystems) to allow ratiometric quantitation
and eliminate inefficient reactions from the analysis. Data
were obtained by densitometry (NIH IMAGE) of PCR products
resolved with PAGE (ratios of sample bands to corresponding
control bands). For every gene, ratiometric data for each
group of triplicate animals were averaged for each time point
and normalized to maximal expression level among the nine
time points (Fig. 1).

We clustered the gene expression time series according to
the Euclidean distance measure (square root of the sum of the
squared differences in each dimension) by using the FITCH
software (5). We determined the 112 3 112 gene Euclidean
distance matrix from the combined 17 dimensional vectors of
nine expression values (ranging between 0 and 1) and eight
slopes (ranging between 21 and 11; slopes were calculated
based on a reduced time interval of 1, not taking into account
the variable time intervals). We included slopes to take into
account offset but parallel patterns. We used the default
parameters for FITCH, except that we set the P parameter to
zero, to implement the least-squares method appropriate for
data with expected linearly proportional error. Cluster bound-
aries were determined by visual inspection of the Euclidean
distance tree. Principal component analysis was performed
according to standard routines implemented in the S-PLUS
statistical software package.

RESULTS

Included in the assay were major gene families deemed
important for spinal cord development because of their rec-
ognized roles in intercellular signaling and a smaller number
that are known for major roles in intracellular signaling or
transcriptional regulation: neurotransmitter synthesizing and
metabolizing enzymes [relating to g-aminobutyric acid
(GABA), acetylcholine, catecholamines, and nitric oxide],
ionotropic neurotransmitter receptors [GABAA, N-methyl-D-
aspartate (NMDA), nicotinic acetylcholine (nAChR), and
serotonin (5HT) receptors], metabotropic neurotransmitter
receptors (metabotropic glutamate, muscarinic acetylcholine,
and 5HT receptors), neurotrophins and their receptors, hep-
arin-binding growth factors and their receptors, insulin and
insulin-like growth factor (IGF) family and their receptors,
intracellular inositol 1,4,5-trisphosphate receptors, cell cycle
proteins, transcriptional regulatory factors, expressed se-
quence tags, and other (housekeeping) genes. We included
genes for established developmental ‘‘marker’’ proteins as
well, to correlate expression time series to indicators of
phenotypic differentiation.

Gene expression levels among independently run triplicate
samples were generally uniform (Fig. 1a). Two of the primers
sets used herein were tested previously in calibration reactions
under similar conditions (4), to demonstrate that the dynamic
range of this method covers eight orders of magnitude (Fig.
1b). The distribution of the ratiometric values in the present
work (Fig. 1c) suggests that we are well within the linear range
of this assay. We determined that it was not practical to
perform calibration reactions for every set of PCR primers
because of the large numbers of genes assayed and because the
absolute quantity of mRNA is not necessarily an indication of
its efficacy within the genetic network. Therefore, we have
focused on comparing temporal expression patterns. We have
diagrammed our measurements as a temporal gene expression
map (Fig. 2) and tabulated the raw data (http:yyrsb.info.nih.
govymol-physiolyPNASyGEMtable.html).

The construction of a temporal gene expression map by
using a single RT-PCR protocol allowed us to analyze spinal
cord development as a pattern of potentially functionally

FIG. 1. RT-PCRyPAGE assay. (a) Analysis of representative ethidium bromide-stained polyacrylamide gels. Bands at 150 bp are the PAW 108
internal control PCR product. Every PCR band is from a different animal. Time series of normalized ratiometric densitometry data (averaged 6
SEM) are graphed to the right of each gel. (b) Dynamic range of RT-PCR assay. The relationship between the log(starting molecules) and the
log(productycontrol) ratio is linear between 10 and 108 molecules for GAD65 (squares) and GAD67 (triangles; for details, see ref. 4). (c) Range
of ratiometric values. The histogram shows the distribution of densitometrically determined product ratios. The measurement values (c) are
comfortably within the linear range of the log–log assay (b), far removed from potential saturation.
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related genes and gene clusters, all processed in parallel. In this
context, we used two objective methods to correlate gene
expression time series.

The Euclidean distance matrix and FITCH program clustered
the 112 genes according to similarities in their temporal
expression patterns. This method is similar to grouping ac-
cording to positive correlations between expression patterns.
The genes cluster into four major waves of expression and a
largely invariant group (Fig. 3). Wave 1, characterized by high
levels of expression occurring only during early developmental
stages in 27 genes (E11–E15), includes members of diverse
gene families. Two genes, SC6 and SC7, closely cluster to
individual members of wave 1, suggesting a functional kinship
to known genes. Genes in waves 2 (20 genes) and 3 (21 genes)
steeply increase from E13 to E15 and from E15 to E18,
respectively. The members of wave 2 remain at their plateau
expression level at the completion of development, whereas
the members of wave 3 generally have a pattern of transient
high expression. Both waves 2 and 3 are notably confined to
neurotransmitter signaling. Finally, wave 4 (17 genes) clusters
genes that primarily increase during postnatal development,
belonging to several functional families. Twenty-one genes
showing largely constant expression (constant group) origi-
nate from diverse families but strictly exclude neurotransmitter
signaling genes and neuroglial markers. Relative contributions
of gene sequence families and functional families to the
different waves are shown in Table 1. Temporal patterns
typical for each Euclidean cluster are shown in Fig. 1; platelet-
derived growth factor receptor, metabotropic glutamate re-
ceptor mGluR3, GABARb3, glial fibrillary acidic protein, and
t-complex protein correspond to waves 1-4 and constant,
respectively.

Of interest, tyrosine hydroxylase, insulin 1, and IGF-II,
whose genes are located on the same human cytogenetic band
(11p15.5) (6), are closely clustered in Euclidean distance wave
1. Further, tyrosine hydroxylase and IGF-II are adjacent to
each other in the Euclidean distance tree (see http:yy
rsb.info.nih.govymol-physiolyPNASytree.html). Tyrosine hy-
droxylase, insulin 2, and IGF-II are also in close proximity to
one another on mouse chromosome 7 (Mouse Genome Da-
tabase, Mouse Genome Informatics, The Jackson Laboratory,
Bar Harbor, MA. WWW site: http:yywww.informatics.jax.
orgy). However, generally we were not able to correlate
patterns of gene regulation with chromosomal location, sug-
gesting that chromosomal proximity is not a major candidate
regulatory parameter.

Peptide signaling genes map mainly to Euclidean distance
clusters constant and wave 1. Similarly, the neurotransmitter
receptor genes map primarily to Euclidean distance waves 2
and 3. Interestingly, all neurotransmitter receptors in wave 1
and most of those in wave 2 (mainly GABAA receptors) are
ionotropic, whereas most neurotransmitter receptors in waves
3 and 4 are metabotropic (Fig. 3 and Table 1). The metabo-
tropic receptors are unrelated to ionotropic receptors in terms
of sequence kinship; therefore, it is not surprising that these
two receptor classes have highly divergent temporal expression
patterns. However, comparison of the developmental expres-
sion time series for the GABA, nicotinic and muscarinic
acetylcholine, and glutamate receptor genes with the phylo-
genetic trees for these gene families reveals a poor correlation
between phylogeny and ontogenetic expression patterns (the
same also applies to the data on peptide signaling gene families
studied herein). This suggests that sequence homologies within
gene families are not tightly coupled to the timing of gene
regulation over the course of development.

Further inspection of the data points to deeper relationships
between signaling gene families. Note that most of the nAChR
genes are found in wave 1 (Fig. 3 and Table 1). In addition to
the established developmentally restricted nAChR d and «
subunits, the expression profiles of the a3, a5, and a6 subunits
suggest that cholinergic transmission forms the leading edge in
neurotransmitter signaling in the cervical spinal cord. The
slightly delayed expression of acetylcholinesterase (wave 2)

FIG. 2. Temporal gene expression map of the developing spinal
cord. Expression patterns are labeled according to gene name and
general functional class. Densitometry data from ratiometric RT-PCR
and PAGE for triplicate animals are shown for each time point.
Darkest, maximal expression; white, undetectable expression. MAP2,
microtubule-associated protein 2; GAP43, growth-associated protein
43; L1, neural cell adhesion molecule (NCAM); NFL, NFM, NFH,
neurofilament light, medium, and heavy; neno, neuron-specific eno-
lase; GFAP, glial fibrillary acidic protein; MOG, myelin-oligodendro-
cyte glycoprotein; GAD65, glutamate decarboxylase 65; GAD67,
G67I80y86, and G67I86, glutamate decarboxylase 67 splice variants;
GAT1, GABA transporter 1; ChAT, choline acetyltransferase; AChE,
acetylcholinesterase; ODC, ornithine decarboxylase; TH, tyrosine
hydroxylase; NOS, nitric oxide synthase; GR, GABA receptor;
mGluR, metabotropic glutamate receptor; NMDA, NMDA receptor;
nAChR, nicotinic acetylcholine receptor; mAChR, muscarinic acetyl-
choline receptor; 5HT, serotonin (5-hydroxytryptamine) receptor;
NGF, nerve growth factor; NT3, neurotrophin 3; BDNF, brain-derived
neurotrophic factor; CNTF, ciliary neurotrophic factor (CNTFR,
receptor); trk, NGF receptor; MK2, midkine 2; PTN, pleiotrophin;
GDNF, glial-derived neurotrophic factor; EGF and EGFR, epidermal
growth factor and its receptor; bFGF, aFGF, basic and acidic fibroblast
growth factor; PDGF and PDGFR, platelet-derived growth factor and
its receptor; FGFR, fibroblast growth factor receptor; TGFR, trans-
forming growth factor receptor; Ins, insulin; InsR, insulin receptor;
IGF, insulin-like growth factor; IGFR, IGF receptor; CRAF, c-raf
protooncogene; IP3R, inositol 1,4,5-trisphosphate receptor; H2AZ,
H2A.Z histone protein; Brm, brahma; TCP, t-complex protein; SOD,
superoxide dismutase; CCO1 and CCO2, cytochrome c oxidase,
subunits 1 and 2.
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and late expression of choline acetyltransferase (wave 4)
suggest that early sources of acetylcholine, if they exist, must
originate outside the cervical spinal cord. For the GABAergic
signaling system, the relationship between synthesizing en-
zymes and receptors is more coherent. Glutamate decarbox-
ylase 65 (GAD65) and pre-GAD67 (sum of splicing variants of
GAD67) appear with a GABA transporter gene (GAT1) and
six of the GABAA receptor subunit genes in wave 2. The
remaining four GABAA receptor subunits are found in waves
3 and 4. Wave 3 also shows a preponderance of the metabo-

tropic glutamate receptors (five of eight) and all the analyzed
5HT receptors (Fig. 3 and Table 1).

For peptide growth factor genes, a close correspondence
exists between the expression of signal and receptor for insulin
1, IGF-II, IGF receptors 1 and 2, and platelet-derived growth
factor b and the platelet-derived growth factor receptor in
wave 1. The related neurotrophin pair, nerve growth factor and
ciliary neurotrophic factor, and fibroblast growth factor pair
(FGF), acidic FGF and basic FGF, are closely clustered in
wave 4 (also forming an exception to the general growth factor

FIG. 3. Gene expression waves. (a) Normalized gene expression trajectories from Fig. 2 are shown grouped by ‘‘waves’’ determined by Euclidean
distance clustering. The graphs below show the average normalized expression pattern or ‘‘wave’’ over the nine time points for all the genes in each
cluster (the time of birth is marked by a vertical line). Within each wave, genes are grouped according to gene families, not according to proximity
as determined by Euclidean distance. (b) Euclidean distance tree of all gene expression patterns (for annotated tree, see http:yyrsb.info.nih.govy
mol-physiolyPNASytree.html). Major branches correspond to waves in a. (c) Plots of all normalized time series, highlighting wave 3 (Left, white
lines) and a subcluster of wave 3 (Right, white lines plotted on top of remaining genes of wave 3 in red). Subclusters (secondary branching) were
selected by visual inspection from tree in b; e.g., the plotted time series of the wave 3 subcluster correspond to the branchlet highlighted in white
within wave 3 in b. (d) Principal component analysis. Principal components projection viewed as a three-dimensional stereo plot. Each point mapped
in three-dimensional space represents an expression time series corresponding to a gene in Fig. 2. Highlighted points correspond to Euclidean
distance wave 3 (red triangles), wave 4 (green squares), and the remaining genes (blue octagons). Abbreviations are as in Fig. 2.
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mapping into wave 1 and constant). However, regulation of
receptors for ciliary neurotrophic factor (ciliary neurotrophic
factor receptor; constant), nerve growth factor (trk; wave 1),
and the FGFs (constant) does not exactly coincide with that of
the corresponding ligand genes. Interestingly, epidermal
growth factor and its receptor form a unique pair in a separate
sixth group (other).

In addition, we applied a statistical method, principal com-
ponent analysis, to confirm independently the cluster analysis
results. This method is based on the covariance of the gene
expression time series. The first three principal components,
shown as x, y, and z axes in the stereo plot in Fig. 3d capture
66% of the variability in the 17 coordinates (nine expression
values and eight slopes). One may use a stereo viewer to fuse
the images of Fig. 3d; the square dot on the frame appears at
the back of the fused image. Minimal spanning trees are
included to facilitate image fusion and study (7, 8). The paucity
of points in the center of the data cloud suggests strong
constraints on gene expression (such as the absence of high–
low–high patterns). In contrast, random rearrangement of the
data within each time series results in accumulation of the data
points in the center of the first three principal components
view (data not shown), as expected for random data. The genes
clustered by Euclidean distance are grouped together within
the three-dimensional view. Wave 3 (red) is a tight cluster but
some of the other (blue) points are very close. Wave 4 (green)
is spread out but well separated from the other clusters. This
suggests that many genes in these clusters would continue to be
grouped together by various Euclidean distance clustering
algorithms (confirmed by comparison of several alternative
clustering algorithms; results not shown).

DISCUSSION

The rapidly progressing genome projects are providing a
toolbox that enables us to go beyond the study of individual
genes in isolation to the characterization of a network of
combinatorial gene interactions (3). A fundamental aspect of
this ‘‘functional genomics’’ is a straightforward cataloging of
gene expression in different species and tissues (9). In addition
to assaying large numbers of genes, extensive perturbation
studies, and time series of the appropriate temporal resolution
will be essential for ‘‘reverse engineering’’ to produce a
gene–gene ‘‘interaction diagram’’ (3, 10–12).

Despite our use of whole cervical spinal cord, we found a
high degree of order among most of the 112 selected genes: five
basic expression patterns or waves. This demonstrates that
fundamental patterns of temporal f luctuations in gene expres-
sion can be discerned even without dissecting whole tissue into
distinct anatomical subregions. Further, this suggests that each

gene in waves 1–4 is not expressed in all anatomical regions at
a different time point for each region; if this were the case, all
the genes we assayed would exhibit relatively constant expres-
sion levels over time. The data therefore suggest the existence
of strong constraints on gene regulation on the tissue level.
Interestingly, we did not observe gene expression patterns
characterized by large amplitude oscillations or a U-shaped
time course of high early, low intermediate, and high final
developmental expression. It remains to be determined
whether the absence of such patterns is a characteristic of gene
expression in spinal cord or the result of a bias in our selection
of genes.

Beyond grouping functional gene families, the Euclidean
clusters identify distinct phases of spinal cord development.
Specifically, wave 1 is indicative of an immature proliferative
stage. The genes of wave 1 represent indicators for dividing
neuroglial progenitor cells (e.g., the ectodermal marker ker-
atin, the cell cycle gene cyclin B, and the progenitor cell marker
nestin) and the physiological signals ostensibly important to
their activity (growth factors and their receptors). These genes
represent a group that should be studied in spinal cord disease
and injury, during which the organism may make attempts at
reactivation of developmental programs (13). Wave 2 is indic-
ative of neurogenesis, as evidenced by the coexpression of
neuronal markers such as synaptophysin, neuron-specific eno-
lase, and a vast group of neurotransmitter metabolizing en-
zymes and receptors, in particular relating to GABAergic
signaling (see also ref. 14).

Wave 3, although exclusively covering neurotransmitter
signaling genes and neuronal markers, is distinguished from
wave 2 by a characteristic low–high–low pattern of develop-
mental gene expression and a slower rise time. A fundamental
phenomenon in CNS development is overproduction of cells,
many of which are later eliminated during maturation and
cementing of synaptic connections. In spinal cord, 80% of all
cells disappear between E15 and E18 (15). Many motoneurons
are eliminated during the first weeks of postnatal spinal cord
development (16). It has been hypothesized that induction of
spinal cord cell death may be mediated by the NMDA class of
glutamate receptors (14). Could reduction of the NMDA1 and
NMDA2C receptors, as well as metabotropic glutamate and
other neurotransmitter receptors, particularly in wave 3, be
related to postnatal elimination of cells expressing these
genes? Alternatively, genes in wave 3 may have a develop-
mentally restricted role and may be down-regulated indepen-
dent of cell death. Studies on localization of gene expression
and coanalysis of cell-death-related genes may help to eluci-
date these alternative interpretations. In conclusion, the pat-
tern of gene expression in wave 3 emphasizes that neuronal-
signaling gene expression is not a gradual linear process in

Table 1. Mapping of expression clusters to functional gene classes

Cluster

Neurotransmitter receptors

General gene class
Ligand class

Sequence class

%
peptide

signaling

%
neurotr.

receptors

%
neuroglial
markers

%
diverse

%
ACh

%
GABA

%
Glu

%
5HT

%
ion

channel

% G
protein
coupled

Wave 1 37 15 24 24 86 0 14 0 100 0
Wave 2 6 39 48 7 10 65 25 0 69 31
Wave 3 0 79 21 0 17 14 24 45 31 69
Wave 4 23 16 38 23 26 29 45 0 36 64
Constant 37 0 4 58
Other 50 11 18 21

To eliminate the bias caused by gene selection, the percentages reflect the contribution of a gene class to an expression cluster relative to the
overall representation of each gene class in the assay. For general gene clusters, expression clusters are enriched for major gene classes (defined
in Fig. 2). For neurotransmitter receptors, distinct categories of neurotransmitter (neurotr.) receptors map to selected expression waves. Receptors
are classified according to ligand class or functional sequence class. Constant and other clusters are not listed because neurotransmitter receptors
are essentially absent from these groups. Boldface type represents dominant class in cluster. ACh, acetylcholine.

338 Neurobiology: Wen et al. Proc. Natl. Acad. Sci. USA 95 (1998)



which genes asymptotically approach their mature tissue levels
but that there is a transient phase of high expression, analogous
to the transient overabundance of cells in neurodevelopment.

Finally, wave 4 coincides with gliogenesis and final matura-
tion of the tissue. This is indicated by the expression patterns
of glial fibrillary acidic protein (astrocyte marker), myelin-
oligodendrocyte glycoprotein (oligodendrocyte marker), and
several coincident peptide and neurotransmitter signaling
genes. Questions arise as to whether these gene groups are
colocalized in glia or whether these signaling genes may be a
response of other cells to glial differentiation or may be
themselves regulators of gliogenesis.

Overall, there is a clear mapping of functional gene groups
to expression profiles. Although we have also seen several
examples of coexpression between receptor–ligand gene pairs,
exceptions to this rule suggest outside sources of signals and
alternative ligands or receptors.

Our analysis suggests testable hypotheses concerning gene
regulation. For example, our data suggest that SC6 and
nAChRd may share regulatory inputs, given their tight clus-
tering in the Euclidean distance tree; the same may be said for
SC7, nestin, G67I80y86, and G67I80, which are all found
closely clustered within wave 1 (see http:yyrsb.info.nih.govy
mol-physiolyPNASytree.html). Inputs to known genes may,
therefore, be tested for their ability to regulate the expression
of genes such as SC6 and SC7, whose functions have yet to be
determined. Generally, similarities in temporal expression
patterns may point to the existence of common regulatory
structures and pathways.

We need a simple model for conceptualizing how large
numbers of genes interact to generate a complex but robust
system. Threshold levels of gene expression are a possible
mechanism by which the genetic program makes decisions
about the timing of development. Boolean network models are
based on a binary idealization of thresholding and exhibit
dynamic behaviors such as self-organization, cycling, and
maintenance of complex stable structures, referred to as
attractors (3, 17). Although this model is oversimplified,
abstractions such as this may be useful in conceptualizing the
nature of genetic information flow (3).

Additional issues must be addressed in understanding the
principles that govern the complex behavior of genetic net-
works. Positional data on gene expression will be required for
a greater understanding of how time series relate to anatomical
development. In addition, our present strategy does not ac-
count for possible differences between mRNA and protein
expression; however, it is reasonable to assume that protein
and gene expression patterns are generally well-correlated.

Large-scale gene expression assays may be performed by
using RT-PCR, serial analysis of gene expression (SAGE, ref.
18), or DNA chip technology (19). We chose to use RT-PCR
because of its exceptional sensitivity and dynamic range,
reliability, and flexibility. RT-PCR can be scaled up to cover
the same number of genes as SAGE and DNA chips by using
robotics and capillary electrophoresis arrays for separating
PCR products (20, 21).

Finally, analytical computational techniques are needed to
interpret data. Reverse engineering (10–12) will require data

from experimental perturbations of tissue (e.g., injury or
pharmacological perturbation), combined with analysis of
spatial localization and cell-type-specific gene expression pat-
terns. Cluster analysis places constraints on the structure of the
genetic network, although short of finding the inputs and
regulatory rules themselves. Functional gene families may be
recast in terms of gene expression clusters. This may be useful
in defining roles for the large numbers of newly sequenced
genes with unknown function. A genetic networks approach
may provide a better understanding of the flow of genetic
information during development and could lead to the gen-
eration and testing of new hypotheses for the study of devel-
opmental disorders or cancer.
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