
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. CII, PAGES 17,739-17,751. NOVEMBER 15,1992 

Large-Scale Thermal Bending Fracture of Sea Ice Plates 

Zdenek P. BaZant 

Department of Civil Engineering, Northwe.tern Univer.ity, Evan.ton, II/inoi. 

A hypothesis that large-scale fracture of sea ice plates in the Arctic could be caused by the 

release of energy of thermal bending moments due to major temperature changes is advanced and 

examined. Bending propagation of a through-the-thiclrness crack along the floating plate, with 

negligible inertial forces, is analyzed, asswning the moment field in the plate near the traveling 

crack front and the fracture process zone to be in a steady state. The analysis uses the plate-bending 

theory, and the second-order geometric effects of the in-plane normal forces are taken into account. 

Quasi-elastic behavior is assumed, and creep is treated approximatdy according to the effective 

modulus method. The calculated temperature difference between the top and bottom of the plate 

required to produce this kind of fracture is fowid to be well within the range that actually occurs 

in the Arctic, but this cannot be regarded as a proof of the hypothesis becaU8e of the simplifying 

assumptions made as well as uncertainties about large-scale fracture properties of sea ice. Further, 

it is shown that this type of fracture must exhibit a size effect, such that the critical temperature 

difference decreases in proportion to (plate thickness) -3/8. This might explain why large fractures 

often form in an intact thick plate rather than only in a thin plate and along lines of weakness. 

For the case that the in-plane forces are significant, it is shown that beyond a certain critical crack 

length the thermally driven bending fracture (if it exists) must transit to a planar (nonfiexural) 

fracture driven by the release of the energy of the in-plane forces generated by wind and ocean 

currents. The effect of creep is to increase the required critical temperature difference, as well 

as the critical crack length for the aforementioned transition. For thermal bending fracture, the 

minimum possible spacing of parallel cracks increases with the plate thickness and is independent 

of the crack length, while after transition to planar fracture it increases in proportion to the crack 

length. The hypothesis of thermal bending fracture cannot be proven or disproven without new 

types of experiments and measurements in the Arctic, and their computer modeling. 
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1. Introduction 

Observations of the ice in the Arctic Ocean indicate that 

long fractures many miles in length form almost instanta

neously. Rather than following the existing lines of weak

ness such as thin refrozen leads between the fioes, these new 

fractures typically cut through intact pack ice fioes, as well 

as through old and new pressure ridges [AHur, 1963]. They 

may serve as the initial triggering events for the opening 

of leads as well as the formation of new pressure ridges or 

rafting. 

salinity, is more ductile does not mitigate this argument be

cause even plastic deformation of such thin ice would have 

to occur first, thereby relieving the forces). 

Large-scale tensile fractures can of course be produced 

by forces induced in the ice plate by wind and ocean cur

rents. There are, however, two observations which suggest 

that another mechanism might also be at work, especially 

at the beginning of fracture propagation: (1) The forces in 

the ice plates are usually compressive, not tensile. Although 

fracture is still possible under compression, in the form of 

either axial splitting cracks or compression crushing, the for

mer seems to require very large forces, and the latter would 

be unlikely to occur in intact thick ice plates. (2) If ten

sile fracture were the only mechanism, the fractures would 

have to form mainly along the lines of weakness, such as the 

thin ice in thin refrozen leads, and not through intact thick 

ice plates (the fact that young, thin ice, owing to its higher 
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Another possible mechanism is of thermal origin. Ex

panding on a previous brief conference presentation [Baiant, 

1992]' this paper will explore this idea from the fracture me

chanics viewpoint and advance the hypothesis that thermal 

bending moments in the ice plate might play a significant 

role as the driving force of such fractures. Attention will be 

focused mainly on the size effect, in order to deduce whether 

or not such fractures would be more likely to occur in thinner 

plates. Although a better, more detailed solution could be 

carried out numerically by the finite element method, bet

ter insight and understanding of the problem can be gained 

by an analytical solution, even if simplifications are intro

duced. Thus the objective of this paper is an analytical 

solution capturing, hopefully, the main trends. Consider

able simplifications will be required to make such a solution 

feasible. 

2. Current Status and Problems 

of Fracture Mechanics of Ice 

It has been well known that thermal stresses in sea ice 

plates are large enough to cause cracking [e.g., Sanderson, 

1988]. Acoustic emissions from thermal fracturing events 

have been recorded [e.g., Milne, 1972; Farmer and Xie, 

1989; Lewil and Denner, 1988]. Thermal cracking of sea ice 

pla.tes has been studied by Evans and Untersteiner [1971] 

and Evanl [1971], but on the basis of the strength theory 
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rather than fracture mechanics. However, as is now well un

derstood, the strength theory can govern only cra.ck initia

tion, not propagation. Growth of thermal cra.cks through the 

thickness of ice plates was analyzed by Gold [1971], and the 

stress singularities associated with such growth have been 

studied by Parmerter [1975]. But our interest here is in 

large-scale propagation of through cracks along the ice plate, 

over distances at least 10 m and typically many miles. 

Thermal stresses have in the past been dismissed as a 

possible cause of large fra.ctures, but this is not necessa.rily 

correct. It has been argued that from heat conduction calcu

lations [e.g., Sanderson, 1988], the temperature fluctuations 

of the environment can penetrate only a small portion of the 

thickness of a thick ice plate. This apparently suggests that 

the thermal cra.cks could not become long enough to spread 

across the whole thickness of the plate. But this argument 

is falla.cious. 

The fallacy of this argument is that it tacitly limits at

tention only to cracks that form without any bending of the 

plate. It neglects the possibility that even thermal stresses 

confined to a thin layer near the top surface may suffice to 

cause a significant bending moment. As we will see, the re

lease of the strain energy of the bending moment field in the 

plate can be large enough to produce thermal cra.cks through 

the whole thickness. 

Now it is important to note that major fra.ctures could 

conceivably form in this manner regardless of whether the 

plate is in tension or compression. Because the thicker an 

undamaged ice plate, the greater is the thermal bending 

moment, it might be possible to explain why thick inta.ct 

plates are apparently not less likely to fra.ct ure than thin 

plates or plates damaged by prior fra.cturing. 

Fracture mechanics of ice has been studied extensively 

and much has already been learned [e.g., Anderson, 1960; 

Sanderson, 1988; Urabe and Yoshitake, 1981; Bentley et al., 

1988; DeFranco and Dempsey, 1990, 1991; Dempsey 1989, 

1990; Dempsey et al., 1989a, b, 1990, 1991; Ketcham and 

Hobbs, 1969; Palmer et al., 1983; Parwns, 1991; Parsons 

et al., 1987, 1988, 1989; Stehn, 1990; Tim co, 1991; Timco 

and Sinha, 1988; Weeks and Mellor, 1984; and references 

therein]. Reviewing the existing knowledge is beyond the 

scope of this work. 

It appears, however, that most of the existing studies 

have been confined predominantly to the laboratory scale. 

No fra.cture test data appear to exist for large-scale fra.c

ture of ice plates, with all their inhomogeneities, such as 

the brine pockets, prior microcra.cks or larger fissures. and 

large ice blocks delineated by surfaces of weakness (e.g., re

frozen cracks). Obtaining such data would require tests of 

large floating fra.cture specimens cut from the sea ice plate 

in the Arctic. In the meantime, one must rely on theoreti

cal deductions, drawing from analogy with other materials 

of similar fra.cture behavior, for example, concrete, modern 

toughened ceramics, or some rocks. The basic properties 

that ice has in common with these so-called quasi-brittle 

materials are (1) low tensile strength, (2) large size inhomo

geneities with weak interfa.ces, and large pores, (3) residual 

stresses, and (4) prior damage (microcra.cking and cra.cking). 

For these materials it is known that the fra.cture process zone 

surrounding the tip of a major cra.ck is 1 to 2 orders of mag

nitude larger than the largest inhomogeneities. The same is 

likely to be true of ice. 

For example, the process zone size in ha.rdened cement 

paste is only a fra.ction of a millimeter. But ill dam con

crete, in which the la.rgest aggregate pieces may be 0.25 m 

in size, the effective process zone size may be many meters. 

A similar picture must be expected for sea ice. For pure ice, 

material scientists have determined that the process zone 

size is less than a centimeter, bu t assuming the same to 

hold for through-the-thickness cra.cks in sea ice plates would 

be totally unreasonable. 

The existence of such a large fra.cture process zone can 

be confirmed, in mechanics terms, by the size effect method 

[RILEM Committee TC89-FMT, 1990], on the basis of mea

sured deviations from the size effect of linear elastic frac

ture mechanics (LEFM). Such tests may eventually have to 

be carried out in the Arctic. The fra.cture energy, that is, 

the energy dissipated by the fracture process zone per unit 

adva.nce of a major cra.ck, could certainly be much larger 

than the fra.cture energy of a crack in pure ice because the 

dissipated energy increases in proportion to the size of the 

process zone, but it could also be about equal because this 

increase may be offset by the fact that in a thick inhomoge

neous plate the cra.cking may occur preferentially at weaker 

interfaces. 

An important aspect of fra.cture phenomena is the size 

(or scale) effect, which will represent the focus of our anal

-ysis. The size effect has currently emerged as a topic of 

major interest for ocean ice dynamics [Curtin, 1991]. The 

size effect is understood as the dependence of the nominal 

strength (nominal stress at maximum load) on the structure 

size, provided that geometrically similar situations are com

pared. In linear elastic fracture mechanics of two- and three

dimensional bodies, the nominal strength is proportional to 

(size)-1/2, which is the strongest deterministic size effect 

possible. When the material failure condition is expressed 

in terms of stresses and strains, there is no size effect. This 

is for example the case for plastic limit analysis and for elas

tic (nonfra.cture) analysis with strength (or allowable stress) 

limit. In the case of thermal fracture, the nominal stress is 

proportional to the temperature difference, and so the size 

effect is chara.cterized by the size dependence of the cri tical 

temperature difference required to cause fra.cture propaga

tion. For quasi-brittle materials, the size effect may be de

scribed by an approximate law proposed by Baiant [1984]' 

which represents a gradual transition between the size ef

fects of the strength theory and of LEFM, the former being 

asymptotically approa.ched for sufficiently small structures 

and the latter for sufficiently large structures. 

The size effect in the strength of structures, including ice, 

has traditionally been explained by the randomness of ma

terial strength, as described by Weibull's statistical theory 

[e.g., Butiagin, 1966]. Recently, however, it has been shown 

that this explanation is incorrect for quasi-brittle materi

als in which large cra.ck growth can occur prior to failure 

[Baiant and Xi, 1990]. The energy release and stress re

distributions caused by large crack growth cause a strong 

deterministic size effect. This is due to the fa.ct that a larger 

structure stores more strain energy. Thus if the nominal 

stress at failure were the same, more energy would be re

leased into the fra.cture front. But the energy dissipated by 

at the fracture front (i.e., the fra.cture energy) is the same 

regardless of structure size. So the nominal stress at failure 

of a la.rger structure must be smaller. For structures with 

large cra.cks, this deterministic effect makes the statistical 
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effect secondary and unimportant. The Weibull-type sta

tistical size effect dominates only if fail ure occurs while the 

crack is still very small, microscopic, which is normally true 

for metallic structures but almost certainly not for sea ice 

plates. It may be noted that Baiant and Kim [1985) have 

already shown that the aforementioned deterministic size ef

fect does not disagree with Butiagin's test data for lake ice. 

3. Bending Energy Release and Dissipation 

Consider an infinitely extending ice plate of thickness h 

fioating on water of specific weight (! (Figure la). For the 

sake of simplicity, we first assume the plate to be elastic but 

we will take creep approximately into account later. Let x 

and y be the in-plane Cartesian coordinates. Formation of 

fracture along axis x releases the initially existing thermal 

bending moment M and causes the fracture edge to rotate 

through the angle 7J; see Figure Ib (this figure resembles a 

situation photographed in the Arctic by Sanderson [1988, p. 

149, Figure 6.4) and attributed by him to creep buckling; but 

creep buckling, with fracture, is part of the present model if 

the elastic modulus is interpreted as the effective modulus 

for creep, as in equation (25)). 

Deflection w in the direction of vertical axis z causes 

the supporting pressure of seawater to increase by p = (!w 

(Archimedes' law). This means that for one-dimensional re

sponse, the plate is exactly equivalent to a beam on Winkler

type elastic foundation whose foundation modulus is exactly 

equal to (! (Figure Ie). The beam is for the time being 

assumed to carry no axial (in-plane) force. According to 

Hetenyi [1946)' the edge rotation is given by 

I 4MA3 

i} = [w )y=Q = -
(! 

(1) 

Fig. 1. (a) Floating ice plate, (b) its deformation after fracture, 

(c) its modeling as a beam on elastic foundation, and (d) view of 

propagating fracture from top. 

where A = «(!/4D)1/4, with D = Eh 3 /12(1 - v
2

) is cylindri

cal stiffness of the plate, E is Young's elastic modulus of the 

plate, v is the Poisson ratio, and the prime denotes deriva

tives with respect to y. The potential energy release due to 

fracture, per unit length along the crack, is 

(2) 

For the sake of simplicity, we will now restrict attention 

to steady state fracture propagation. This means that the 

temperature profiles at various locations are approximately 

the same and the fracture process zone is fully developed 

and almost constant in size. But it does not mean that the 

crack velocity should be constant because fracture mechan

ics is a time-independent theory. Dynamic fracture prop

agation in which there are significant inertia forces must 

nevertheless be excluded from consideration. In this regard 

it may be noted that the inertial forces are negligible for 

crack tip velocities less than about 0.1 of the speed of sound 

in ice, which still allows fracture propagation to be quite 

rapid. (The crack velocities can vary enormously depending 

on the energy release rate governed by mechanics of the en

tire structure; see, for example, the observations by Parsons 

et al. [1987) and Bentley et al. [1988)). 

To isolate the size effect from other effects, only geomet

rically similar temperature profiles at the fracture front in 

plates of various thicknesses can be considered. The tran

sients due to temperature changes cannot be considered if 

the size effect should be mathematically isolated from other 

phenomena. Creep and time-dependent fracture properties 

will be taken into account later, and only approximately, 

using the effective modulus approach, which permits quasi

elastic an alysis. 

Although the foregoing calculation of energy release is 

based on analyzing the plate one-dimensionally, as a beam, 

it applies in general for steady state propagation of a crack. 

Imagining a view of the sea ice plate from top, one can see a 

region of progressive crack formation (the microcracked re

gion F centered at the fracture tip in Figure Id), surrounded 

by a region of two-dimensional elastic bending of the ice 

plate (the dashed rectangle 1234 in Figure Id). Within re

gion F, the fracture progressively grows across the plate 

thickness, crack bridging may be expected to occur, and the 

material may be assumed to undergo microcracking in front 

of the crack. These complex phenomena, however, need not 

be analyzed because the total energy dissipated in the frac

ture process zone, representing the macroscopic fracture en

ergy G" must be constant by virtue of the assumption of 

steady state (these phenomena would of course have to be 

analyzed if we wanted to calculate G f' bu t in any case we 

do not know what material properties to consider for that 

purpose). 

Behind region F, the fracture cuts through the whole 

thickness h and is opened so widely that there is no crack 

bridging anymore. The distance of the side 12 or .'14 of the 

rectangle from the crack (Figure Id) is equal to the reach of 

nonnegligible bending disturbance due to fracture, which is 

about 5/A (if the amplitude reduction factor eAY :::::: 0.01 is 

considered as negligible). In front of the rectangle 12.'14, the 

ice plate is undisturbed, and behind the rectangle it is very 

close to a state of one-dimensional (cylindrical) bending, for 

which the foregoing calculation applies. 
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We do not know much about the state of the plate in the 

region 123.01 except for knowing it is very complex. But we do 

not need to know it if we study only the steady state crack 

propagation. In that case, if we consider crack extension 

by dx, the rectangular region 5678 (Figure Id) obtained by 

moving rectangle 123.01 ahead by dx with the crack advance 

contains the same amount of energy as the original rectan

gle. The energy contained within rectangle 2673 (Figure Id) 

flows into the rectangle 1234 as it moves forward with the 

crack, and the energy contained in the rectangle 1584 (Fig

ure Id) has flowed out. So the overall energy change is given 

by the difference between the energies contained within the 

rectangles 2673 and 158.01, and this is exactly what we have 

calculated . 

The energy dissipated per unit length of fracture exten

sion may be expressed as W = hG" where G, is the av

erage (mode I) macroscopic fracture energy of the material 

through the ice plate thickness; G, = KJ/ E where K, is 

the average (mode I) fracture toughness [Broek, 1986) and 

E is Young's elastic modulus of the ice plate. (The point

wise fracture energy value no doubt strongly varies across 

the plate thickness because of nonhomogeneity of ice type, 

brine content, and temperature variation. Note that the av

erage G, for the thickness of the plate would vary with the 

thickness of the ice plate if the distributions of the pointwise 

fracture energy across ice plates of various thicknesses were 

nonsimilar; this possible effect will be neglected.) Setting 

hG, = W (equation (2)), one obtains the following expres

sion for the critical thermal bending moment at which the 

fracture must propagate: 

M = jUhG, 
, 2A3 

(3) 

It must be emphasized that the thermal bending fracture 

which we are analyzing (Figure 1) does not represent what 

has usually been understood as the "thermal cracks" in sea 

ice. These are the cracks whose formation is not associated 

with plate bending. They could not relieve the bending en

ergy of the plate. They run through only a portion of the 

plate thickness and their spacing is dense, of the order of 0.5 

m. 

()(z) 

6T~r~ 
- z -----

Fig. 2. Profiles o{ temperature change AT, thermal stress q, and 

bending moment MT due to thermal stresses. 

4. Critical Temperature Difference 

and Size Effect 

The difference of ice temperature from the temperature of 

the seawater, To, may be written as ~T(z) = ~Td«() where 

z is the vertical coordinate measured from the mid thickness 

of the plate, ( = z/h is the relative vertical coordinate, ~Tl 

is the temperature difference between the top and bottom 

faces of the plate, and f is a function defining the tempera

ture profile (Figure 2), which must be calculated in advance. 

Taking into account that the normal strains in both the x 

and y directions as well as the vertical normal stresses are 

zero, we find that the thermal bending moment in the plate 

before fracture is 

j
hl2 

MT = Ea~T(z)zdz 
-h12 

. E 
E=-

I-v 
(4) 

where a is the coefficient of linear thermal expansion of ice 

[Anderson, 1960; Weeks and Assur, 1967; Butkovitch, 1957) 

and the value of the elastic modulus E is taken as the average 

over the plate thickness (which may involve an error similar 

to that pointed out for G I)' We ignore the variation of a 

throughout the plate thickness and take an average value. 

Substituting for ~T(z) and denoting h = f~~~2 f«()(d( (a 

constant), we obtain 

(5) 

Note that the temperature profile f( () can practically never 

(a) 

log bo Ter 

(b) (c) 

log bo Ter 

~ 
log h 

log (J" (e) log 0" (d) 

ho 
I 

log h 

log boTer 

log 0" (1) 
log h 

\ -+ ___ ~~i~~ength 
thermal 

therma I ~.;-

log a 

Fig. 3. (a) LEFM size effect in thermal bending fracture, (b) devi

ation from LEFM size effect expected if the fracture process zone 

is large, (c) difference between short-time and long-time loading 

due to creep, (d) transition to in-plane fracture with its size effect, 

.c,... 
1~ 

2 \'0 .... 

a011 acr • '0" 
loga ~ 

\'0 

log a 

(e) size effect in in-plane fracture expected i{ the fracture process 

zone is long, and (1) critical crack length {or this transition, with

out and with creep. 
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become linear except in plates less than about 0.5 m thick. 

(The depth at which the sinusoidal surface temperature 

waves of periods 14 days and 1 year get attenuated to lie of 

the surface amplitude are 0.97 m and 3.40 m, respectively, 

according to Sanderson, [1988].) 

Fracture will propagate if MT = MI' From this, the crit

ical temperature difference required for crack propagation 

is 

tl.Tcr = tl.Tl = . 1 J ~hGI (6) 
EaIrh2 2A3 

Substituting now the foregoing expressions for A and D and 

rearranging, we obtain the result 

tl.Tcr = C
1 

h -3/8 (7) 

where 
(1 - V)5/8 gl/8 yfG; 

C1 = ---,=-'-------..:.--'---
v'2[3(1 - V 2 )P/8 E5/8 a Ir 

(8) 

An important aspect to note is that the critical tempera

ture difference depends on h, i.e. there is a size effect (or 

scale effect). According to plastic limit analysis or elas

tic analysis with allowable stress, there would be no size 

effect; i.e., tl.Tl would be independent of h. The size ef

fect is a basic property of fracture mechanics. For two

dimensional or axisymmetric problems, LEFM predicts the 

critical stress or critical temperature difference to be pro

portional to (size)-1/2, provided that geometrically similar 

structures with similar cracks are considered. But in our 

case (Figure 3a), tl.Tcr is proportional to (size)-3/8. Why 

this difference? This is due to the effect of the characteristic 

length L of decay of bending disturbances along the plate. 

Because L = (D/~)1/4 = l/Av'2 =cx h3/4, L increases less 

than proportionally to thickness h. The width of the strip 

parallel to crack from which most of the bending energy is 

released is proportional to L. But to preserve the normal 

size effect h -1/2, this width would have to be proportional 

to h. Therefore the size effect may be expected to be weaker 

than h- I
/

2
, as we have found. 

5. Generalization to Bending Fracture 

Under In-Plane Forces 

In natural conditions, the sea ice plate is normally sub

jected to a significant in-plane compressive force N, normal 

to the crack direction (considered negative when compres

sive). Then, obviously, the second-order geometric effect 

known from the theory of coumn buckling must be taken 

into account. Therefore we now generalize the solution to a 

semi-infinite beam on elastic foundation carrying axial force 

N. The slope (derivative) w' of the deflection curve w(y) has 

generally the form [e.g., Baiant and Cedolin, 1991, section 

5.2] 

w' = (A sin ry + Bcosry)e-'Y (9) 

where 

r=A~ 
N 

")'=---
2VilJ 

(10) 

and A and B are arbitrary integration constants. The 

boundary conditions at the free end y = 0 are w' = tJ (ro

tation at the crack) and Dw'" - N w' = -V = 0 where the 

primes denote derivatives with respect to y and V is shear 

force in the vertical (z) direction. From these two conditions 

one solves B = -tJ and A = _tJ[82 
- r2 - (NI D)]/2r8. Sub

stituting this into the expression for the bending moment 

in the beam, which is expressed as M = Dw" after w" has 

been calculated by differentiating (9) with respect to y, one 

obtains (for y = 0) 

(11) 

The energy release rate due to fracture propagation may be 

calculated as W = MtJ/2. Expressing tJ from (10), we thus 

get 

~M2 
W=---

1 - 2")' 2AD 
(12) 

Setting this equal to the energy dissipated by fracture, W = 
hG I and solving for M, one obtains for the critical thermal 

bending moment M I causing fracture propagation the result 

MJ = 2hADG I 1~ 
yl-")' 

(13) 

From the condition that MI = M T , where Mr is given 

by (5), it follows that 

tl.T. tl.T 1 - v /2hADGf 1 - 2,,), . 
cr = I = EaIrh2 V ~ (14) 

Finally, introducing the foregoing expressions for A, D and 

Cl, and rearranging, one obtains the result' 

tl.Tcr 

= 

where 

CI h-3 / 8 (1- 2,)1/2(1 _ ,)-1/4 

C I h-3
/

8 (1 - ~ ")' + ... ) 
4 

_ N 
CT =-

h 

(15) 

(16) 

The last form of (15) has been obtained by Taylor series 

expansion. 

The most interesting aspect of the result in (15) is that 

the critical temperature difference again exhibits size effect. 

Asymptotically for small INI the size effect is the same as 

before (equation (7)). But as N becomes negative (com

pressive) of increasing magnitude, the size effect becomes 

stronger than h-3
/

8
, and as N becomes positive (tensile) of 

increasing magnitude, the size effect becomes weaker. Fur

thermore, the influence of the average in-plane stress on the 

size effect diminishes as the plate becomes thicker. 

Noting that according to (15) as well as (7) (and for simi

lar temperature profiles), a thicker plate must fracture at 

a smaller temperature difference, we can explain Assur's 

[1963] observation that new fractures in the arctic pack ice 

generally do not form along the lines of weakness, such as 

thin refrozen leads, but run through intact floes and across 

old pressure ridges. From the strength theory, this observa

tion cannot be explained. 

A""ur [1963], however; did not explain his observation by 

thermal stresses; rather, he asserted that these "long-wave 

cracks," as he called them, "form instantaneously, perhaps 

connected with a sudden drop in barometric pressure or as 
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a result of a swell created by a distant storm" [Assur, 1963]. 

This hypothesized explanation, however, has not been ana

lyzed in mechanics terms. 

6. Comparison With Strength Theory 

For the sake of comparison, assume now that the ice plate 

follows the strength theory rather than fracture mechanics. 

Consider that the in-plane force resultant NI/I/ = N in the 

y direction (Figure 1) is non zero and tensile (normally, of 

course, the arctic ice plate is under compression, but tensile 

forces must occur sometimes if openings such as the leads 

should form). Keeping in mind that the thermal strains 

occur in both the x and y directions, and assuming that the 

in-plane force resultants Nrz and N zz in both the transyerse 

horizontal and vertical directions x and z vanish, we find 

that the extreme stress at the tensioned face of the plate is 

0"1 = (Nih) + t::..TaEUI -7) where fl = f(t) and 7 is the 

mean value of the temperature distribution function f(O in 

the cross section. Setting the tensile strength of the sea ice 

material 0"1 = f: and solving for t::..T, we get 

(17) 
1-11 

t::..T;r = aE(h _ f) U; - u) 
N 

u=-
h 

We see that as was mentioned before, this value of the criti

cal temperature difference is independent of the plate thick

ness h, that is, no size effect exists for the strength theory. 

The strength theory, however, could be correct only in the 

sense of plasticity, in which case the strength is described by 

the yield condition. Therefore, equation (17) exhibited., af

ter the attainment of the strength (yield) limit, a long yield 

plateau. But this is not the case for ice. The post-peak 

softening, characteristic of all quasi-brittle materials, causes 

localization of strain-softening (damage) zones, and if no lo

calization limiter is included in the mathematical model, the 

strain-softening damage is predicted to localize into a zone of 

zero volume (a line or surface). This leads to the absurd con

clusion that the failure process would dissipate zero energy 

[see Baiant and Cedolin, 1991, chapter 13, and references 

therein]. Consequently, the strength theory is not a realistic 

model for ice, in general. However, studies of the determin

istic size effect due to energy release [Baiant, 1984; Baiant 

and Kazemi, 1990; Baiant and Cedolin, 1991) revealed that 

the strength theory (or plasticity) should nevertheless pro

vide the correct asymptotic value of nominal strength if the 

structure size approaches zero. 

7. Transition to Fracture Driven 

by In-Plane Forces 

In the foregoing we have tacitly assumed that fracture 

extension causes no release of the energy of the in-plane 

forces in the ice plate, in the manner of tensile cra.cks in a 

plane. Although the handling of a general in-plane stress 

state is easy, let us assume that there is no remote shear 

stress O"zy on the planes parallel to cra.ck direction x. The 

in-plane remote uniform normal stress in direction y normal 

to the crack is u = 7i yy = Nih. The average stress value that 

would cause the cra.ck in an infinite ice plate to propagate 

is, a.ccording to the well-known Westergaard solution [e.g., 

Broek, 1986], 

7i= K, =JEGJ 

Fa lI'a 

(18) 

in which a IS the half length of the crack (Figure Id); Gj 

is the large-scale fracture energy for in-plane through fra.c

ture of the ice plate, which could be much larger than the 

G J value for a crack propagating a.cross the plate thickness 

(bending fra.cture); and K J is the a.ssociated large-scale in

plane fra.cture toughness. Note that the strength according 

to (18) is independent of plate thickness. 

Equation (18) obviously applies when N is tensile. Typi

cally, though, N is compressive, in which case (18) might at 

first seem questionable if the ice behavior is pictured exa.ctly 

as in Figure Ie, which shows no horizontal relative displa.ce

ment v of the fra.cture fa.ces. In reality, displacement v must 

occur not only for tension (Figure 4a) but also for compres

sion (Figures 4b and 4e). The latter case, in theory, implies 

an overlap of the fra.cture fa.ces (Figure 4b), which would of 

course be physically impossible. But in reality, the fracture 

faces are weakened by the micro cracking that has occurred in 

the fracture process zone of thermal fracture. It must there

fore be expected that the fracture faces undergo crushing, 

which is the mechanism leading to pressure ridge build up. 

Alternatively, even if the ice has not been sufficiently weak

ened, the contact of the plate corners pictured in Figure 1 b 

is an unstable situation and the loss of stability must lead to 

the slipping of one plate under the other (rafting), as shown 

in Figure 4c. This again produces a horizontal displacement 

v (although in combination with vertical relative displace

ment of fracture faces, which causes post-thermal-fracture 

bending of the ice plates but not their in-plane behavior, 

and is therefore ignored here). So we conclude that (18) 

applies, at least approximately, even for compression. 

Note that if there were no crushing and no rafting, as 

pictured in Figure Ib, then the compressive force N would 

have the effect of diminishing the energy release since the 

location of N would shift downwards toward the corner point 

(Figure lb). This would cause N to do additional work on 

the horizontal displacement VI = -l1e where 11 is the cross 

section rotation at the fracture face (Figure lb) and e is the 

downward shift (or eccentricity) of force N after fracture 

(Figure Ie). This effect would tend to increase the critical 

v v 
r:r1 

0) --~~~====-_..L-i~~-- _~--
-2v 

-t-t-
b) ....... ~~~~ __ ..x.-d"""" _____ ~ __ --

- ---=-2v 

c) ____ =~~=---==_ =~X~~===-~~~_:===:_=_=== 

d) 

N N 

Fig. 4. Horizontal displacement of fracture faces: (a) opening 

in tension, (b) cnlshing in compression, and (c) rafting in com

pression; and (d) stress relief zone of in-plane forces, viewed from 

top. 
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temperature difference. But it seems unrealistic in view of 

the likelihood of compression crushing or rafting. 

Now consider the size effect. According to (18), 71 ex 

a-1
/
2

• In the plot of log71 versus log a (Figure 3d), equa

tion 18 yields a straight line of slope -1/2, which represents 

the same size effect as for any solution of two- or three

dimensional solution of (LEFM) (by contrast, according to 

a strength criterion or plasticity, 71 would exhibit no size 

effect). In the plot of Figure 3d, thermal bending fracture 

is represented by a horizontal line, since the crack length 

a does not appear in equation (7). Obviously, these two 

straight lines intersect at a certain critical crack length 

(19) 

Now it may be noted that (j is basically controlled by the 

mechanism of ice floe movements in the Arctic Ocean and 

is basically independent of the thermal effects. It follows 

that the fracture formation and growth is driven by thermal 

bending only at the beginning. When the crack becomes 

long enough, namely, 

a> acr (20) 

the thermal stresses must cease to matter and the fracture 

becomes driven by in-plane forces. Steady state propagation 

of thermal bending fracture can go on ad infinitum only 

when the in-plane force happens to vanish, N = 0, which is 

an unlikely situation. For N i= 0, the propagation can be 

only quasi-steady, up to fracture length acr. 

Intuitive understanding of the size effect of a is helped 

by realizing that formation of a crack of length a relieves 

the stress approximately from the triangular zones shaded 

in Figure 4d [Baiant, 1984; Baiant and Cedolin, 1991, chap

ters 12 and 13]. Their combined area is A. = 2ka
2

, where 

k is a constant representing the slope shown in the figure. 

Before fracture, the strain energy density is (j2/2E. The 

total energy release due to formation of a crack of length a 

is W = hA.(j2/2E = 2hka2(j2/2E. The energy release rate 

must be equal to G,h, i.e., 8W/8a = 2hk(j2a/ E = G,h. 

From this, the stress required for crack propagation is (j = 
{EG,/2ka)I/2. This is now seen to coincide with (18) if 

one sets k = 11'/2. 

In words, the reason for the size effect of a is that for 

a longer crack the energy release per unit crack extension 

(Lla = 1) comes from a larger area (the four white strips 

around the triangular zones in Figure 4d). Therefore the 

energy density in this area, and thus also the stress, must be 

smaller, so that the energy release per unit crack extension 

would be the same for any crack length. 

By a similar argument one can also explain why there is no 

size effect of crack length in the thermal bending fracture. 

The zone of (partial) relief of thermal stress is the white 

rectangular zone 1234 in Figure Id (which extends to the 

distance 5/>. to each side of the crack). By contrast to the 

previous case, the size of this zone does not change with the 

crack length (if a is already longer than the length of the 

fracture process zone, 12 in Figure Id). 

8. Spacing of Parallel Cracks 

Consideration of the stress relief zones makes it also possi

ble to estimate the minimum spacing smin of parallel cracks 

in the ice plate. If the stress relief zones of two adjacent 

cracks overlap, the energy release available for driving each 

crack diminishes. So the minimum spacing is roughly given 

by the condition that the stress relief zones of parallel cracks 

do not overlap. Thus we obtain the following two conditions: 

Thermal fracture 

Fracture driven by N 

Smin ::::; 10/>. 

Smin ::::; 2ka = 411'a 

(21) 

(22) 

The former condition will dominate for a short enough crack, 

and the latter condition will dominate for a long enough 

crack. Two parallel thermal cracks may form at their mini

mum spacing, but as they become long enough for the second 

condition to govern, one of them must get arrested and close. 

More likely, though, since the G f values at the location of 

two potential adjacent cracks will differ, because of the ran

domness of ice, the adjacent thermal crack might not form 

at all before the second spacing condition starts to govern, 

and then the spacing can be much larger than the thermal 

Smin already from the beginning. 

Equation (22) can explain why the spacing of new frac

tures in sea ice plates is usually much larger than indicated 

either by the present thermal bending fracture analysis or by 

strength considerations. The latter [Evans, 1971] provided 

the estimate Smin = 200 m, which appears to be much too 

small. 

9. Effect of Large Fracture Process Zone 

and Deviations from LEFM 

It has already been pointed out that the length L, of 

the fracture process zone F in ice is likely to be an order 

of magnitude larger than the size of the dominant material 

inhomogeneities, which are represented by the brine pockets 

and the blocks between adjacent preexisting thermal cracks 

(about 0.5 m). In plate bending there are further influences. 

The plate bending theory is invalid at distances that do not 

exceed at least several times the plate thickness h. Also, 

L, must exceed the length over which the vertical bending 

crack grows across the full thickness of the plate, which is 

again likely to be at least several times the plate thickness. 

Therefore, as a crude, order-of-magnitude estimate, L, ::::; 

10h. 

Much has recently been written about the size effect in 

structures with a large fracture process zone. It impossi

ble to reproduce the detailed arguments (see, for example, 

chapters 12 and 13 in the textbook of Baiantand Cedolin 

[1991]). Suffice it to say that, as a result of crack tip blunt

ing and shielding by the process zone, the size effect must be 

transitional between plasticity and LEFM. This is described 

by the curve in Figure 3b, which replaces the plot in Figure 

3d. The horizontal asymptote in Figure 3a corresponds to 

a solution according to plasticity (strength criterion), and 

the inclined asymptote of slope .. 1/2 to a solution accord

ing to LEFM. Based on the approximate theory explained 

by Baiant and Cedolin [1991], the transitional size effect 

corresponding to this curve is reasonably described by the 

following approximate generalization of equation (18) 

71= j EGf (1 + ~)-1/2 
lI'a do 

(23) 

where do is an empirical constant, whose order of magnitude 

is 10L,. For a > do, this equation becomes identical to (18), 

while for a <: do there is no size effect, as in plasticity. 

One consequence is a decrease in the value of acr, beyond 

which the fracture driven by in-plane forces begins to dom-
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inate. Instead of Figure 3d, this value is obtained as the 

intersection point of the dashed horizontal line for thermal 

fracture with the size effect curve, as shown by the acr value 

shown in Figure 3e. 

Another consequence is a modification of the effect of 

plate thickness h. For a thin enough plate that is not much 

thicker than the size of ice inhomogeneities, there should be 

no size effect. This means that the plot of log t:l.Tcr versus 

log h should look as shown by the curve in Figure 3b. This 

curve asymptotically approaches the straight line of slope 

-3/8 which corresponds to equation (6) or (15). 

A further consequence of a large fracture process zone is 

that the LEFM-based apparent fracture energy required for 

crack growth increases as the crack grows. The law describ

ing this growth is called the R curve. A method to determine 

the R curve from the size effect on maximum loads is a.vail

able [e.g., Baiant and K azemi, 1990]. The transitional size 

effect implies R curve behavior. 

In view of the experience with other heterogeneous mate

rials such as concrete, rock, and ceramics, it is possible that 

the effective value of fracture energy to be used in bending 

fracture analysis is not a constant, as is assumed in LEFM, 

but increases with the plate thickness h until, beginning 

with a certain thickness, a constant asymptotic value G f 

is reached. This increase, which is explained by an increase 

in the fracture process zone size, would cause the size effect 

plot of log t:l.Tcr versus log h to change from a straight line 

of slope -3/8 (equation (7) or (15); Figure 3a) to the curve 

sketched in Figure 3b, asymptotically approaching toward 

the left a horizontal line and toward the right the inclined 

straight line. In analogy to the theory first expounded for 

concrete [Baiant and Cedolin, 1991, chapters 12 and 13], an 

approximate equation for this line may be obtained by re

placing (in equation (7) or (15)) h with h + ho where ho is 

an empirical constant; this transforms (7) into 

This equation approaches (7) when h:> ho. 

10. Effect of Heterogeneity and 

Temperature Profile 

(24) 

Sea ice plates are highly inhomogeneous, not only because 

of their columnar microstructure and presence of voids, brine 

pockets, and larger blocks delineated by weak interfaces 

(such as partially refrozen thermal or other cracks, or just 

layers of weaker ice), but also because the ice properties vary 

through the plate thickness. This variation is of twofold ori

gin: (1) The size of columnar crystals, as well as the size of 

voids or brine pockets, varies with the depth, and (2) the 

temperature, which affects the mechanical properties of sea 

ice to a major extent, varies with the depth and remains 

equal to the water temperature and the bottom of the plate. 

The variation of the elastic properties across the plate thick

ness was not considered in the analysis; however, the present 

analysis remains applicable if the E modulus is interpreted 

as the proper weighted average of the actual values of E 
moduli over the plate thickness. If the relative distribution 

of the E modulus over the thickness is approximately the 

same for various thickness values, then the foregoing con

clusion about the size effect remains true. 

It might also be thought that the vertical shift of neu

tral axis of bending due to inhomogeneity across the plate 

thickness causes the in-plane force N to produce a bending 

moment. In reality, however, such a bending moment can

not exist because the average curvature over long distances 

must remain zero. Thus the in-plane force resultant N must 

coincide with the shifted neutral axis, except near a local 

disturbance, such as that analyzed in this paper. 

The foregoing analysis implies the temperature profiles for 

various plate thicknesses to be similar. That is attainable if 

the prior temperature histories and the times of prior tem

perature exposure scale as the square of the plate thickness. 

The occurrence of such conditions in nature is one chancy 

event among infinitely many. A lack of profile similarity 

would of course engender deviations from the presently de

rived size effect. But, as was already remarked, without 

profile similarity many effects are mingled together with the 

size effect and it is impossible to say what the size effect 

is. It will be necessary to consider similar profiles if the size 

effect should be brought to light. 

11. Effects of Creep and Crack 

Propagation Speed 

The foregoing analysis has neglected creep, which is very 

strong in the case of ice. Owing to heat conduction, the 

temperature changes can occur only over a finite period of 

time, and so creep is always present. 

One effect of creep is to relax thermal stresses. In the 

context of the quasi-elastic analysis performed here, the re

laxation of thermal stress due to creep of ice can be approx

imately taken into account by replacing the value of elastic 

modulus E in equation (4) with the effective (sustained) 

modulus Eeff = E/(1 + 'PI), where E represents the secant 

modulus for rapid (nearly instantaneous) loading (see the 

creep isochrones in Figure 5) and 'PI is the creep coefficient, 

representing the ratio of creep-to-elastic strains for the typ

ical duration t1 of the temperature difference in the plate; 

see Figure 5. Because of the pronounced nonlinearity of the 

creep strain as a function of stress (J" (Figure 5)., the value 

of this ratio varies through the t.hickness of the plate as well 

as along the plate. For the sake of simplicity we assume 

that we can approximately take a certain average value of 

PI, determined as the creep-to-elastic strain ratio for a cer

tain average stress level (J"o; then, with reference to Figure 5, 

'PI = (1/(0 where (0 is the instantaneous strain and (I is the 

creep strain. 

Fig. 5. Creep isochrones of ice and effective moduli for quasi

elastic analysis. 
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Another effect of creep is to reduce the energy release due 
to crack propagation. Let tp be the time that the fracture 
process zone (the oval-shaped zone F in Figure 1d) takes to 
travel across a fixed point (this time is not shorter than the 
time the crack takes to spread vertically through the whole 
thickness of the plate, and is longer the thicker the plate). 
Notin ~ that the value of the cylindrical stiffness D is propor
tional to E, we can take creep approximately into account 
by replacing D in equation (13) with D/(l + 'Pp) where 'Pp 
is the creep coefficient representing the value of the creep
to-elastic strain ratio for the time duration tp (Figure 5). 
Again, owing to nonlinearity of the creep law of ice, this 
ratio varies through the plate thickness and along the plate 
but, for the sake of simplicity, is taken as a constant, evalu
ated for the average stress level 17o. 

One may now retrace the foregoing derivation of equa
tions (7) and (15), replacing E with the effective moduli 
for creep as indicated above. This shows that (7) and (IE,) 
remain valid but the expressions for C1 given in (8) and for 
kl in (16) must be modified as follows: 

(26) 

We see that the creep prior to fracture, which relaxes the 
thermal stresses, tends to increase flTcr, while the creep 
during fracture, which reduces the energy release rate, tends 
to decrease flTcr . The latter effect, however, is (for the same 
amount of creep) milder, due to the exponent ~. 

Now let us discuss the typical magnitudes of the creep 
coefficients. The crack propagation seems to be usually very 
fast [Assur, 1963], with the distance of about a hundred 
meters traversed in perhaps less than a second. Even if it 
is less than an hour, the creep coefficient 'PP is very small 
compared with 1. Therefore one can probably set 'Pp ~ 0 
in most circumstances. This also means that "( is almost 
unaffected by creep. 

On the other hand, the duration of a significant tempera
ture difference across the thickness of the plate is quite long, 
although not more than the duration of the cold s:ason of 
the year. Thus 'PI could be quite large. However, SInce ~he 
energy available to drive the crack propagation declines Wlt~ 
time as the thermal stresses develop and relax, the crack, If 

all t do so right after heat it forms and propagates at ,mus 
conduction spreads the temperature change throughout ~he 
plate thickness and produces a significant th:r~~f~t~:d:no~ 
moment Thus time tl roughly represents t e 
the heat'conduction process acroSS the thick~ekss of th.e pla1~' 

. t' I to the square of thlC ness, I.e., . which IS propor IOna . as several weeks This halftime may perhaps be estImated . f h aI 
for a typichal plate ~hick.~:s:ig~~;c::~h :n~utrha:I:;e~ti:e e:::;ue 
stresseS, t e creep IS qUi , 

f b expected to exceed 1. o 'PI may e t" te has still another effect: The 
The fracture propaga IOn. ra all i the effective 

k gatlOn the sm er s slower the crac propa, 1989] This 
value of the fracture energy, G ~ [e.?, ScfhaPher

y
, I ·b· ation . h and om distnbutlOn 0 t erma VI r 

bond breakage. This effect, however, seems unimportant for 
the present problem because the typical crack propagation 
speed is probably of the same order of magnitude in most 
situations. 

According to equation (25) with (15) or equation (7), 
the critical temperature difference 6.Tcr necessary for crack 
propagation should increase as the duration of development 
and relaxation of the thermal stresses increases. Since this 
duration is longer for a thicker ice plate, 6.Tcr is magnified 
by creep in a thicker plate more than in a thinner one. This 
offsets to some extent the size effect given by h -3/8. 

Indirectly, the creep also affects the transition to nonther
mal fracture propagation driven by in-plane forces. Con
sidering that 'Pp is either negligible or constant, as already 
explained, the value of C1 increases for a longer duration of 
thermal stresses. The result is that. the inclined straight line 
in the size effect plot in Figure 3c is pushed to the right. 
At the same time the value of the critical crack length ac
cording to (19) is basically constant (E in this equation 
needs to be replaced by E/(l + 'Pp) but 'PP ~ 0). Thus for a 
longer duration of thermal stresses, the transition from ther
mal bending fracture to non-thermal in-plane fracture takes 
place at a shorter critical crack length acr (Figure 3f). Fur
thermore, since the thermal stress duration is in a thicker 
plate longer, this indirectly also causes acr to be larger for 
a thicker plane, compared with the elastic solution without 
creep. 

The foregoing approximate consideration of creep is, ad
mittedly, rather crude. A more realistic numerical analysis 
would of course be possible using finite elements and small 
time steps. But such an approach would obscure the basic 
trends and influences that have been brought to light by the 
present simplified analytical solution. 

12. N\ll'T"£ricai Estimates 

To gain some idea of what this theory predicts, consider 
the following typical values of material parameters: e == 9810 
N m -3, V = 0.29, cr = 5 X 10-5·C-1 (according to Weeks and 
Assur [1967J and Butkovich [1957]) (the foregoing a val.ue 
applies only under -10·C; for higher temperatures a va~les 
strongly with temperature and ice salinity and reaches high 
negative values close to the melting point) .. The value of 
the truly instantaneous elastic modulus Eo: Inferred from 
the velocity of high frequency sound waves, IS E~ ~ 7d G;:~ 
For our simplified analysis, however, we need to lD~lu e 
primary (short-time) creep into the apparent elastIC (s:or~ 
time) deformation, which means that w.e ne~d to use ~r aI 

. dIal e obtalDed lD conventIOn the apparent elastIc rno u us v u. . tel E 
static tests in laboratory testing machInes, approXlma ~ 
_ 1 CPa (the same value as used in the thermal crac. ng 
anal sis of Evans [1971]). According to Urabe and Yoshltake 
[198i] Weeks and Mellor [1984], and Sander~on [1988~ p. 
91] w~ will use for fracture toughness of sea Ice the v ue 

MN 
-3/2 The corresponding fracture energy K - 01 m . . I -.' _ K2/E = 10 N m- I (as already pOInted out, value IS G I - If· . lates 

aI ff t · lue for large-scale fracture 0 Ice p the actu e ec lve va 
. ht be rather different, due to the increased process zone mig ·t· b t there are no . d the effect oflarge inhomogenel les, u size an . I' b ed 

IS caused by t e r . I I the fact that the longer 
energies of mol~cules, pa~tlcu ar ~ robability that this en
the stress duratIOn, .the .hlgher th: . for intermolecular 
ergy exceeds the activatIOn energy arner 

test da.ta in this regard and theoretIcal specu atlOns f a;h· 
on micromechanics methods are beyond t~e scope 0 IS 

) Th I 10 N m-I is roughly 100 tImes larger than paper . e va ue 
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the (thermodynamic) surface free energy of ice [Ketcham and 

Hobbs, 1969]. 

To take creep into account, we need to estimate at least 

roughly the average magnitude of thermal stresses. If the 

primary creep is assumed to be approximately included in 

the apparent elastic compliance II E, and if the secondary 

creep is taken into account using Norton's law, the stress

strain relation may be approximately written as 

d{ _ .!. du k 3 

dt - Edt + e
U (27) 

where t is time and ke = Ae-Q/
RT(I_ ';vblvo)-3 [Sander

son, 1988, p. 82], in which Q is activation energy of creep, R 
is gas constant, QIR = 7818 OK, A = 3.5 xl06 MPa-3 

s-l, 

Vo = 0.16, and Vb is the porosity due to brine pockets, which 

we take as Vb = 0.06. Considering temperature -40°C, i.e., 

T = 233°K, we get ke = 161 x10-9 MPa-3 
S-I. 

Suppose now that a dramatic temperature drop of AT 

= 40
0
K occurs over the period l:;;.t = 14 days. According 

to the effective modulus method, the creep value may be 

approximately based on the final stress u. To get its crude 

estimate, we may write for uncracked ice at the top plate 

surface an incremental uniaxial stress-strain relation, 

(28) 

Substituting the aforementioned values and solving this cu

bic equation for u, we get the estimate u = 0.209 MPa, which 

compares well with recent in situ measurements [Johnson 

et al., 1985; Tucker and Perovich, 1991]. The basic equa

tion of the effective modulus method is ( = u I Eeff with 

Eeff = EI(1 + 'r'r) and { = cxl:;;.T. From this we solve 

'r't = (Ecxl:;;.Tlu) - 1 = 8.57:::::: 9. 

To estimate the value of IT, we assume the characteristic 

temperature profile to be a cubic parabola with a zero slope 

at the bottom of the plate, for which one obtains Ir = 3/40. 

As for the value of ho for (24), we neglect it for lack of 

information. So we use (7) with (25), which then yields the 

following estimates (plotted in Figure 6): 

h = 1m 

h =3m 

h=6m 

l:;;.Tcr 

l:;;.Tcr 

= 24.6°K 

= 16.3°K 

l:;;.Tcr = 12.6°K 

(29) 

These values are frequently exceeded by the arctic 

weather. This implies that thermal bending moments are 

indeed capable of causing a bending fracture through tbe 

whole thickness of the ice plate. Because of the simplifying 

hypotheses made and the uncertainty of the input values, 

however, this result is not a proof of the hypothesis of ther

mal bending fracture. A proof would require extensive mea.

surements and some sophisticated computer analysis, such 

as the finite element analysis with a realistic model for the 

material behavior in the fracture process zone. 

The minimal spacing of the through-the-thickness th~rmal 

bending cracks obtained from (21) is Smin = 240 m for h = 1 

m, 316 m for h = 3 m, and 376 m for h = 6 m. These values 

are close to the estimate of Evans [1971] made on the basis 

of strength theory. Note that this spacing is much larger 

than the spacing of the thermal cracks in the surface layer, 

25 ·c 
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Fig. 6. Dependence of the critical temperature difference required 

for thennal bending fracture on the ice plate thickness. 

which is known to be about 0.5 m and occurs independently 

of bending. 

The fracture energy value used above is no doubt only a 

crude guess. Based on the recent intensive studies of other 

quasi-brittle materials such as concrete, rocks, and modern 

toughening ceramics, it is not inconceivable that G j could 

be 1 or 2 orders of magnitude larger than the fracture en

ergy value observed in the laboratory specimens of usual 

&ize. The reason is that the G j value needed for the present 

purposes must lump the fracture energies dissipated by all 

the microcracks across the full width b (Figure 1d) of the 

fracture process zone. In that case the value of l:;;.Tcr would 

be 3 to 10 times larger. Such large temperature differences 

couId not occur in nature, and in that case the present hy

pothesis of thermal bending fracture would be invalidated. 

On the other hand, because the cracks in the fracture 

process zone are likely to pass predominantly through the 

surfaces of weakness, such as the preexisting ~perhaps par

tially refrozen) cracks, voids, and brine pockets, the effective 

G j value could also be about equal to the value measured 

on the laboratory specimens (as we assumed in our calcula

tions), or even substantially less than that. Measurements 

in the Arctic, as well as sophisticated micromechanics mod

eling of sea ice behavior in the fracture process zone, are 

certainly needed to resolve this question. 

For the strength theory, Evans [1971] used the tensile 

strength of the ice plate f: = 0.6 MPa (although for large

scale rupture of ice plates a much smaller value might be 

appropriate). Assuming, for example, that Nih = 0.2 MPa 

(tension), (17) yields l:;;.Tcr = 4.26°K, independently of 

plate thickness. 

As an example of the transition length calculation, con

sider that Gj :::::: 1000G,:::::: 10,000 N m- 1 and Nih = 0.03 

MPa (= 5% of the strength limit). For this case, equa

tion (19) yields acr = 3500 m. But if Gj :::::: G j :::::: 10 N 

m -1, then acr = 3.5 m, in which case the transition to frac

ture dominated by in-plane forces would occur right at the 

beginning (in this case the only possible role of the ther

mal bending fracture would be to trigger the propagation of 

the in-plane fracture; but if at the same time Nih = 0.5% 

of the strength limit, then acr = 350 m, which means that 

the thermal bending would dominate at the beginning of 

propagation). Unfortunately, at present there are order-of-
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magnitude uncertainties about the material properties to use 

as input in these calculations. Further research is needed. 

If we would not want to study size effect, other tem

perature profiles could be examined. Consider for example 

parabolic profiles that are identical in z and have the pene

tration depth of 1 m regardless of h (h ~ 1 m), while AT = 0 

below 1 m depth. For h = 1 m, 3 m, and 5 m, one would 

then get Ir = 1/12, 5/108, and 11/432, respectively. Equa

tion (7) with (25) would then yield ATcr = 22.1 o K, 26.4°K, 

and 37.1°K, respectively. So in this case the thickest plate 

would be the least likely to fracture. But if cooling contin

ues, the temperature profile in the thickest plate will reach 

deeper, bringing this plate closer to the point of fracturing, 

while in the thinnest plate this trend does not happen. 

The last observations suggest another viewpoint: Let us 

consider for each plate thickness such a profile that max

imizes the chance to fracture, i.e., minimizes the value of 

ATcr . According to (7), (8), and (15), this happens when 

IT is maximized. Considering the temperature history to 

be a step function, the temperature profile according to 

the heat conduction equation is approximately parabolic 

up to the penetration depth 8(t), below which AT = OJ 

8(t) = ../12CT t where CT, heat conductivity in ice, is 

constant. Calculating IT for a general 8(t) and setting 

dIr/d8 = 0, we find that the maximum Ir occurs at time t 

when 8(t) = h, i.e., when the cooling front has just reached 

the plate bottom, regardless of thickness h. For that case 

we get IT = 1/12. But this is only slightly more that the 

value 3/40 we considered before. Thus the ATcr-values we 

obtained before are nearly the smallest critical temperature 

drops possible. 

Now an important point to note is that although the most 

critical temperature profiles for plates of various thicknesses 

occur at different times t, they are similar. This is another 

argument in favor of the assumption of similar profiles. It 

is exact, however, only if creep is ignored. If creep is taken 

into account, then (according to (25)) the critical temper.a

ture profile occurs at time t when the value of Ir[8(t)J/'P' is 

maximized, and this no longer yields similar profiles. 

13. Method to Identify Material Parameters 

Having a suitable theory, observations of the formation of 

large fractures on the Arctic Ocean could be exploited for 

obtaining the values of the basic parameters in the present 

model, particularly the fracture energy for large scale frac

ture. This approach, however, can succeed only if the cur

rent ice conditions and their history prior to fracture are 

carefully documented, especially the history of air temper

ature and the history of ice thickness. From such data and 

the known value of thermal conductivity (about 1.15x10-·6 

m2 
8-

1 [Sanderson, 1988]) the histories of temperature pro

files as well as salinity profiles can be deduced by solving the 

appropriate diffusion equations. 

The simplified analytical formulation presented here 

would no doubt be too crude for this purpose (except for 

order-of-magnitude estimates of the fracture energy value). 

It would be necessary to develop a nonlocal finite element 

or boundary element code with step-by-step integration in 

time. Having all the information, and taking creep carefully 

into account (including the effects of time variable stress, 

temperature and salinity at various points of ice), it would 

be possible to calculate with reasonable accuracy the ther

mal stresses that must have existed just before the observed 

fracture formation. Some estimate of the in-plane force N 
just before fracture formation would have to be also made 

(probably by some on-site invasive measures). Then it would 

be possible to calculate the energy release caused by frac

ture formation, from which the effective value of fracture 

energy for the bending fracture mode of an ice plate of real

istic thickness would follow. Of course, a considerable code 

development effort and computer power would be needed for 

such an undertaking. 

14. General Proof of (-3/8) Power 

Size Effect 

Finally, since the thermal fracture can be of finite length 

a and can be curved, it is interesting to examine whether the 

h -3/8 -size effect holds in general. The governing differential 

equation for the two-dimensional deflection surface w( x, y) 

is DV'·w + I2W = O. The plate is infinite, with the boundary 

condition w = 0 at infinities. At the crack faces r, which can 

now be curved, the boundary conditions are DW,nn = MT 

and W,nnn + (1 - V)W,nll = 0, where subscripts following 

a comma denote partial derivatives, and nand t are the 

coordinate axes normal and tangential to the crack face. In

troduce now dimensionless variables ~ = x / L, 1/ = y / Land 

( = w/ L, where L = decay length = (D / 12)1/. = 1/ )..y2, and 

note the transformation of derivatives: a/ax = L -1 a / af., 
etc. Transforming the boundary value problem to these vari

ables, we have the governing partial differential equation 

(30) 

with boundary conditions ( = 0 at infinities, and, at crack 

faces r 0 in dimensionless coordinates: 

On fo (""V + (1 - V)(VTT = 0 (31) 

where v and T are the coordinate axes normal and tangential 

to the crack faces fo in the dimensionless space (~,'1). 

Owing to linearity of (30) and (31), the solution ( is 

proportional to MT. Therefore, it is convenient to define: 

(= F(~, 1/ja) = solution of differential equation (30) for the 

relative crack length a = a/Land for the aforementioned 

boundary conditions except that the first boundary condi

tion in (31) is replaced by ("" = 1. In this boundary value 

problem, there are no physical constants, and so the solu

tion F is independent of size and material properties, and 

depends only on a. Then the solution for the actual bound

ary conditions (31) is 

(32) 

Now, by transformations of coordinates, we have, on the 

crack faces f, (v = F,vMTL/ D, (n = (v/ L, and -0 = W,n = 
L(,v = F,,,MTL/ D = rotation at the crack face about the 

tangential axis T. The total complementary energy release 

due to fracture, II, is equal to the work of the released ther

mal bending moment, as it is reduced to zero, on rotation 

-0, i.e. II = fa ~MT-oda. From this, the energy release per 

unit length of fracture, all/aa = tMT-o = G,h. Substitut

ing now the foregoing expression for -0, solving the resulting 
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equation for MT, and expressing MT in terms of ATcr (equa

tion (5», and Land D in terms of h, we obtain the following 

result, in which Cl is the same as in equation (8); 

(33) 
2 l/~ (1 )3 / 8 

ATcr = - 1/ C
l 

h -3/8 

..jF,,,,(€,1];a) 

This proves in general that thermal bending fracture of 

floating ice plate exhibits a (-3/8)-power size effect, pro

vided that either F is independent of the crack length (as in 

our previous problem) or the crack length a is proportional 

to the decay length L (rather than to thickness h). The last 

condition ought to be satisfied at least asymptotically for 

h -+ 00. Indeed, if it were not satisfied, a would be propor

tional to U where q =I 1; but then the crack length could 

become either much larger or much smaller then than the 

decay length L, both of which are implausible (unless F is 

independent of a, as in our problem). 

It is interesting to express the size effect in terms of the 

decay length L. Because h 0:: L~/3, equation (33) implies 

that 

ATcr 0:: L-1
/

2 
(34) 

Thus in terms of the decay length of the floating plate, we 

have the standard size effect of linear elastic fracture me

chanics. In the case of cracks of finite length, this size effect 

is again applicable only to cracks whose length is propor

tional to L, not h. This simple conclusion is not surprising 

since the plate problem is two-dimensional, and, in the plane 

(x, y), length L is the only characteristic length present in 

the problem (h enters only indirectly, through D). 

15. Conclusions 

1. Quasi-elastic analysis based on plate bending theory in

dicates that release of the bending energy of the plate with a 

thermal gradient could possibly be the cause of the sudden 

formation of long, through-the-thickness fractures in Arc

tic plate ice, cutting through thick intact portions of ice 

floes. However, because of crude simplifying hypotheses of 

the analysis, as well as the uncertainty of the large-scale ma

terial properties required as the input, the analysis does not 

prove that this is actually the case. 

2. If steady state propagation of through-the-thickness 

thermal bending fracture along a sea ice plate indeed takes 

place, it must exhibit a size effect, such that the critical tem

perature difference between the top and bottom of the plate 

causing fracture propagation decreases with an increasin,; 

plate thickness. 

3. For the case that the in-plane normal force is negligible, 

linear elastic fracture mechanics shows that the critical tem

perature difference required to produce the thermal bending 

fracture (if it exists) is proportional to (thickness)-3 /8. 

4. For the case that the in-plane forces are significant, 

fracture mechanics shows that, beyond a certain critical 

crack length, the thermally driven bending fracture (if it ex

ists) must change to a planar (nonflexural) fracture driven 

by the release of the energy of the in-plane forces (generated 

by wind and ocean currents) rather than the energy of the 

thermal stresses. 

5. The effect of creep is to increase the critical tempera

ture difference required to produce the bending fracture (if it 

exists), as well as the critical crack length for the transition 

to in-plane fracture. 

6. The presently advanced hypothesis of thermal bending 

fracture cannot be proven or disproven without new types 

of experiments and measurements in the Arctic and their 

computer modeling. 
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