
Large-scale topological and dynamical properties of the Internet

Alexei Vázquez,1 Romualdo Pastor-Satorras,2 and Alessandro Vespignani3
1International School for Advanced Studies SISSA/ISAS, via Beirut 4, 34014 Trieste, Italy

2Departament de Fı́sica i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord, Mòdul B4,
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We study the large-scale topological and dynamical properties of real Internet maps at the autonomous
system level, collected in a 3-yr time interval. We find that the connectivity structure of the Internet presents
statistical distributions settled in a well-defined stationary state. The large-scale properties are characterized by
a scale-free topology consistent with previous observations. Correlation functions and clustering coefficients
exhibit a remarkable structure due to the underlying hierarchical organization of the Internet. The study of the
Internet time evolution shows a growth dynamics with aging features typical of recently proposed growing
network models. We compare the properties of growing network models with the present real Internet data
analysis.
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I. INTRODUCTION

The Internet is a capital example of growing complex
network @1,2# interconnecting large numbers of computers
around the world. Growing networks exhibit a high degree of
wiring entanglement that takes place during their dynamical
evolution. This feature, at the heart of the proposed and in-
teresting topological properties recently observed in growing
network systems @3,4#, has triggered the attention of the re-
search community to the study of the large-scale properties
of router-level maps of the Internet @5–7#. The statistical
analysis performed so far has focused on several quantities
exhibiting nontrivial properties: wiring redundancy and clus-
tering, @8–11#, the distribution of shortest path lengths
@5,10#, and the eigenvalue spectra of the connectivity matrix
@10#. Noteworthy, the presence of a power-law connectivity
distribution @8,10–13# makes the Internet an example of the
recently identified class of scale-free networks @14,15#. This
evidence implies the absence of any characteristic
connectivity—large connectivity fluctuations—and a high
heterogeneity of the network structure.

As widely pointed out in the literature @13,16,17#, a
deeper empirical understanding of the topological properties
of the Internet is fundamental in the developing of realistic
Internet map generators, that on their turn are used to test and
optimize Internet protocols. In fact, the Internet topology has
a great influence on the dynamics that data traffic carries out
on top of it. Hence, a better understanding of the Internet
structure is of primary importance in the design of routing
@16,17# and searching algorithms @18,19#, and to protect from
virus spreading @20# and node failures @21–23#. In this per-
spective, the direct measurement and statistical characteriza-
tion of real Internet maps are of crucial importance in the
identification of the basic mechanisms that rule the Internet
structure and dynamics.

In this work, we shall consider the evolution of real Inter-
net maps from 1997 to 2000, collected by the National Labo-
ratory for Applied Network Research ~NLANR! @5#, in order
to study the underlying dynamical processes leading to the

Internet structure and topology. We provide a statistical
analysis of several average properties. In particular, we con-
sider the average connectivity, clustering coefficient, path
length, and betweenness. These quantities will provide a pre-
liminary test of the stationarity of the network. The scale-free
nature of the Internet has been pointed out by inspecting the
connectivity probability distribution, and it implies that the
fluctuations around the average connectivity are not
bounded. In order to provide a full characterization of the
scale-free properties of the Internet, we analyze the connec-
tivity and betweenness probability distributions for different
time snapshot of the Internet maps. We observe that these
distributions exhibit an algebraic behavior and are character-
ized by scaling exponents that are stationary in time. The
shortest path length between pairs of nodes, on the other
hand, appears to be sharply peaked around its average value,
providing a striking evidence for the presence of well-
defined small-world properties @24#. A more detailed picture
of the Internet can be achieved by studying higher order
correlation functions of the network. In this sense, we show
that the Internet hierarchical structure is reflected in non-
trivial scale-free betweenness and connectivity correlation
functions. Finally, we study several quantities related to the
growth dynamics of the network. The analysis points out the
presence of two distinct wiring processes: the first concerns
newly added nodes, while the second is related to already
existing nodes increasing their interconnections. We confirm
that newly added nodes establish new links with the linear
preferential attachment rule often used in modeling growing
networks @14#. In addition, a study of the connectivity evo-
lution of a single node shows a rich dynamical behavior with
aging properties. The present study could provide some hints
for a more realistic modeling of the Internet evolution, and
with this purpose in mind we provide a discussion of some of
the existing growing network models in the light of our find-
ings. A short account of these results appeared in Ref. @25#.

The paper is organized as follows. In Sec. II we describe
the Internet maps used in our study. Section III is devoted to
the study of average quantities as a function of time. In Sec.
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IV we provide the analysis of the statistical distributions
characterizing the Internet topology. We obtain evidence for
the scale-free nature of this network as well as for the sta-
tionarity in time of this property. In Sec. V we characterize
the hierarchical structure of the Internet by the statistical
analysis of the betweenness and connectivity correlation
functions. Section VI reports the study of dynamical proper-
ties such as the preferential attachment and the evolution of
the average connectivity of newly added nodes. These prop-
erties, which show aging features, are the basis for the de-
veloping of Internet dynamical models. Section VII is de-
voted to a detailed discussion of some Internet models as
compared with the presented real data analysis. Finally, in
Sec. VIII we draw our conclusions and perspectives.

II. MAPPING THE INTERNET

Several Internet mapping projects are currently devoted to
obtain high-quality router-level maps of the Internet. In most
cases, the map is constructed by using a hop-limited probe
~such as the UNIX traceroute tool! from a single location in
the network. In this case the result is a ‘‘directed,’’ map as
seen from a specific location on the Internet @7#. This ap-
proach does not correspond to a complete map of the Internet
because cross-links and other technical problems ~such as
multiple Internet provider aliases! are not fully considered.
Heuristic methods to take into account these problems have
been proposed ~see, for instance, Ref. @26#!.

A different representation of the Internet is obtained by
mapping the autonomous systems ~AS! topology. The Inter-
net can be considered as a collection of subnetworks that are
connected together. Within each subnetwork the information
is routed using an internal algorithm that may differ from one
subnetwork to another. Thus, each subnet is an independent
unit of the Internet and it is often referred as an AS. These
AS communicate between them using a specific routing al-
gorithm, the border gateway protocol. Each AS number ap-
proximately maps to an Internet service provider ~ISP! and
their links are inter-ISP connections. In this case it is possible
to collect data from several probing stations to obtain inter-
connectivity maps ~see Refs. @5,6# for a technical description
of these projects!. In particular, the NLANR project is col-
lecting data since November 1997, and it provides topologi-
cal as well as dynamical information on a consistent subset
of the Internet. The first November 1997 map contains 3180
AS, and it has grown in time until the December 1999 mea-
surement, consisting of 6374 AS. In the following we will
consider the graph whose nodes represent the AS and whose
links represent the adjacencies ~interconnections! between
AS. In particular we will focus on three different snapshots
corresponding to 8 November 1997, 1998, and 1999, that
will be referenced as AS97, AS98, and AS99, respectively.

The NLANR connectivity maps are collected with a reso-
lution of one day and are changing from day to day. These
changes are due to the addition ~birth! and deletion ~death! of
nodes and links, but also to the flickering of connections, so
that a node may appear to be isolated ~not mapped! from
time to time. A simple test, however, shows that flickering is
appreciable just in nodes with low connectivity. We compute

the ratio r between the number of days in which a node is
observed in the NLANR maps and the total number of days
after the first appearance of the node, averaged over all nodes
in the maps. The analysis reveals that r.1 and r.0.65 for
nodes with connectivity k>10, and k,10, respectively.
Hence, nodes with k,10 have fluctuations that must be
taken into account. In order to shed light on this point, we
inspect the incidence of deletion events with respect to the
creation of new nodes. We consider a deletion event only if a
node is not observed in the map during a 1-yr time interval.
In Table I we show the total number of deletion events in a
year, for 1997, 1998, and 1999, in comparison with the total
number of new nodes created. It can be seen that the AS’s
birth rate appears to be larger by a factor of 2 than the dele-
tion rate. More interestingly, if we restrict the analysis to
nodes with connectivity k.10, the deletion rate is reduced to
a few percent of the birth rate. This clearly indicates that
only poorly connected nodes have an appreciable probability
to disappear. This fact is easily understandable in terms of
the market competition among ISP’s, where small newcom-
ers are the ones which more likely go out of business.

III. AVERAGE PROPERTIES AND STATIONARITY

The growth rate of AS maps reveals that the Internet is a
rapidly evolving network. Thus, it is extremely important to
know whether or not it has reached a stationary state whose
average properties are time independent. This will imply
that, despite the continuous increase of nodes and connec-
tions in the system, the network’s topological properties are
not appreciably changing in time. As a first step, we have
analyzed the behavior in time of several average magnitudes:
the average connectivity ^k&, the clustering coefficient ^c&,
the average path length ^l & , and the average betweenness
^b&.

The connectivity k i of a node i is defined as the number of
connections of this node with other nodes in the network,
and ^k& is the average of k i over all nodes in the network.
Since each connection contributes to the connectivity of two
nodes, we have that ^k&52E/N , where E is the total number
of connections and N is the number of nodes. Both E and N
are increasing with time but their ratio remains almost con-
stant. The average connectivity for the years 1997, 1998, and
1999 ~averaged over all the AS maps available for that year!
is shown in Table II. In average each node has three to four
connections, which is a small number compared with that of
a fully connected network of the same size (^k&5N21
;103). The average connectivity gives information about the
number of connections of any node but not about the overall

TABLE I. Total number of new (Nnew) and deleted (Ndel) nodes
in the years 1997, 1998, and 1999. We also report the number of
deleted nodes with connectivity k.10.

Year 1997 1998 1999

Nnew 309 1990 3410
Ndel 129 887 1713
Ndel(k.10) 0 14 68
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structure of these connections. More information can be ob-
tained using the clustering coefficient introduced in Ref.
@24#. The number of neighbors of a node i is given by its
connectivity k i . On their turn, these neighbors can be con-
nected among them forming a triangle with node i. The clus-
tering coefficient c i is then defined as the ratio between the
number of connections among the k i neighbors of a given
node i and its maximum possible value, k i(k i21)/2. The
average clustering coefficient ^c& is the average of c i over all
nodes in the network. The clustering coefficient thus pro-
vides a measure of how well locally interconnected are the
neighbors of any node. The maximum value of ^c& is 1,
corresponding to a fully connected network. For random
graphs @27#, which are constructed by connecting nodes at
random with a fixed probability p, the clustering coefficient
decreases with the network size N as ^c& rand5^k&/N . On the
contrary, it remains constant for regular lattices. The average
clustering coefficient obtained for the years 1997, 1998, and
1999 is shown in Table II. As it can be seen, the clustering
coefficient of the AS maps increases slowly with increasing
N and takes values ^c&.0.2, two orders of magnitudes larger
than ^c& rand.1023, corresponding to a random graph with
the same number of nodes and average connectivity. There-
fore, the AS maps are far from being a random graph, a
feature that can be naively understood using the following
argument: In AS maps the connections among nodes are
equivalent, but they are actually characterized by a real space
length corresponding to the actual length of the physical con-
nection between AS’s. The larger this length is, the higher
the costs of installation and maintenance of the line, favoring
therefore the connections between nearby nodes. It is thus
likely that nodes within the same geographical region will
have a large number of connection among them, increasing
in this way the local clustering coefficient.

With this reasoning one might be led to the conclusion
that the Internet topology is close to a regular two-
dimensional lattice. The analysis of the shortest path length
between nodes, however, reveals that this is not the case.
Two nodes i and j are said to be connected if one can go from
node i to j following the connections in the network. The
path from i to j may not be unique and its length is given by
the number of nodes visited. The average path length ^l & is
defined as the shortest path length between two nodes i and j,

l i j , averaged over every pair of nodes in the network. For
regular lattices, ^l &D;N1/D, where D is the spatial dimen-
sion. As it can be seen from Table II, for the AS maps ^l &
.3.7, which is smaller than the expected value for a regular
two-dimensional lattice of the same size. The Internet strik-
ingly exhibits what is known as the ‘‘small-world’’ effect
@24,28#: in average one can go from one node to any other in
the system passing through a very small number of interme-
diate nodes. This necessarily implies that besides the short
local connections that contribute to the large clustering coef-
ficient, there are some hubs and backbones that connect dif-
ferent regional networks, strongly decreasing the average
path length. Another measure of this feature is given by the
number of minimal paths that pass by each node. To go from
one node in the network to another following the shortest
path, a sequence of nodes is visited. If we do this for every
pair of nodes in the network, there will be a certain number
of key nodes that will be visited more often than others. Such
nodes will be of great importance for the transmission of
information along the network. This fact can be quantita-
tively measured by means of the betweenness b i , defined by
the total number of shortest paths between any two nodes in
the network that pass thorough the node i. The average be-
tweenness ^b& is the average value of b i over all nodes in the
network. The betweenness has been introduced in the analy-
sis of social networks in Ref. @29# and more recently it has
been studied in scale-free networks, with the name of load
@30#. Moreover, an algorithm to compute the betweenness
has been given in Ref. @29#. For a star network the between-
ness takes its maximum value N(N21)/2 at the central node
and its minimum value N21 at the vertices of the star. The
average betweenness of the three AS maps analyzed here is
shown in Table II. Its value is between 2N and 3N , which is
quite small in comparison with its maximum possible value
N(N21)/2;107.

The present analysis makes clear that the Internet is not
dominated by a very few highly connected nodes similarly to
star-shaped architectures. As well, simple average measure-
ments rule out the possibility of a random graph structure or
a regular grid architecture. This evidence hints towards a
peculiar topology that will be fully identified by looking at
the detailed probability distributions of several quantities. Fi-
nally, it is important to stress that despite the network size is
more than doubled in the 3-yr period considered, the average
quantities suffer variations of a few percent ~see Table II!.
This points out that the system seems to have reached a fairly
well-defined stationary state, as we shall confirm in the fol-
lowing section by analyzing the detailed statistical properties
of the Internet.

IV. FLUCTUATIONS AND SCALE-FREE PROPERTIES

In order to get a deeper understanding of the network
topology we look at the probability distributions pk(k) and
pb(b) that any given node in the network has a connectivity
k and a betweenness b, respectively. The study of these prob-
ability distributions will allow us to probe the extent of fluc-
tuations and heterogeneity present in the network. We shall
see that the strong scale-free nature of the Internet, previ-

TABLE II. Average properties of the Internet for three different
years. N, number of nodes; E, number of connections; ^k&, average
connectivity; ^c&, average clustering coefficient; ^l &, average path
length; ^b&, average betweenness. Figures in parentheses indicate
the statistical uncertainty from averaging the values of the corre-
sponding months in each year.

Year 1997 1998 1999

N 3112 3834 5287
E 5450 6990 10100
^k& 3.5~1! 3.6~1! 3.8~1!

^c& 0.18~3! 0.21~3! 0.24~3!

^l & 3.8~1! 3.8~1! 3.7~1!

^b&/N 2.4~1! 2.3~1! 2.2~1!
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ously noted in Refs. @10,12#, results in power-law distribu-
tions with diverging fluctuations for these quantities. The
analysis of the maps reveals, in fact, an algebraic decay for
the connectivity distribution,

pk~k !;k2g, ~1!

extending over three orders of magnitude. In Fig. 1 we report
the integrated connectivity distribution

Pk~k !5E
k

`

pk~k8!dk8 ~2!

corresponding to the AS97, AS98, and AS99 maps. The in-
tegrated distribution, which expresses the probability that a
node has connectivity larger than or equal to k, scales as

Pk~k !;k12g, ~3!

and it has the advantage of being considerably less noisy that
the original distribution. In all maps we find a clear power-
law behavior with slope close to 21.2 ~see Fig. 1!, yielding
a connectivity exponent g52.260.1. The distribution cutoff
is fixed by the maximum connectivity of the system and is
related to the overall size of the Internet map. We see that for
more recent maps the cutoff is slightly increasing, as ex-
pected due to the Internet growth. On the other hand, the

connectivity exponent g seems to be independent of time and
in good agreement with previous measurements @10#.

The betweenness distribution pb(b) ~i.e., the probability
that any given node is passed over by b shortest paths! shows
also scale-free properties, with a power-law distribution

pb~b !;b2d ~4!

extending over three decades. As shown in Fig. 2~a!, the
integrated betweenness distribution measured in the AS maps
is evidently stable in the 3-yr period analyzed and follows a
power-law decay

Pb~b !5E
b

`

pb~b8!db8;b12d, ~5!

where the betweenness exponent is d52.160.2. The con-
nectivity and betweenness exponents can be simply related if
one assumes that the number of shortest paths bk passing
over a node of connectivity k follows the scaling form

bk;kb. ~6!

By inserting the latter relation in the integrated betweenness
distribution Eq. ~5! we obtain

Pk~k !;kb(12d). ~7!

Since we have that Pk(k);k12g, we obtain the scaling rela-
tion

b5

g21

d21
. ~8!

The measured g and d have approximately the same value
for the AS maps data and we expect to recover b'1.0. This
is corroborated in Fig. 2~b!, where we report the direct mea-
surement of the average betweenness of a node as a function
of its connectivity k. It is also worth remarking the study of
the betweenness distribution in scale-free networks made in
Ref. @30#. From a numerical study of both static and dynamic
scale-free network models with different values of g , it was
found in Ref. @30# that the betweenness distribution follows a
power-law decay with an estimated exponent d52.260.1.
The authors argued that this fact represents a universal prop-
erty, independent of the connectivity exponent, for all scale-

FIG. 1. Integrated connectivity distribution for the AS97, AS98,
and AS99 maps. The power-law behavior is characterized by a
slope 21.2, which yields a connectivity exponent g52.260.1.

FIG. 2. ~a! Integrated between-
ness distribution for the AS97,
AS98, and AS99 maps. The
power-law behavior is character-
ized by a slope 21.1, which
yields a betweenness exponent d
52.160.2. ~b! Betweenness bk as
a function of the node’s connec-
tivity k. The full line corresponds
to the expected behavior bk;k .
Errors bars take into account sta-
tistical fluctuations over different
nodes with the same connectivity.
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free networks with 2,g<3. Our results on the AS maps
present further support to the universality claim made in Ref.
@30#.

Another quantity of interest is the probability distribution
of the clustering coefficient of the nodes. In our analysis we
do not find definitive evidence for a power-law behavior of
this distribution. However, still useful information can be
gathered from studying the clustering coefficient ck as a
function of the node connectivity. In this case the local clus-
tering coefficient of each node c i is averaged over all nodes
with the same connectivity k. The plots for the AS97, AS98,
and AS99 maps are shown in Fig. 3. Also in this case, mea-
surements yield a power-law behavior ck;k2v with v
50.7560.03, extending over three orders of magnitude. The
exponent 0.75 has been computed as an average over the
regressions of the individual data sets. This fact implies that
nodes with a small number of connections have larger local
clustering coefficients than those with a large connectivity.
This behavior is consistent with the picture previously de-
scribed in Sec. III of highly clustered regional networks
sparsely interconnected by national backbones and interna-
tional connections. The regional clusters of AS are probably
formed by a large number of nodes with small connectivity
but large clustering coefficients. Moreover, they also should
contain nodes with large connectivities that are connected

with the other regional clusters. These large connectivity
nodes will be on their turn connected to nodes in different
clusters that are not interconnected and, therefore, will have
a small local clustering coefficient. This picture also shows
the existence of some hierarchy in the network that will be-
come more evident in the following section.

A different behavior is followed by the shortest path
length l between two nodes, which does not show singular
fluctuations from one pair of nodes to another. This can be
shown by means of the probability distribution p l (l ) of
shortest path lengths l between pairs of nodes, reported in
Fig. 4~a!. This distribution is characterized by a sharp peak
around its average value and its shape remains essentially
unchanged from the AS97 to the AS99 maps. Associated to
the shortest path length distribution we have the hop plot
introduced in Ref. @10#. The hop plot is defined as the aver-
age fraction of nodes M (l )/N within a distance less than or
equal to l from a given node. At l 50 we find the starting
node and, therefore, M (0)51. At l 51 we find the starting
node plus its neighbors and thus M (1)5^k&11. If the net-
work is made up by a single cluster, for l 5l M , where l M
is the maximum shortest path length, we have M (l M)5N .
For regular D-dimensional lattices, M (l );l

D, and in this
case M can be interpreted as the mass. The hop plot is related
to the distribution of shortest path lengths through the fol-
lowing relation:

M ~ l !

N
5 (

l 850

l

p l ~ l 8!. ~9!

The hop plots for the AS97, AS98 and AS99 maps are shown
in Fig. 4~b!. In this case the shortest path length barely spans
a decade (l M511). Most importantly, M (l ) practically
reaches its maximum value N at l 55. Hence, the shortest
path length does not show strong fluctuations, as already
noticed from the shortest path length distribution. In Ref.
@10# it was argued that the increase of M (l ) for small l

follows a power-law behavior. This observation is not con-
sistent with the present data, that yield a very abrupt increase
taking place in a very narrow range, as shown in Fig. 4~b!.

Finally, it is important to stress again that all the measured
distributions are characterized by scaling exponents or be-
haviors that are not changing in time. This implies that the
statistical properties characterizing the Internet are time in-

FIG. 3. Clustering coefficient ck as a function of the connectiv-
ity k for the AS97, AS98, and AS99 maps. The best fitting power-
law behavior is characterized by a slope 20.75. Errors bars take
into account statistical fluctuations over different nodes with the
same connectivity.

FIG. 4. ~a! Distribution of
shortest path lengths p l (l ) for
the AS97, AS98, and AS99 maps.
~b! Hop plots M (l ) for the same
maps. See text for definitions.
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dependent, providing a further test to the network stationar-
ity; i.e., the Internet is self-organized in a stationary state
characterized by scale-free fluctuations.

V. HIERARCHY AND CORRELATIONS

Due to installation costs, the Internet has been designed
with a hierarchical structure. The primary known structural
difference between Internet nodes is the distinction between
stub and transit domains. Nodes in stub domains have links
that go only through the domain itself. Stub domains, on the
other hand, are connected via a gateway node to transit do-
mains that, on the contrary, are fairly well interconnected via
many paths. This hierarchy can be schematically divided into
international connections, national backbones, regional net-
works, and local area networks. Nodes providing access to
international connections or national backbones are of course
on top level of this hierarchy, since they make possible the
communication between regional and local area networks.
Moreover, in this way, a small average path length can be
achieved with a small average connectivity.

Very likely the hierarchical structure will introduce some
correlations in the network topology. We can explore the
hierarchical structure of the Internet by means of the condi-
tional probability pc(k8uk) that a link belonging to a node
with connectivity k points to a node with connectivity k8. If
this conditional probability is independent of k, we are in
presence of a topology without any correlation among the
nodes’ connectivity. In this case, pc(k8uk)5pc(k8)
;k8pk(k8), in view of the fact that any link points to nodes
with a probability proportional to their connectivity. On the
contrary, the explicit dependence on k is a signature of non-
trivial correlations among the nodes’ connectivity, and the
presence of a hierarchical structure in the network topology.
A direct measurement of the pc(k8uk) function is a rather
complex task due to large statistical fluctuations. More clear
indications can be extracted by studying the quantity

^knn&5(
k8

k8pc~k8uk !, ~10!

i.e., the nearest-neighbors average connectivity of nodes with
connectivity k. In Fig. 5~a! we show the results obtained for
the AS97, AS98, and AS99 maps, that again exhibit a clear
power-law dependence on the connectivity degree,

^knn&;k2nk, ~11!

with an exponent nk50.560.1. This observation clearly im-
plies that the connectivity correlation function has a marked
dependence upon k, suggesting nontrivial correlation proper-
ties for the Internet. In practice, this result indicates that
highly connected nodes are more likely pointing to less con-
nected nodes, emphasizing the presence of a hierarchy in
which smaller providers connect to larger ones and so on,
climbing different levels of connectivity.

Similarly, it is expected that nodes with high betweenness
~that is, carrying a heavy load of traffic!, and consequently a
large connectivity, will be connected to nodes with smaller
betweenness, less load and, therefore, small connectivity. A
simple way to measure this effect is to compute the average
betweenness ^bnn& of the neighbors of the nodes with a given
betweenness b. The plot of ^bnn& for the AS97, AS98, and
AS99 maps, represented in Fig. 5~b!, shows that the average
neighbor betweenness exhibits a clear power-law depen-
dence on the node betweenness b,

^bnn&;b2nb, ~12!

with an exponent nb50.460.1, evidencing that the more
loaded nodes ~backbones! are more frequently connected
with less loaded nodes ~local networks!.

These hierarchical properties of the Internet are likely
driven by several additional factors such as the space local-
ity, economical resources, and the market demand. An at-
tempt to relate and study some of these aspects can be found
in Ref. @13#, where the geographical distribution of popula-
tion and Internet access are studied. In Sec. VII we shall
compare a few of the existing models for the generation of
scale-free networks with our data analysis, in an attempt to
identify some relevant features in the Internet modeling.

VI. DYNAMICS AND GROWTH

In order to inspect the Internet dynamics, we focus our
attention on the addition of new nodes and links into the
maps. In the 3-yr range considered, we keep track of the
number of links Lnew appearing between a newly introduced
node and an already existing node. We also monitor the rate
of appearance of links Lold between already existing nodes.
In Table III we can observe that the creation of new links is

FIG. 5. ~a! Average connectiv-
ity ^knn& of the nearest neighbors
of a node as a function of the con-
nectivity k for the AS97, AS98,
and AS99 maps. The full line has
a slope 20.5. ~b! Average be-
tweenness ^bnn& of the nearest
neighbors of a node as a function
of its betweenness b for the same
maps. The full line has a slope
20.4.
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governed by these two processes at the same time. Specifi-
cally, the largest contribution to the growth is given by the
appearance of links between already existing nodes. This
clearly points out that the Internet growth is strongly driven
by the need of redundancy in the wiring and an increased
need of available bandwidth for data transmission.

A customarily measured quantity in the case of growing
networks is the average connectivity ^k i(t)& of new nodes as
a function of their age t. In Refs. @15,31,32# it is shown that
^k i(t)& is a scaling function of both t and the absolute time of
birth of the node t0. We thus consider the total number of
nodes born within a small observation window Dt0, such that
t0.const with respect to the absolute time scale that is the
Internet lifetime. For these nodes, we measure the average
connectivity as a function of the time t elapsed since their
birth. The data for two different time windows are reported
in Fig. 6, where it is possible to distinguish two different
dynamical regimes: At early times, the connectivity is nearly
constant with a very slow increase. Later on, connectivity
grows rapidly approaching what appears to be a power-law
or faster growth regime. While reliable fits or exponent esti-
mates are affected by noise and limited time window effects,
the crossover between two distinct dynamical regimes is
compatible with the general aging form obtained in the con-
text of growing networks in Refs. @31,32#.

A very important issue in the modeling of growing net-
works concerns the understanding of the growth mechanisms
at the origin of the developing of new links. As we shall see
more in detail in the following section, the basic ingredients
in the modeling of scale-free growing networks is the pref-
erential attachment hypothesis @14#. In general, all growing

network algorithms define models in which the rate P(k)
with which a node with k connections receives new links is
proportional to ka ~see Ref. @14# and Sec. VII!. The inspec-
tion of the exact value of a in real networks is an important
issue since the connectivity properties strongly depend on
this exponent @31–33#. Here we use a simple recipe that
allows to extract the value of a by studying the appearance
of new links. We focus on links emanating from newly ap-
peared nodes in different time windows ranging from one to
three years. We consider the frequency m(k) of links that
connect to nodes with connectivity k. By using the preferen-
tial attachment hypothesis, this effective probability is m(k)
;kapk(k). Since we know that pk(k);k2g, we expect to
find a power-law behavior m(k);ka2g for the frequency. In
Fig. 7 we report the obtained results which show for the
integrated frequency mcum(k)5*k

`m(k8)dk8 a behavior com-
patible with an algebraic dependence m(k);k21.2. By using
the independently obtained value g52.2 we find a preferen-
tial attachment exponent a.1.0, in good agreement with the
result obtained with a different analysis in Ref. @33#. We
performed a similar analysis also for links emanated by ex-
isting nodes, recovering the same form of preferential attach-
ment ~see Fig. 7!. The present analysis confirms the validity
of the preferential attachment hypothesis, but leaves open the
question of the interplay with several other factors, such as
the nodes’ hierarchy, space locality, and resource constraints.

VII. MODELING THE INTERNET

In the preceding section we have presented a thorough
analysis of the AS maps topology. Apart from providing use-
ful empirical data to understand the behavior of the Internet,
our analysis is of great relevance in order to test the validity
of models of the Internet topology. The Internet topology has
a great influence on the information traffic carried on top of
it, including routing algorithms @16,17#, searching algorithms
@18,19#, virus spreading @20#, and resilience to node failure
@21–23#. Thus, designing network models that accurately re-
produce the Internet topology is of capital importance to
carry out simulations on top of these networks.

TABLE III. Monthly rate of new links connecting existing
nodes to new (Lnew) and old (Lold) nodes.

Year 1997 1998 1999

Lnew 183~9! 170~8! 231~11!

Lold 546~35! 350~9! 450~29!

Lnew /Lold 0.34~2! 0.48~2! 0.53~3!

FIG. 6. Average connectivity of nodes borne within a small time
window Dt0, after a time t elapsed since their appearance. Time t is
measured in days.

FIG. 7. Frequency of links emanating from new and existing
nodes that attach to nodes with connectivity k. The full line corre-
sponds to a slope 21.2, which yields an exponent a.1.0. The flat
tails are originated from the poor statistics at very high k values.
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Early works considered the Erdös-Rényi @34# model or
hierarchical networks as models of the Internet @35#. How-
ever, they yield connectivity distributions with a fast ~expo-
nential! decay for large connectivities, in disagreement with
the power-law decay observed in real data. Only recently the
Internet modeling benefited of the major advance provided in
the field of growing networks by the introduction of the
Barabási-Albert ~BA! model @14,15,36#, which is related to
1955 Simon’s model @37–39#. The main ingredients of this
model are the growing nature of the network and a preferen-
tial attachment rule, in which the probability of establishing
new links toward a given node grows linearly with its con-
nectivity. The BA model is constructed using the following
algorithm @14#: We start from a small number m0 of discon-
nected nodes; every time step a new node is added, with m
links that are connected to an old node i with probability

PBA~k i!5

k i

(
j

k j

, ~13!

where k i is the connectivity of the ith node. After iterating
this procedure N times, we obtain a network with a connec-
tivity distribution pk(k);k23 and average connectivity ^k&
52m . In this model, heavily connected nodes will increase
their connectivity at a larger rate than less connected nodes,
a phenomenon that is known as the ‘‘rich-get-richer’’ effect
@14#. It is worth remarking, however, that more general stud-
ies @4,31,32# have revealed that nonlinear attachment rates of
the form P(k);ka with aÞ1 have as an outcome connec-
tivity distributions that depart form the power-law behavior.
The BA model has been successively modified with the in-
troduction of several ingredients in order to account for con-
nectivity distribution with 2,g,3 @31,32,40#, local geo-
graphical factors @41#, wiring among existing nodes @42#, and
age effects @43#.

In the preceding section we have analyzed different mea-
sures that characterize the structure of AS maps. Since sev-
eral models are able to reproduce the right power law behav-
ior for the connectivity distribution, the analysis obtained in
the previous sections can provide the effective tools to scru-
tinize the different models at a deeper level. In particular, we
perform a data comparison for three different models that
generate networks with power-law connectivity distributions.
First we have considered a random graph with a power-law
connectivity distribution, constructed using the Molloy and
Reed ~MR! algorithm @44,45#. Secondly, we have studied
two variations of the BA model, that yield connectivity ex-
ponents compatible with the one measured in the Internet:
the generalized Barabási-Albert ~GBA! model @40#, which
includes the possibility of connection rewiring, and the fit-
ness model @46#, that implements a weighting of the nodes in
the preferential attachment probability. The models are de-
fined as follows:

MR model. In the construction of this model @4,44,45,47#
we start assigning to each node i in a set of N nodes a ran-
dom connectivity k i drawn from the probability distribution
pk(k);k2g, with m<k i,N , imposing the constraint that
the sum ( ik i must be even. The graph is completed by ran-

domly connecting the nodes with ( ik i/2 links, respecting the
assigned connectivities. The results presented here are ob-
tained using m51 and a connectivity exponent g52.2,
equal to that found in the AS maps. Clearly this construction
algorithm does not take into account any correlations or dy-
namical features of the Internet and it can be considered as a
first order approximation that focuses only on the connectiv-
ity properties.

GBA model. It is defined by starting with m0 nodes con-
nected in a ring @40#: At each time step one of the following
operations is performed:

~i! With probability q we rewire m links. For each of
them, we randomly select a node i and a link l i j connected to
it. This link is removed and replaced by a new link l i8 j con-
necting the node j to a new node i8 selected with probability
P(k i8) where

PGBA~k i!5

k i11

(
j

~k j11 !

. ~14!

~ii! With probability p we add m new links. For each of
them, one end of the link is selected at random, while the
other is selected with probability as in Eq. ~14!.

~iii! With probability 12q2p we add a new node with m
links that are connected to nodes already present with prob-
ability as in Eq. ~14!.

The preferential attachment probability Eq. ~14! leads to a
power-law distributed connectivity, whose exponent depends
on the parameters q and p. In the particular case p50, the
connectivity exponent is given by @40#

g511

~12q !~2m11 !

m
. ~15!

Hence, changing the value of m and q we can obtain the
desired connectivity exponent g . In the present simulations
we use the values m52 and q513/25, that yield the expo-
nent g52.2. The GBA model embeds both the rich-get-
richer paradigm and the growing nature of the Internet; how-
ever, it does not take into account any possible difference or
hierarchies in newly appearing nodes.

Fitness model. This network model introduces an external
competence among nodes to gain links, that is controlled by
a random ~fixed! fitness parameter h i that is assigned to each
node i from a probability distribution r(h). In this case, we
also start with m0 nodes connected in a ring and at each time
step we add a new node i8 with m links that are connected to
nodes already present on the network with probability

Pfitness~k i!5

h ik i

(
j

h jk j

. ~16!

The newly added node is assigned a fitness h i8 . The results
presented here are obtained using m52 and a probability
r(h) uniformly distributed in the interval @0,1# , which yields
a connectivity distribution pk(k);k2g/ln k with g'2.26
@46#. The fitness model adds to the growing dynamics with
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preferential attachment a stochastic parameter, the fitness,
that embeds all the properties, other than the connectivity,
that may influence the probability of gaining new links.

We have performed simulations of these three models
with the parameters mentioned above and using sizes of N
.4000 nodes, in analogy with the size of the AS maps ana-
lyzed. In each case we perform averages over 1000 different
realizations of the networks. It is worth remarking that while
the fitness model generates a connected network, both the
GBA and the MR model yield disconnected networks. This is
due to the rewiring process in the GBA model, while the
disconnect nature of the graph in the MR model is an inher-
ent consequence of the connectivity exponent being larger
that 2 @47#. In these two cases we therefore work with graphs
whose giant component ~that is, the largest cluster of con-
nected nodes in the network @27#! has a size of the order N.
It is important to remind the reader that we are working with
networks of a relatively small size, chosen so as to fit the size
of the Internet maps analyzed in the previous sections. In this
perspective, all the numerical analysis that we shall perform
in the following serve only to check the validity of the mod-
els as representations of the Internet as we know it, and do
not refer to the intrinsic properties of the models in the ther-
modynamic limit N→` .

As a first check of the connectivity properties of the mod-
els, in Fig. 8 we have plotted the respective integrated con-
nectivity distributions. For the MR model we recover the
expected exponent gMR.2.20, since it was imposed in the
very definition of the model. For the GBA model we obtain
numerically gGBA.2.19 for the giant component, in excel-
lent agreement with the value predicted by Eq. ~15! for the
asymptotic network. For the fitness model, on the other hand,
a numerical regression of the integrated connectivity distri-
bution yields an effective exponent gfitness.2.4. This value is
larger than the theoretical prediction 2.26 obtained for the
model @46#. The discrepancy is mainly due to the logarithmic
corrections present in the connectivity distribution of this
model. These corrections are more evident in the relatively
small-sized networks used in this work and become progres-
sively smaller for larger network sizes.

In Table IV we report the average values of the connec-

tivity, clustering coefficient, path length, and betweenness for
the three models, compared with the respective values com-
puted for the Internet during 1998. From the examination of
this table, one could surprisingly conclude that the MR
model, which neglects by construction any correlation
among nodes, yields the average values in better agreement
with the Internet data. As we can observe, the fitness model
provides too small a value for the average clustering coeffi-
cient, while the GBA model clearly fails for the average path
length and the betweenness. A more crucial test about the
models is however provided by the analysis of the full dis-
tribution of the various quantities, that should reproduce the
scale-free features of the real Internet.

The betweenness distribution pb(b) of the three models
give qualitatively similar results. The integrated betweenness
distribution Pb(b) obtained is plotted in Fig. 9~a!. Both the
MR and the fitness models follow a power-law decay
pb(b);b2d with an exponent d.2, in agreement with the
value obtained from the AS maps. The GBA model shows an
appreciable bending that, nevertheless, is compatible with
the experimental Internet behavior. These results are in
agreement with the numerical prediction in Ref. @30# and
support the conjecture that the exponent d.2.2 is a universal
quantity in all scale-free networks with 2,g,3. In order to
further inspect the betweenness properties, we plot in Fig.
9~b! the average betweenness bk as a function of the connec-
tivity. In this case, the MR and GBA models yield an expo-
nent b.1, compatible with the AS maps, while the fitness
model exhibits a somewhat larger exponent, close to 1.4.
Also in this case, we have that the finite size logarithmic
corrections present in the fitness model could play a deter-
minant role in this discrepancy.

While properties related to the betweenness do not appear
to pinpoint a major difference among the models, the most
striking test is provided by analyzing the correlation proper-
ties of the models. In Figs. 10 and 11, we report the average
clustering coefficient as a function of the connectivity, ck ,
and the average connectivity of the neighbors, ^knn&, respec-
tively. The data from the Internet maps show a nontrivial k
structure that, as discussed in previous sections, is due to
scale-free correlation properties among nodes. These proper-
ties depend on their turn upon the underlying hierarchy of
the Internet structure. The only model that renders results in
qualitative agreement with the Internet maps is the fitness
model. On the contrary, the MR and GBA models completely

FIG. 8. Integrated connectivity distribution for the MR, GBA,
and fitness models, compared with the result from the AS98 map.
The full line has slope 21.2.

TABLE IV. Average properties of the MR, GBA, and fitness
models, compared with the values from the Internet in 1998. ^k&,
average connectivity; ^c&, average clustering coefficient; ^l &, aver-
age path length; ^b&, average betweenness. Figures in parentheses
indicate the statistical uncertainty from the average of 1000 realiza-
tions of the models.

MR GBA Fitness 1998

^k& 4.8~1! 5.4~1! 4.00~1! 3.6~1!

^c& 0.16~1! 0.12~1! 0.02~1! 0.21~3!

^l & 3.1~1! 1.8~1! 4.0~1! 3.8~1!

^b&/N 2.2~1! 1.9~1! 2.1~1! 2.3~1!
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fail, producing quantities that are almost independent on k.
The reason of this striking difference can be traced back to
the lack of correlations among nodes, which in the MR
model is imposed by construction ~the model is a random
network with fixed connectivity distribution!, and in the
GBA model it is due to the destruction of correlations by the
random rewiring mechanism implemented. The general ana-
lytic study of connectivity correlations in growing networks
models has been discussed in Ref. @32#, and the conditional
probability pc(k8uk) has been computed for a deterministic
scale-free network model @48#. However, it is worth noticing
that a k structure in correlation functions, as probed by the
quantity ^knn& , does not arise in all growing network models.
In this perspective we can use correlation properties as one
of the discriminating feature among various models that
show the same scale-free connectivity exponent. Interest-
ingly, a stochastic network model @49# has been recently pro-
posed, in the spirit of the scenario advanced in Ref. @50#, that
appears to capture the correlation function properties pre-
sented here. This model is defined in terms of three elemen-
tary rules. At each time step: ~i! The number of nodes is
increased by a constant fraction of the nodes present in the
previous time step; the newly added nodes are connected to
one or two previously present nodes. ~ii! Each vertex in-
creases its connectivity by a constant factor, the new links
being connected following the preferential attachment rule,
Eq. ~13!. ~iii! Each vertex randomly disconnects existing

links or connects new links, following in this last case the
preferential attachment rule. With these three elements, the
model described in Ref. @49# recovers a connectivity expo-
nent and clustering coefficient comparable with the values
found in the present work, while yielding a function ^knn&
decreasing with k as a power-law, in close analogy with the
behavior we have reported for real AS maps.

The fitness model is able to reproduce the nontrivial cor-
relation properties because of the fitness parameter of each
node that mimics the different hierarchical, economical, and
geographical constraints of Internet growth. Since the model
is embedding many features in one single parameter, we
have to consider it just as a very first step towards a more
realistic modeling of the Internet. In this perspective, models
in which the attachment rate depends on both the connectiv-
ity and the real space distance between two nodes has been
studied in @13,41#. These models seem to give a better de-
scription of the Internet topology. In particular, the model of
Ref. @13# includes a new element, the inclusion of geographi-
cal constraints, that was not considered previously. This
model describes the Internet in terms of an evolving network
in which the added nodes have a geographical position,
forming a scale-invariant fractal set with a fractal dimension
compatible with the value found in a real router-level map.
Also, the probability of the addition of new links is regulated

FIG. 9. ~a! Integrated between-
ness distribution for the MR,
GBA, and fitness models, com-
pared with the result from the
AS98 map. The full line has a
slope 21.1, corresponding to the
Internet map. ~b! Betweenness bk

as a function of the node’s con-
nectivity k corresponding to the
previous results. The full line has
a slope 1.0.

FIG. 10. Clustering coefficient ck as a function of the connec-
tivity k for the MR, GBA, and fitness models, compared with the
result from the AS98 map. The full line has a slope 20.75.

FIG. 11. Average connectivity of the nearest neighbors of a node
as a function of the connectivity k for the MR, GBA, and fitness
models, compared with the result from the AS98 map. The AS98
data have been binned for the sake of clarity. The full line has a
slope 20.5.
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by two competing mechanisms, being directly proportional
to the connectivity of the nodes and inversely proportional to
the physical distance between nodes. While the path opened
by this model seems quite promising, a comparison with real
data is more difficult because Internet maps at the AS level
generally lack geographical and economical information.

VIII. SUMMARY AND CONCLUSIONS

In summary, we have shown that the Internet maps exhibit
a stationary scale-free topology, characterized by nontrivial
connectivity correlations. An investigation of the Internet dy-
namics confirms the presence of a preferential attachment
behaving linearly with the nodes’ connectivity and identifies
two different dynamical regimes during the nodes’ evolution.
We have compared several models of scale-free networks to
the experimental data obtained from the AS maps. While all
the models seem to capture the scale-free connectivity distri-
bution, correlation and clustering properties are captured

only in models that take into account several other ingredi-
ents, such as the nodes’ hierarchy, resource constraints and
geographical location. Other ingredients that should be in-
cluded in the Internet modeling concern the possibility of
including the wiring among existing nodes and age effects
that our analysis show to be an appreciable feature of the
Internet evolution. The results presented in this work show
that the understanding and modeling of the Internet is an
interesting and stimulating problem that needs the coopera-
tive efforts of data analysis and theoretical modeling.
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