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Abstract

Background: Histopathology image analysis is a gold standard for cancer recognition and diagnosis. Automatic

analysis of histopathology images can help pathologists diagnose tumor and cancer subtypes, alleviating the

workload of pathologists. There are two basic types of tasks in digital histopathology image analysis: image

classification and image segmentation. Typical problems with histopathology images that hamper automatic analysis

include complex clinical representations, limited quantities of training images in a dataset, and the extremely large

size of singular images (usually up to gigapixels). The property of extremely large size for a single image also makes a

histopathology image dataset be considered large-scale, even if the number of images in the dataset is limited.

Results: In this paper, we propose leveraging deep convolutional neural network (CNN) activation features to

perform classification, segmentation and visualization in large-scale tissue histopathology images. Our framework

transfers features extracted from CNNs trained by a large natural image database, ImageNet, to histopathology

images. We also explore the characteristics of CNN features by visualizing the response of individual neuron

components in the last hidden layer. Some of these characteristics reveal biological insights that have been verified by

pathologists. According to our experiments, the framework proposed has shown state-of-the-art performance on a

brain tumor dataset from the MICCAI 2014 Brain Tumor Digital Pathology Challenge and a colon cancer

histopathology image dataset.

Conclusions: The framework proposed is a simple, efficient and effective system for histopathology image automatic

analysis. We successfully transfer ImageNet knowledge as deep convolutional activation features to the classification

and segmentation of histopathology images with little training data. CNN features are significantly more powerful

than expert-designed features.

Keywords: Deep convolution activation feature, Deep learning, Feature learning, Segmentation, Classification

Background
Histopathology image analysis is a gold standard for can-

cer recognition and diagnosis [1, 2]. Digital histopathology

image analysis can help pathologists diagnose tumor and

cancer subtypes, and alleviate the workload of pathol-

ogists. There are two basic types of tasks in digital

histopathology image analysis: image classification and
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image segmentation. In the classification task, the algo-

rithm takes a whole slide histopathology image as input,

and outputs the label of the input image. Possible labels

are pre-defined, and they can be certain types of can-

cer or normal. In segmentation, the algorithm takes part

of a histopathology image as input, and segments the

region in the input image with certain characteristics.

In both tasks, a set of training data with ground truth

labels and annotations is given. In this paper, we develop

a common framework for all these relevant histopathol-

ogy problems such as classification and segmentation, and

a visualization approach to explore the characteristics of
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deep convolutional activation features which reveal key

biological insights.

There are 3 main challenges in automatic analysis of

digital histopathology images: the complexity of the clin-

ical feature representation, the insufficient number of

training images, and the extremely large size of a single

histopathology image.

The first challenge reflects the difficulty in represent-

ing complicated clinical features. Feature representation

plays an important role in medical image analysis [3, 4].

Histopathology of different cancer types can exhibit dra-

matically diverse morphology, scale, texture and color

distributions, whichmakes it difficult to find a general pat-

tern for tumor detection that can be applied to both brain

and colon cancer. Therefore, feature representation [5]

is very important in high-level medical image tasks such

as classification and segmentation. Many previous works

have focused on feature design, such as object-like [6, 7]

and texture features [8, 9]. However, the specificity of their

designs limits the application to a fixed image source.

Another major concern is the insufficient amount of

training data in the medical images domain. The fact

that a medical image dataset usually has a much smaller

size than a natural scene image dataset makes the direct

application ofmany previousmachine learning algorithms

inappropriate for medical image datasets. Two factors

make collectingmedical images costly. One is the low inci-

dence of the studied disease. The low frequency of the

studied disease has made the collection process harder

since the number of images depends on the number of

disease incidences. The other is the extensive amount

of demanded labor for manual data annotation, since

detailed manual annotation of medical images usually

requires a great deal of effort. Moreover, since many clin-

ical clues are hard to quantify, manual annotation is also

intrinsically ambiguous, even if labeled by clinical experts.

Last problem, the enormous size of individual

histopathology images, makes the histopathology image

dataset considered large-scale; and increases the com-

putation complexity, thus making image analysis more

challenging. One typical whole histopathology section

can be scanned to yield an image of a size larger than

100, 000 × 100, 000 pixels and containing more than 1

million descriptive objects. Usually, 12 to 20 scanned

images will be made for each patient under the patho-

logical section process. Due to the inherent large-scale

property of a histopathology image dataset, the feature

extraction model needs to be both time and memory

efficient, and the learning algorithm should be designed

to be able to extract as much information as possible from

these large images.

Problems mentioned above exist in all tasks of

automatic histopathology image analysis. Beyond that,

classification and segmentation tasks also face some

specific challenges. In classification, subtle distinctions

between different cancer sub-types require features to be

highly expressive. And the fact of unbalanced instances

of different sub-types also handicap the classifiers. In the

segmentation task, the definition of regions need to be

segmented might be opaque, which makes the ground

truth annotated by multiple pathologists slightly differ-

ent. This ambiguity property becomes a challenge in the

design of segmentation frameworks.

With the advent of deep convolutional neural network

(CNN), CNN activation features have recently achieved

tremendous successes in computer vision [10–16]. The

emergence of large visual databases such as ImageNet,

including more than 10 million images and more than

20,000 classes [17], enables CNNs to provide rich

and diverse feature description from general images.

Responses of CNN hidden layers provide different levels

of image abstraction and can be used to extract complex

features like human faces and natural scenes. It makes

extracting sufficient information from medical images

possible. Therefore, in this paper, we study the potentials

of ImageNet knowledge via deep convolutional activation

to extract features for the classification and segmentation

of histopathology images.

Although CNN itself is capable of image classification

[14] and segmentation [18], the extremely large size of a

single histopathology image makes it unrealistic to per-

form classification or segmentation with CNN directly.

On the one hand, it is not practical to construct a CNN

with a very large input size. On the other hand, down-

scaling the entire histopathology image to an acceptable

size for CNN will lose too much detail information, which

makes it impossible to recognize, even for pathologists.

Based on this fact, both our classification and segmen-

tation frameworks adopt a patch sampling technique to

leverage CNN activation features of much smaller local

patches, such that essential local details will be preserved.

Different strategies are then adopted for final results. In

the classification framework, feature pooling is used to

construct features for all slide images. In the segmentation

framework, classification is performed at the patch level

and the results are used to construct image-wide segmen-

tation. Smaller patch size and smoothing are used to make

the boundaries more accurate.

In order to make CNN activation features more suitable

for histopathology images, we also fine-tune the ImageNet

model to learn more subtle and insightful features that

capture complex clinical representatives. In our experi-

ments, fine-tuned CNNmodels can reach better accuracy

on both classification and segmentation tasks.

Moreover, we explore the characteristics of the CNN

activation features by visualizing individual components

of the 4096-dimensional feature vector in histopathology

image classification. Heatmaps of patch confidence for
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each image and discriminative patches with individual

neurons of the CNN activation features are computed.

Heatmaps explain which patches or regions provide

strong responses that make their image fall into the

corresponding category, and patches that represent the

individual neuron response help us understand what char-

acteristics these responses have from the perspective of

each classifier. Through this visualization analysis, we dis-

cover some relationships between clinical knowledge and

our approach’s responses.

In this paper, we propose a simple, efficient, and effec-

tive method using CNN activation features applied to

classification and segmentation of histopathology images.

From the experiments, our framework achieves good per-

formance in two dataset. The advantages of our frame-

work include:

1. The ability to transfer powerful CNN features of

ImageNet to histopathology images, which solves the

problem of limited amount of training data in

histopathology image datasets;

2. The adoption of patch sampling and pooling

techniques to leverage local descriptive CNN

features, which makes the whole framework scalable

and efficient on extremely large whole slide

histopathology images;

3. The unified framework on two different cancer types,

which indicates the simplicity and effectiveness of

our approach.

We make two contributions to the field of automatic

analysis of histopathology images:

1. A general-purpose solution to histopathology

problems on extremely large histopathology images,

which proves effective and efficient on two different

types of cancers;

2. A visualization strategy that reveals the features

learned by our framework have biological insights

and proves the capability of CNN activation features

in representing complex clinical characteristics.

An earlier conference version of our approach was pre-

sented by Xu et al. [19]. In this paper, we further illustrate

that: (1) the framework methods can be applied to ana-

lyzing tissue types other than brain tumor, such as colon

cancer; (2) fine-tuned features based on the ImageNet

model are added; (3) heatmaps are introduced to explore

which patches or regions provide strong responses in

one image in the classification task, accompanying the

previous visualization of individual neural responses.

Related work

In recent years, usage of digital histopathology has

exhibited tremendous growth. Researchers have been

attempting to replace optical microscope with digital

histopathology as the primary tool used by pathologists.

Various replacement approaches are studied in [20–23].

Under the trend of adopting digital histopathology, sev-

eral competitions have been held to boost the tumor

histopathology research community, including the ICPR

2012 Mitosis Detection Competition [24], the MICCAI

2013 Grand Challenge on Mitosis Detection [25], the

MICCAI 2014 Brain Tumor Digital Pathology Challenge

[26], and the MICCAI 2015 Gland Segmentation Chal-

lenge Contest [27]. Our proposed framework achieved

first place results in both classification and segmenta-

tion at the MICCAI 2014 Brain Tumor Digital Pathology

Challenge [28].

Feature representation design is a prominent direction

relating to histopathology images. Manually designed fea-

tures include fractal features [29], morphometric features

[30], textural features [31], and object-like features [32].

Kalkan [33, 34] exploits textural and structural features

from patch-level images and proposes a two-level classi-

fication scheme to distinguish between cancer and non-

cancer in colon cancer. Chang [35] proposes sparse tissue

morphometric features at various locations and scales to

distinguish tumor, necrosis, and transition to necrosis for

the GBM dataset and tumor, normal, and stromal for the

KRIC dataset. Due to the large amount of data, Chang also

uses spatial pyramid matching to represent multi scale

features. Rashid [36] designs two special gland features

to describe benign and malignant glands in prostatic ade-

nocarcinoma. The two features are the number of nuclei

layers and the ratio of the epithelial layer area to the lumen

area. Song [37] transforms the images with learning-based

filters to obtain more representative feature descriptors.

Sparks [38] proposes a set of novel explicit shape fea-

tures to distinguish subtle shape differences between

prostate glands of intermediate Gleason grades on

prostate cancer. Sos Agaian [39] introduces new features

for tissue description such as hyper-complex wavelet

analysis, quaternion color ratios, and modified local

patterns.

However, the major issue with these approaches is the

difficulty in choosing discriminant features to represent

clinical characteristics. Study [40] has also shown that fea-

tures learned by a two-layer network are more powerful

than manually designed representations of histopathology

images. Nayak [41] explores sparse feature learning utiliz-

ing the restricted Boltzmann machine (RBM) to describe

histopathology features in clear cell kidney carcinoma

(KIRC) and GBM. These studies have shown that feature

learning is superior to special feature designs. But there is

a universal challenge in feature learning that the amount

of training data is limited in many cases. In our case, only

a few training images are available for classification and

segmentation.



Xu et al. BMC Bioinformatics  (2017) 18:281 Page 4 of 17

Using deep CNN features as generic representations is

a growing trend in many medical image tasks. Some pub-

licly available deep CNN models are utilized to extract

features: Caffe [42] is exploited in a number of works

[10, 11, 42] and OverFeat [43] is used by [16]. These

features are commonly used in classification and object

detection tasks [10, 11, 16, 42]. However, these studies

only focus on natural images.

Powerful CNN is not only capable of performing classi-

fication, but also able to learn features, and several studies

directly utilize this property of CNN on histopathology

image analysis. Ciresan [24] modifies a traditional CNN

into a deep max-pooling CNN to detect mitosis in breast

histology images. The detection problem is cast as pixel

classification. Information from a patch centered on the

pixel is used as context. Their approach has won the first

place in the ICPR 2012mitosis detection competition. The

training set only includes 5 different biopsy H&S stained

slides containing about 300 total mitosis events. Cruz-Roa

[44] presents a novel deep learning architecture for auto-

mated basal cell carcinoma cancer detection. The training

set contains 1,417 images from 308 regions of interest of

skin histopathology slides. In contrast, ImageNet [17] is

comprised of around 14 million images, which is much

larger than datasets of histopathology images. Based on

our survey on feature design and feature learning, we

decided to adopt CNN features trained by ImageNet to

describe discriminative textures in histopathology images

of brain tumor and colon cancers.

Fine-tuning is an important step in CNN learning. It

maintains the original network architecture and treats the

trained CNN as an initialization. After fine-tuning train-

ing, the new model can learn more subtle representations

to describe new targeted tasks. Ross [45] proposes object

detection using fine-tuning to improve 10% points from

44.7% (R-CNN fc7) to 54.2% (R-CNN fine-tuned fc7) in

the VOC 2007 test. Zhang [46] presents a fine-grained

classification. The accuracy improves from 68.07% using

pre-trained CNN features to 76.34% using fine-tuned fea-

tures. These studies demonstrate that fine-tuning is effec-

tive and efficient. In our case, on the basis of pre-trained

CNN features, we implement the fine-tuning step to learn

more subtle representations for histopathology images.

In addition to feature representations, histopathology

image analysis also involves classification schemes. Xu

[47, 48] introduce a novel model called multiple clustered

instance learning to perform histopathology cancer image

classification, segmentation, and clustering. Furthermore,

Xu [49] presents context-constrained multiple instance

learning to adopt segmentation. Gorelick [50] proposes a

two-stage AdaBoost-based classification. The first stage

recognizes tissue components and the second stage uses

the recognized tissue components to classify cancerous

versus noncancerous, and high-grade versus low-grade

cancer. Kandemir [51] introduces a probabilistic classifier

that combines multiple instance learning and relational

learning to classify cancerous versus noncancerous. The

classifier exploits image-level information and alteration

in cell formations under different cancer states. Kalkan

[33] proposes a two-stage classification. The first stage

classifies patches into possible categories (adenomatous,

inflamed, cancer and normal). The second stage uses the

results from the first stage as features. Finally a logistic lin-

ear classifier recognizes cancerous versus noncancerous.

In our case, a linear SVM classifier is used in consideration

of its simplicity and speediness.

In classification, the inputs used are usually the

resized original image [14]. The extracted CNN fea-

tures are directly used as the last features to classify

categories. There are some different methods in [14].

Sharif Razavian et al. [16] extracts 16 patches that include

an original image, five crops (four corners and one center

of 4/9 of the original image area), and two rotations and

their mirrors. The CNN features are extracted when the

16 patches are used as the inputs. After that, the authors

[16] take the sum of all the responses of the last layer as the

final features. Gong et al. [11] samples patches in multi-

scale levels, with a stride of 32 pixels. Multi-scale order-

less pooling of deep convolutional activation features are

extracted. Then the authors [11] aggregate local patch

responses via vectors of locally aggregated descriptions

(VLAD) encoding. In our method, inspired by [52] and

the observation that histopathology images are extremely

large up to the gigapixel size of an image, we use patch

samplings to generate many patches to protect detailed

local information and use feature pooling to aggregate the

patch-level CNN features into the last features.

Histopathology image analysis is used in a wide range

of research. Khan [53] proposes a nonlinear mapping

approach to normalize staining. Image-specific color

deconvolution is applied to tackle color variation when

different tissue preparation, stain reactivity, user or proto-

col, and scanners from different manufacturers are used.

Zhu [54] proposes a novel batch-mode active learning

method to solve the challenges of annotation in scal-

able histopathological image analysis. Feature selection

and feature reduction schemes [38, 55] are also important

steps in histopathology image analysis.

Methods

CNN architecture

AlexNet [14] is a simple and common deep convolutional

neural networks and can still achieve competitive per-

formances in classification compared with other kinds of

networks. Therefore, AlexNet architecture is used in our

case. The CNN model we use in this paper is shared by

the CognitiveVision team at ImageNet LSVRC 2013 [13]

and its architecture is described in Table 1. It is analogous
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Table 1 The CNN architecture

Layer Dimension Kernel size Stride Details

input 224 × 224 × 3 - - RGB channels

conv1 55 × 55 × 96 11 4 -

pool1 27 × 27 × 96 3 2 Max pooling

conv2 27 × 27 × 256 5 1 -

pool2 13 × 13 × 256 3 2 Max pooling

conv3 13 × 13 × 384 3 1 -

conv4 13 × 13 × 384 3 1 -

conv5 13 × 13 × 256 3 1 -

pool3 6 × 6 × 256 3 2 Max pooling

fc1 4096 - - -

fc2 4096 - - -

to the one used in [14], but without the GPU split, since a

single modern GPU has sufficient memory for the whole

model. This model was trained on the entire ImageNet

dataset. Thus it is little different from what the Cogni-

tiveVision team used at ILSVRC 2013. The code used for

training and extracting features is based on [14]. In the

training step, we use the data pre-processing and data

augmentation methods introduced in [14], transforming

input images of various resolutions into 224×224. During

feature extraction, input image is resized to 224×224 pix-

els and fed to the network. The output of the fc2 layer is

used as an extracted feature vector.

Classification framework

The enormous size of the histopathology images makes

it imperitive to extract features locally. Hence, each

histopathology image is divided into a set of overlapping

square patches with a size of 336×336 pixels for 20×

magnification and 672×672 pixels for 40× magnification

scale (they are both 151,872×151,872 nm2). The patches

form a rectangular grid with 64-pixel stride, i.e., distance

between adjacent patches. To further reduce the number

of patches, we discard patches with only a white back-

ground, whose RGB values of all pixels are greater than

200. All selected patches are then resized to 224×224 pix-

els and fed into the network to obtain 4096-dimensional

CNN feature vectors. The final feature vector of an image

is computed over P-norm pooling. P-norm pooling, also

known as softmax pooling, amplifies signals from a few

patches, which is computed by

fP(v) =

(

1

N

N
∑

i=1

vPi

)

1

P
, (1)

where N is the number of patches for an image, and vi is

the i-th patch feature vector. In our framework, P = 3

(3-norm pooling) is used.

Moreover, in order to form a subset of more discrim-

inative features and to exclude redundant or irrelevant

features, feature selection is used in binary classification.

Features are selected based on the differences between

positive and negative labels. The difference of the k-th

feature diffk is computed by

diffk =

∣

∣

∣

∣

∣

∣

1

Npos

∑

i∈pos

vi,k −
1

Nneg

∑

i∈neg

vi,k

∣

∣

∣

∣

∣

∣

, (2)

where k = 1, . . . , 4096, Npos, and Nneg are the number of

positive and negative images in the training set, and vi,k
is the k-th dimensional feature of the i-th image. Feature

components are then ranked from largest diffk to small-

est, and the top 100 feature components are selected. For

multiclass classification, no feature selection is used.

Finally, a linear Support Vector Machine (SVM) is used.

In multiclass classification, one-vs-rest classification is

used. Figure 1 shows the workflow of our classification

framework.

Segmentation framework

Medical image segmentation methods can be generally

classified into three categories: supervised learning [29],

weakly supervised [48] and unsupervised [32]. A super-

vised learning method can be used only if labelled data are

available. Otherwise, other approaches (i.e. unsupervised

methods) are needed. Since we have labelled training data,

we propose a supervised learning framework for segmen-

tation. In our framework, we reframe the segmentation

problem as a classification one by performing classifica-

tion on a collection of patches. Figure 2 illustrates the

workflow of our segmentation framework.

Similar to the aforementioned classification framework,

patches are sampled on a rectangular grid of 112×112

pixel patches in 8-pixel stride. 112×112 pixel patches are

resized to 224×224 pixels to obtain their CNN feature

vectors. A linear SVM is trained to classify all patches

as positive or negative. Since a pixel can be covered by

many overlapping patches with different labels, the final

label for each pixel is decided by the majority vote of the

patches covering this pixel. Since pixel-based voting pro-

vides many tiny positive or negative regions that lack bio-

logical meaning, we utilize several smoothing techniques

to reduce region fractions. Small positive and negative

regions with an area less than 5% of the full image size are

removed.

In the MICCAI challenge, we further made two modifi-

cations to the training data for the final submitted model.

1. We observe that hemorrhage tissues appear in both

non-necrosis and necrosis regions. Hence, we
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Fig. 1 The classification workflow. First, square patches of 336 or 672 pixels in size are sampled on a rectangular grid, depending on themagnification

scale of the image. Patches are then resized to 224 pixels in size as the input of our CNN model. A 4096-dimensional feature vector is extracted from

the CNN model for each patch. A 100-dimensional feature is obtained by feature pooling and feature selection for each image. Finally, a linear SVM

classifies the selected features. The figure shows a binary classification, where the positive (blue and orange) and negative (green) are GBM and LGG

in brain tumor, cancer and normal in colon cancer respectively. In multiclass classification, a full feature vector of 4096 dimensions is used

manually relabel hemorrhage patches in the necrosis

regions as non-necrosis patches. This results in

misclassification of hemorrhage patches at test time

in the prediction stage, but since those patches are

usually in the interior of the necrosis region, such

errors can be corrected by the post-processing.

2. We observe that training images are non-uniform

and have various sizes. Additionally, the training data

is not evenly distributed. In the final model for

submission, we augment the instances of missed

regions and false regions generated by leave-one-out

cross-validation on the training data.

Dataset

We benchmark our classification framework and segmen-

tation framework on two histopathology image datasets:

the MICCAI 2014 Brain Tumor Digital Pathology Chal-

lenge and a colon cancer dataset. To illustrate the advan-

tages of our frameworks, we also benchmark other

approaches and other types of features on the same

datasets.

For the MICCAI challenge [26], digital histopathology

image data of brain tumors are provided by the orga-

nizers. In classification (sub-challenge I), the target is to

distinguish images of glioblastomamultiforme (GBM) and

Fig. 2 The segmentation workflow. Similar to classification workflow, square patches of 112 pixels in size are sampled on a rectangular grid with

8-pixel stride. Each patch is assigned a positive (orange) or negative (blue) label, which are necrosis vs. non-necrosis in brain tumor, and cancer vs.

normal in colon cancer, respectively. In training phase, a patch is labelled positive if its overlap ratio with annotated segmented region is larger than

0.6. Patches are then resized and a 4096-dimensional feature vector is extracted from our CNN model. A linear SVM classifier is used to distinguish

negative from positive patches. Probability mapping images are yielded utilizing all predicted confidence scores. After smoothing, positive

segmentations are obtained
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low grade glioma (LGG) cancer. The training set has 22

LGG images and 23 GBM images, and the testing set has

40 images. In segmentation (sub-challenge II), the goal

was to separate necrosis and non-necrosis regions from

GBMhistopathology images, since necrosis is a significant

cue for distinguishing LGG from GBM. The training

set included 35 images and the testing set includes 21

images. The image resolutions are either 502 nm/pixel or

226 nm/pixel, corresponding to 20× and 40× source lens

magnification, respectively.

For colon cancer, H&E stained histopathology images

are provided by the Department of Pathology of Zhejiang

University in China and are scanned by the NanoZoomer

slide scanner from Hamamatsu. Regions containing typ-

ical cancer subtype features are cropped and selected

following the review process by three histopathologists,

in which two pathologists independently provide their

results and the third pathologist merge and resolve con-

flicts in their annotations. A total of 717 cropped regions

were used as our dataset, with a maximum scale of

8.51×5.66 mm and average size 5.10 mm2. All images are

of 40× magnification scale, i.e. 226 nm/pixel. 355 can-

cer and 362 normal images are used for binary tasks. For

multiclass classification, there are 362 normal (N), 154

adenocarcinoma (AC), 44 mucinous carcinoma (MC), 50

serrated carcinoma (SC), 38 papillary carcinoma (PC),

and 45 cribriform comedo-type adenocarcinoma (CCTA)

images (a total of 693 images that were used). 24 cancer

images are disregarded inmulticlass classification because

there are too few instances in their cancer categories. Half

of the images are selected as the training data and other

images are used as testing data. The proportion of each

cancer subtype in the testing data are the same as the

full dataset. In the segmentation task, 150 training and

150 testing images are selected from the dataset. They are

resized to a 10× magnification scale (904 nm/pixel) and

then cropped to 1,280×800 pixels. This is the same setting

used in [32] for their algorithm GraphRLM. The segmen-

tation ground truth of colon cancer images was annotated

by pathologists, following the same review process men-

tioned before.

Experiment settings

Classification

To illustrate the advantages of CNN features, we com-

pare CNN features with manual features (that have fixed

extraction algorithms) within our proposed framework.

Only the feature extraction step in the framework is mod-

ified. In our experiments, generic object recognition fea-

tures including SIFT, LBP, and L*a*b color histogram are

adopted (following settings in [48]), concatenating into a

total of 186 feature dimensions. This approach is denoted

by SVM-MF, and our proposed framework using CNN

features is denoted by SVM-CNN.

To show the effectiveness of patch sampling, we com-

pare our framework with the approach that uses CNN fea-

tures directly, without patch sampling. In this approach,

the full histopathology image was resized to 224×224 pix-

els and fed to CNN to extract the image-level features.

Then a linear SVM was used to perform classification.

This approach is denoted by SVM-IMG.

Furthermore, we compare our classification framework

with previous approaches Multiple Clustered Instance

Learning (MCIL) [48] and Discriminative Data Transfor-

mation [37]. They are denoted by MCIL and TRANS,

respectively. In MCIL, the patch extraction setting is the

same as our approach. The softmax function here was the

GMmodel and the weak classifier was the Gaussian func-

tion. The parameters of the algorithm are the same as

described in the original study. InTRANS, learning-based

filters are applied to original images and feature descrip-

tors [37]. We follow settings in their original work (image

filters of size X = 3, 5, 7 and feature filter of size Y = 5)

and use a linear SVM as the classifier.

In all approaches a linear SVM (SVM-IMG, SVM-MF,

SVM-CNN and TRANS), L2-regularized SVM with lin-

ear kernel function is adopted in experiments, whose

cost function is 1
2w

Tw + C
∑l

i=1(max(0, 1 − yiw
Txi)).

Open-source toolbox LIBLINEAR [56] is used to opti-

mize SVM. The value of parameter C was chosen from

{0.01, 0.1, 1, 10, 100} and the optimal value is determined

by cross-validation on training data.

Segmentation

Similar to classification, we compare CNN features with

manual features. Settings of manual features are the same

as classification experiments. This approach is denoted

by SVM-MF, and our proposed framework using CNN

features is denoted by SVM-CNN.

To further improve segmentation results, the CNN

model trained by ImageNet is fine-tuned on histopathol-

ogy images to explore features more suitable for this task.

In our experiments, we replace the CNN’s ImageNet-

specific 1000-way classification layer with a randomly

initialized 2-way classification layer. The CNN architec-

ture remains unchanged. We start a stochastic gradient

descent (SGD) at a learning rate of 0.0001. The learn-

ing rate is used in the unmodified layers, which is one

tenth of the initial pre-training rate on ImageNet.We train

the CNN model for 20 epochs, and the learning rate is

not dropped during the training process. Besides features

being extracted from the fine-tuned CNN model, other

steps of the segmentation framework do not change. This

approach is denoted by SVM-FT.

In addition, we compare our segmentation frame-

work with a previous approach GraphRLM [32]. Since

both ours and their original dataset are colon cancer

datasets at same magnification scale, the parameters in
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our experiment are set the same as given in their publica-

tion: rmin = 8, rstrel = 2, winsize = 96, distthr = 1.25, and

compthr = 100. This approach is denoted by GraphRLM.

The settings of linear SVM are the same as classification

experiments.

Evaluation

For classification tasks, accuracy is used as the evaluation

score. For segmentation tasks, the evaluation follows the

rule provided by the organizers of the MICCAI challenge,

which computes the average of every image’s ratio of over-

lapping area size over a total involved area size of ground

truth and results predicted by the algorithm. The compu-

tation of a score is as follows. A mapping defines a set of

pixels of image i that are assigned to a positive label. Let

the ground truth mapping of the segmentation of image i

be Gi and the mapping generated by the algorithm be Pi.

The score for image i, Si, is computed as

Si =
2 |Pi ∩ Gi|

|Pi ∪ Gi|
, i = 1, . . . ,K , (3)

where K is the number of total images. The evaluation

score (called accuracy) is the average of Si.

For brain tumor tasks, since the organizers of the MIC-

CAI challenge did not provide ground truth labels and

annotations of testing data, we use 5-fold cross-validation

for classification and leave-one-out cross-validation for

segmentation in our experiments. Also, the modifica-

tions mentioned in Section 2.3 do not apply in our own

cross-validation experiments.

Results and discussion

Classification results

In the MICCAI challenge, our final submission of clas-

sification task achieved 97.5% accuracy on the testing

data, ranking first place among other participants. Table 2

shows the results of some of the top-performing meth-

ods provided on the submission website [28]. Our results

are satisfying and the difference between our performance

and the second-place team’s is up to 7.5%, which proves

that our method can achieve state-of-art accuracy, even

given a relatively small data size, with the help of Ima-

geNet.

We compare our method with state-of-art methods

in training data from the MICCAI challenge. Table 3

Table 2 Classification performance in the MICCAI challenge

Accuracy Place

Anne Martel 75.0% 4th

Hang Chang [30] 85.0% 3rd

Jocelyn Barker 90.0% 2nd

Our method [19] 97.5% 1st

Table 3 Classification performance using cross-validation in

training data from the MICCAI challenge

Accuracy

Hang Chang [30] 85.83%

Our method [19] 97.8%

Jocelyn Barker [57] 100.0%

summarizes the performances of some of state-of-art

approaches. Our results are good compared with other

methods. The method [57] uses two-stage, coarse-to-fine

profiling which significantly reduces computation time,

slower than would be desired for any real-time appli-

cation. We use NVIDIA K20 GPU to train our model.

Average necrosis and non-necrosis pixels of an image for

the challenge are 1,330,000 and 2,900,000 respectively. At

test time, the average computation time for predicting

segmentation of an entire image using our slide windows

approach is second scale on this GPU.

Adding our colon dataset and multiclass classification

scenario, we compare several methods on both the brain

tumor and colon cancer datasets. The performances are

summarized in Table 4. MCIL is excluded from the mul-

ticlass classification comparison due to the limitations of

the algorithm. In all cases, ourmethod (SVM-CNN) yields

statistically significant results.

For brain tumor classification of the GBM and LGG sub-

type, CNN features are much more powerful than manual

features (MF) and yields 20.0% improvement in perfor-

mance. Compared with MCIL and TRANS, our proposed

framework is 6.7% and 9.1% better, respectively.

For colon cancer binary classification, while our method

yields the highest performance similar to the results in

brain tumor, all methods achieve at least 90% accuracy.

In the multiclass scenario, only our method achieves

accuracy over 80%. Compared with other approaches,

SVM-CNN beats SVM-IMG when using the full image

directly by 8.2% and beats SVM-MF that uses hard-coded

manual features by 11.6%. Surprisingly, in colon cancer,

SVM-IMG performs better than SVM-MF by about 4%.

In binary classification, both MCIL and SVM-CNN

achieve significantly better performance than other meth-

ods. Since MCIL is a multiple instance learning based

algorithm, while our framework adopts the feature pool-

ing technique, which is similar to multiple instance

Table 4 Classification methods comparison

Dataset MCIL TRANS SVM-IMG SVM-MF SVM-CNN

MICCAI brain 91.1% 86.7% 62.2% 77.8% 97.8%

CRC binary 95.5% 92.3% 94.3% 90.1% 98.0%

CRC multiclass - 78.5% 79.0% 75.5% 87.2%
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learning, the main performance difference is contributed

by the powerful CNN feature. Using extracted features

trained on a general image database enables us to cap-

ture complex and abstract patterns even if the number of

training images is limited.

To better capture which features have been activated in

our histopathology image analysis methods, the image-

level heatmap (Figs. 5 and 6) and feature patch charac-

teristic (Figs. 7 and 8) are plotted. They are discussed in

Section 3.4.

Segmentation results

In the MICCAI challenge, our final segmentation submis-

sion also achieves first place with an accuracy of 84% on

testing data. Table 5 shows the top performances from

other participating teams [28]. Our framework outper-

forms the second-place team by 11%.

Table 6 summarizes the segmentation performance of

various methods on both the brain tumor and colon can-

cer dataset. GraphRLM is not suitable for comparison

here since it is an unsupervised method. For the brain

tumor dataset, SVM-CNN shows a 21.0% improvement

in performance over SVM-MF. Using fine-tuned CNN

further improves SVM-CNN by 0.4%.

For colon cancer, CNN-based methods show at least

16.2% performance improvement over SVM-MF, so the

results indicate a similar trend with the brain cancer

dataset. After fine-tuning, accuracy further increases to

94.8%, showing a 1.6% difference. In addition, we provide

some samples of the segmentation results using all meth-

ods, shown in Figs. 3 and 4 for the brain tumor and colon

cancer dataset, respectively.

From Table 6, a significant performance difference

can be observed using CNN-based features rather than

manual hard-coded features. Using fine-tuned CNN fea-

tures improves the accuracy of CNN features by 1%

in colon cancer. The difference can also be verified by

both Figs. 3 and 4. For GraphRLM, the segmentation

results are incomprehensible or no segmentation result

is provided. Although the result of GraphRLM cannot

be precisely quantified, it fails to outline valuable bound-

aries or generates no boundary in most cases. Even in

colon cancer, the same cancer type used in their pub-

lication, GraphRLM cannot provide segmentations that

share similar morphological patterns. On the other hand,

Table 5 Segmentation performance in the MICCAI challenge

Accuracy Place

Anne Martel 63% 4th

Hang Chang 68% 3rd

Siyamalan Manivannan [58] 73% 2nd

Our method [19] 84% 1st

Table 6 Segmentation methods comparison

Dataset GraphRLM1 SVM-MF SVM-CNN SVM-FT

MICCAI brain - 64.0% 84.0% 84.4%

CRC - 77.0% 93.2% 94.8%

GraphRLM is an unsupervised method

all other methods achieve at least 64% accuracy. SVM-

CNN and SVM-FT show discernible improvement in per-

formance over SVM-MF both in accuracy statistics and

visualization.

Selection of patch size

In our classification framework, the size of sampled

patches is 336×336 pixels for 20× magnification and

672×672 pixels for 40× magnification scale. We also

try other patch sizes to explore the influences of differ-

ent patch sizes. Results are shown in Table 7. From the

results in Table 7, we find that a patch size of 672×672

yields the highest accuracy on both binary and multiclass

classification tasks.

In our segmentation framework, a patch size of

112×112 pixels is chosen. We also explore the influences

of patch size on our segmentation framework. The results

are shown in Table 8. From the results, it shows that a

smaller patch size will give rise to better segmentation

results on both datasets. This fact follows our intuitions.

In the segmentation framework, labels of positive or neg-

ative are given to each sampled training patch based on

its overlapping ratio with annotated region, and segmen-

tation result is constructed from predicted labels of all

sampled patches. In this condition, larger patch size will

affect the resolution of the boundary of the segmented

region, which hurts the accuracy of the segmentation

results.

Visualization of CNN activation features

Our proposed frameworks adopting CNN features show

high accuracy on both the brain tumor and colon cancer

dataset. We are interested in what exactly our classi-

fiers have learned from CNN features and whether they

can reveal biological insights. For this purpose, indi-

vidual components of the responses of neurons in the

last hidden layer (4096 dimensions) are visualized to

observe the properties of CNN features. In particular,

we visualize their image-wise and feature-wise responses

to understand which part of the image our CNN finds

important.

From the aspect of images, each patch is assigned a con-

fidence using the classification model trained by linear

SVM. We visualize the confidence score of each patch as

a heatmap (Figs. 5 and 6). The redder (resp. blue) a region

is, the more confident the classifier will be to consider that

region being positive (resp. negative). Heatmaps help to
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Fig. 3 Segmentation results for the brain tumor dataset. a the original images. b ground truth of necrosis (positive) region masked gray. The rest of

the columns show the prediction results by c GraphRLM, d SVM-MF, e SVM-CNN, and f SVM-FT methods where true positive, false positive (missed),

and false negative (wrongly predicted) region are masked purple, pale red, and orange, respectively

visualize the important regions the classifier thinks. For

each classification task, one image from each category is

shown in the paper.

In terms of features, we visualize the response of indi-

vidual neurons in the last hidden layer to observe the

characteristics of CNN features (Figs. 7 and 8). The top

activated feature dimensions are determined by the high-

est weights from the classification SVM model. For the

relevant neurons, patches that activate them the most are

selected (patches that have highest value in that feature

dimension).

Image-level heatmaps

Though we do not explicitly label the attributes of

each cancer type, the heatmaps of our classifiers show

they indeed highlight the representative hot spots. For

example, necrosis regions, which are characteristics of

GBM, are generally considered highly positive.

For brain tumors, heatmaps are shown in Fig. 5.We have

the whole of all slide images labeled as GBM and LGG,

respectively. In this classification scenario, both classes

are glioma, but with different glioma grades. High grade

glioma includes anaplastic astrocytomas and glioblastoma

multiforme, which come with the presence of necrotic

regions and hyperplastic blood vessels and megakary-

ocytes and are detectable using an H&E stain. In the

example of heatmaps, the endothelial proliferation regions

of GBM are well captured.

For colon cancer, heatmaps for both binary and mul-

ticlass classification are shown in Fig. 6. In the binary

scenario, our CNN successfully recognizes the malformed

epithelial cells in cancer instances and evenly spaced

cell structure in normal instances. For example, in the

example of the adenocarcinoma (AC) subtype, most of

the malignant ductal elements shown in the figure are

highlighted by the binary classifier. For the rest of the

image, stromal cells are abundant and considered neutral

or normal, as they are biologically benign. The lumen part

shown in the normal example is misclassified as a cancer-

like region since it resembles the shape of ill-shaped
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Fig. 4 Segmentation method comparison for the colon cancer dataset. a the original images. b ground truth of necrosis (positive) region masked

gray. The rest of the columns show the prediction results of c GraphRLM, d SVM-MF, e SVM-CNN, and f SVM-FT methods where true positive, false

positive (missed), and false negative (wrongly predicted) region are masked purple, pale red, and orange, respectively

epithelial cells. However, some specific features of each

cancer subtype are overlooked by the binary classifier.

In the mucinous carcinoma (MC) example, the classifier

recognizes the dense epithelium but ignores the primary

characteristic of MC, where abundant extracellular mucin

(light purple region in original image) can be seen. This

is due to the similarity between the colloid and empty

areas, which makes it more difficult to discern in the

binary scenario.

In the multiclass scenario, specific characteristics for

each subtype are stressed and become obvious in their

Table 7 Classification results of different patch sizes

Dataset 224×224 448×448 672×672

MICCAI brain 91.1% 93.3% 97.8%

CRC binary 97.5% 96.9% 98.0%

CRC multiclass 85.0% 85.3% 87.2%

Patch sizes in the table correspond to 40× magnification scale. For 20×

magnification scale, the sizes are halved

classifier heatmap. In the MC example, only the col-

loid part triggers the MC classifier and other malignant

parts are suppressed. The unique patterns of serrated

carcinoma (SC) and papillary carcinoma (PC) are suc-

cessfully captured by their classifier. In the SC subtype,

different from the situation all regions are recognized as

malignant, only the tooth-like epithelial structure remains

highly confident. In the PC subtype, only the elongated

tubular structure is highlighted. Many unique SC pat-

terns are ignored by the classifier since they resemble

the tubular characteristic of PC under our patch scale.

For cribriform comedo-type adenocarcinoma (CCTA), its

distinct cribriform characteristic that exhibits frequent

perforation is highlighted in the heatmap. For the AC

Table 8 Segmentation results of different patch sizes

Dataset 112×112 224×224 336×336

MICCAI brain 84.0% 78.5% 75.7%

CRC 93.2% 86.9% 81.3%
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Fig. 5 Heatmap for brain tumor GBM vs LGG classification. Each patch of the whole slide image is assigned a confidence using the classifier, which

forms the heatmap. Regions that are red in color are more likely to be GBM regions. The purpose of these heatmaps is to illustrate which part of the

whole slide image is considered important for the classifier and to prove the expressiveness of CNN features. In the GBM example, the endothelial

proliferation regions, which are considered an essential morphologic cue for the diagnosis of GBM, show high positive confidence

subtype, many malignant ductal elements are disregarded

by the classifier from the binary to multiclass scenario,

which is due to the similar ubiquitous structures in all

cancer subtypes which are not helpful for improving the

performance. For the normal example, the binary and

multiclass classifiers show consistent results, while in the

multiclass the lumen part in the middle of the image is

correctly suppressed.

To compare CNN activation features with other fea-

tures, heatmaps of manual features are also shown in

Fig. 6. From the figures, we can clearly see the advantage

of CNN activation features.

Feature patch characteristic

In the CNN features extracted from distinct medical

images, we find that single feature dimension can indicate

certain characteristic, which is one of the exciting discov-

eries made when applying visualization of CNN activation

features. Even though there might exist certain types of

manually designed features providing the same charac-

teristics, CNN is able to learn these characteristics from

large image dataset automatically, without any manual

designs. Reported by histopathologists, some of the fea-

tures can convey clinical insights, which can also verify

our finding from the image-level heatmap analysis. The

characteristics of each feature are visualized by select-

ing patches from all the images with the highest weights.

For more details on the brain tumor images, we refer the

reader to [19].

For colon cancer, the most discriminative features in

both binary and multiclass classification are visualized,

and shown in Figs. 7 and 8 respectively. Similar to the

finding in heatmaps, even though we did not supply

extra information about any pathological characteristic,

features with high weights in a classifier corresponds

to specific characteristics of a category. In binary clas-

sification, important cancer features include glandular

cancer (1st, 2nd, 4th, 5th and 6th row), and papillary

shapes (3rd row); while important non-cancer features

include normal glands (1st and 2nd row), lymph cell

clusters (3rd row), hemorrhage (4th and 5th row), and fat

(6th row).

The multiclass classifier automatically discovers fea-

tures more specific to each of the subtypes, with some

cases particularly interesting and potentially instructive.

For example, CCTA features not only contain the afore-

mentioned cribriform structure (2nd row) as expected,

but also contain a feature activated on hemorrhage

regions (1st row) — suggesting some undiscovered corre-

lation between CCTA and hemorrhage.
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Fig. 6 Heatmap for binary and multiclass classification of colon cancer using both manual features and CNN activation features. Similar to Fig. 5,

heatmap is drawn based on confidence scores of each patch, and the purpose is also to explore the expressiveness of CNN features. In binary

classification (2nd and 4th column), red regions are more likely to be cancer. In multiclass classification (3rd and 5th column), only the classifier that

predicts the image’s label is shown, that is, for the AC image, only the prediction of the AC-vs-rest classifier is shown. Areas that are red are more

likely to be the image’s label. The transition of the highlighted regions from binary to multiclass classification indicates that our multiclass classifiers

can recognize the specific characteristics of each cancer subtype. The comparison between the CNN features and manual features shows the CNN

features have greater power of expressiveness than the manual features

Many CNN features also suggest some new criteria for

classifying cancer tissues. For example, PC features dis-

tinguish the tip (1st row) and middle part (2nd row) of

its special tubular structure. MC features seem to sepa-

rate patches of colloid secretion by the density of mucus:

the first row of patches has more mucus than the sec-

ond row. The two features visualized here for AC look

very similar (both showing the dense epithelial lining of

the colon duct), and the same can be recognized as glan-

dular structures. In CCTA patch characteristics, features

of the aforementioned cribriform structure (1st row) and

hemorrhage (2nd row) are turned on, both being typical

characteristics of CCTA. Noting that even though patches

of hemorrhage shown here do not belong to the proper-

ties of colon cancer, they can still represent a neuron in

the last CNN hidden layer that is often triggered by the

features of the hemorrhage. For the normal type, features

containing patches of longitudinal and transverse crypts

(intestinal gland, 1st row) or patches of stroma cells (2nd

row) are turned on.

Conclusions
In this paper, we introduce deep convolutional activation

features trained with ImageNet knowledge and apply a

CNNmodel to the extraction of features from brain tumor

and colon cancer digital histopathology datasets. We suc-

cessfully transfer ImageNet knowledge as deep convolu-

tional activation features to the classification and segmen-

tation of histopathology images with relatively little train-

ing data. According to our experiments, CNN features

are significantly superior to manual features. Additionally,

due to the vast size of a single histopathology image, fea-

ture pooling technique is adopted to construct the single

image-level feature vector in our classification framework.

Experiments demonstrate that our frameworks achieve

state-of-the-art results of 97.5% for classification and 84%
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Fig. 7 Sample discriminative patches selected with individual components (neurons) of the CNN activation features. Each row of patches causes a

high response in one of the 4096 neurons from all colon training images in binary classification task. 6 top-weight features for each classifier are

selected and top patches triggering these 6 neurons are selected to represent the characteristics of the corresponding feature. The purpose of this

figure is to show the characteristics of individual components of CNN features which are thought be important by the binary classifier. These

visualized characteristics convey some clinical insights

for segmentation in the MICCAI brain tumor challenge.

Later, we apply both frameworks on colon cancer images

and achieve similar success, showing remarkable improve-

ment over previous methods.

Moreover, the features learned by our classifier yield

biologically meaningful insights that are recognized by

pathologists. Jointly, the histopathology morphology from

these selected patches or regions will help pathologists

discover patterns with biological insight. By observing

the discriminative patches with the individual neurons of

CNN activation features, we can discover tissue compo-

nents of corresponding subtypes. It is useful to explore

the development process across different cancer stages

and subtypes. By applying digital histopathology image

analysis, subtle differences in complex morphology pat-

terns can be captured and quantified, and we can re-

investigate their joint interaction to reflect the prognosis

or medicine response of patients and provide fine grained

characterizations.

Our motivation is to introduce a general-purpose solu-

tion to histopathology problems. This makes our setup

considerably simpler than most others. Fully convolu-

tional networks (FCN) [18] are not suitable to classify

large scale images. Therefore, we do not compare our
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Fig. 8 Sample discriminative patches selected with individual components (neurons) of the CNN activation features. Each row of patches causes a

high response in one of the 4096 neurons from all colon training images in multiclass classification task. Two top-weight features for each classifier

are selected and top patches triggering these two neurons are selected to represent the characteristics of the corresponding feature. The purpose

of this figure is to show the characteristics of individual components of CNN features which are thought be important by the multiclass classifier.

These visualized characteristics convey some clinical insights

method with FCN. In future work, we will compare our

method with FCN in terms of segmentation.
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