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Abstract. With the rapid development of urban traffic, a large number of 
vehicles in cities not only bring convenience to people, but also bring a series 
of traffic problems, including traffic congestion and high traffic accident 
rates. Driving speed and waiting time of vehicles are two important factors 
of traffic problems. To simulate the real urban road traffic flow, a one-
dimensional traffic flow grid model was proposed, which considered the 
nearest and next neighbour car at the same time, and connected the front and 
rear neighbour cars to optimize the traffic flow. The experiment results 
showed that our traffic flow grid model can simulate the real urban road 
traffic flow. In addition, we tried to optimize the urban traffic network model 
and improved the traffic speed of vehicles and reduced the waiting time. 
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1 Introduction 
With the rapid construction of urban intelligent transportation systems, large-scale 

acquisition of urban traffic data has become possible. Common traffic information collection 
methods include fixed detection represented by induction coil detector and microwave radar 
detector, mobile detection represented by floating car system, and satellite navigation system. 
The traffic detector is still an important part of the urban traffic information collection system, 
and its optimal layout is of great significance. 

The rapid growth of the number of vehicles in cities will bring about a series of traffic 
problems, including traffic congestion and high traffic accident rates. Efficient traffic signal 
control methods have been proven to be one of the important ways to alleviate traffic 
problems. The existing signal control mainly focuses on the design of online signal control 
algorithms, but this method has the problem of frequent signal switching. Modeling of traffic 
flow on a network has been considered using different approaches. For the present 
investigation we are interested in traffic flow models for road networks using the above 
models based on partial differential equations. Two such models were introduced by Holden 
and Risebro [1]. Both models use a cumulative description of traffic on each road without 
distinguishing between single lanes. Suitable conditions at the junctions are defined in order 
to obtain a uniquely solvable network problem.  
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This paper is organized as follows. Section 2 contains a description of the related work 
and the models used for describing flow on the single roads. Section 3 describes the 
methodology that based on the one-dimensional traffic flow grid model models and will be 
used in next sections. In Section 4 we design an experiment to verify our approach. In Section 
5 We describe the process and the tools that be used. In Section 6 We analyze the results of 
the experiment. 

2 Related work 
The micro model generates vehicle motion at a high level of detail: each vehicle is treated as 
a discrete agent that satisfies certain control rules. For specific urban traffic simulations, a 
large number of microscopic models have been developed because they can flexibly model 
the heterogeneous behavior of agents, different road topologies, and the interaction between 
surrounding vehicles. 

Early microscopic models include the cellular automata model and the car-following 
model. The movement of the vehicle in the cellular automata model is described by the 
evolution rules in pre-specified time, space, and state variables. Specifically, the road is 
discretized into units, and the model determines when the vehicle moves from the current 
unit to the next unit. Due to its simplicity, the cellular automata model has high computational 
efficiency and can simulate a large number of vehicles on a large road network. However, 
due to its discrete nature, the generated virtual traffic can only reproduce a limited number 
of real traffic behaviors. 

In contrast, the first car-following model introduced by Reuschel [2] and Pipes [3] can 
generate real driving behavior and detailed vehicle characteristics, but calculations are 
required. They assumed that the traffic flow is composed of scattered particles and modeled 
the interaction between cars in detail. These models express the position and speed of each 
vehicle through continuous-time differential equations based on a stimulus-response 
framework. 

In the past few decades, a large number of changes and expansions of car-following 
models have been used to model the response of the host vehicle to the preceding vehicle. 
Two well-known examples are the optimal speed model and the intelligent driving model. 

In the OVM model, it is assumed that the main vehicle maintains the optimal speed. Its 
acceleration is determined by the difference between its speed and the optimal speed of the 
vehicle ahead. In the IDM model, the acceleration and deceleration of the vehicle are 
calculated according to the current speed of the vehicle and the speed and position relative to 
the preceding vehicle. Vehicle-specific parameters enable IDM models to the preceding 
vehicle. Vehicle-specific parameters enable IDM models to simulate various vehicle types 
and driving styles. 

In addition to simulating single-lane traffic flow, multi-lane simulation has also been 
studied. One example is the improved optimal speed model, which is used to simulate traffic 
on two-lane highways and single-lane highways with on-ramp, another example is the two-
lane traffic model, which is used to simulate the horizontal effect of traffic. 

To generate detailed simulations, Shen and Jin proposed an enhanced IDM and 
continuous lane-changing method [4]. Their method can generate traffic flow with smooth 
acceleration and deceleration strategies and flexible lane suspension behavior. This model 
revises the original IDM model to make it more suitable for signal processing in urban road 
networks. Specifically, the acceleration process is divided into a free road acceleration term 
and a deceleration term. The free road acceleration term describes the driver’s willingness to 
reach the desired speed, and the deceleration term describes the driver’s willingness to 
maintain a safer distance from nearby vehicles. The deceleration item has been modified and 
an activation control part has been added to make the response of the parked vehicle more 
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stable. The model divides the lane change behavior of urban roads into two situations: free 
lane change and forced lane change, and provides a flexible continuous model for these two 
situations. 

Under relatively free road conditions, the phenomenon of free lane changes occurs from 
time to time. This behavior is modeled by the two-lane MOBIL model. Forced lane change 
is applied to the main vehicle requiring lane change behavior due to some necessary factors, 
such as racing the end of the lane or turning at an intersection, and the gap between the main 
vehicle and surrounding vehicles does not support free lane change, land, etc. People extend 
the complete speed difference model to deal with close-car-braking situations in rural traffic  
simulation. Later, Lu et al. introduced a personality model in traffic simulation [5]. 

Compared with the one-way or multi-lane traffic simulation, the intersection traffic 
simulation is more difficult. Doniec et al. proposed a multi-agent traffic simulation behavior 
model, which treats intersection traffic as a multi-agent coordination task [6].  

In the short-term traffic flow prediction, the traditional PSO optimized neural network 
prediction model directly takes the boundary value of the escaped particles and has no 
corresponding mutation mechanism, which is unfavorable for maintaining the diversity of 
the particle swarm and finding the optimal solution. To further improve the accuracy of short-
term traffic flow prediction, based on the traditional PSO optimized BP neural network, 
boundary mutation operators and self-mutation operators will be introduced to perform 
double mutation on particles to optimize network configuration parameters. The improved 
prediction model is verified with the measured traffic flow data. The results show that the 
model is more conducive to searching for the global optimal solution, and the optimization 
time is shorter, which can effectively improve the performance of short-term traffic flow 
prediction. 

To tackle these two time-invariant assumptions, a hybrid NN approach integrated with 
the particle swarm optimization (PSO) approach, namely intelligent PSO (IPSO), is proposed 
[7]. The IPSO uses the particles in the swarm to represent the neural networks that are used 
to forecast the short-term traffic flow, without making these two time-invariant assumptions. 
The IPSO has the following three main features: 

1) Flexible neural network structure: In the IPSO, each particle is represented by a three-
layer neural network, where switches are configured between links of neural nodes, to 
determine both the optimal NN structures and the parameters which are very concerning time. 
Each particle consists of two parts: the integer string and the hierarchical string. The integer 
string is used to represent the NN parameters. The hierarchical string is used to represent the 
NN structure. It is represented by the open/close actions of several switches which link the 
neural nodes. When the switch is opened, the link between the corresponding neural nodes 
exists. However, the link does not exist when the switch is closed. Based on this particle 
representation, both optimal NN structures and parameters can be adapted to newly-captured 
traffic flow data or time-varying configurations of on-road sensor systems. Also, the IPSO 
can automatically determine the optimal structures of NNs without involving trial and error 
methods. This is intended to overcome the limitations of the existing NN approaches for 
traffic flow forecasting in which the NN structure has to be fixed and cannot be adapted with 
time[7]. 

2) Active particle movement: In IPSO, the particle movement of classical particle swarm 
optimization is used, inspired by the social behaviors of animals. The particle movement is 
used to adapt to the optimal NN parameters and structures for short-term traffic flow 
forecasting, which is time-varying, since the particle movement can effectively tune the real-
time adaptive controllers for many time-varying systems, including the Maglev 
transportation system and generator system for power applications. This mechanism can also 
be applied for neural network design effectively. Also, Chan et al. demonstrated that particle 
movement can effectively adapt optimal structures and parameters of time-varying systems, 
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where the parameters and the structures of the systems vary with time. Based on the particle 
movement, the IPSO intends to automatically and effectively tune both the parameters and 
the structures of the NNs, to obtain an optimal short-term traffic flow forecasting, which is 
time-varying[7]. 

3) Further enhancement of particle movement: In the classical PSO, the diversity of the 
solutions is likely to be lost when a solution with certain good quality is obtained. Hence, the 
classical PSO is likely to be trapped into this solution and no further progress in terms of 
better solutions can be made. To further assist the proposed IPSO to search for better 
solutions, activating components can be injected into the particles to increase the diversity of 
the particles. In the IPSO, a mechanism based on a fuzzy intelligence system is designed, to 
maintain the diversity of particles by artificially injecting them with activating components. 
It monitors the traffic flow accuracies obtained by the IPSO and the changing rates of the 
traffic flow accuracies. When the traffic flow accuracy is low or the traffic flow accuracy 
decreases sharply, more activating components are injected into the particles. This is intended 
to prevent particles pre-maturely converging to solutions with poor traffic flow accuracies 
and helps the IPSO to move the poor particles from a region with poor traffic flow accuracies 
to a better region[7]. 

Applying artificial intelligence to self-driving cars to make traffic run smoothly, reduce 
fuel consumption, and improve air quality monitoring models may sound like science fiction, 
but researchers at Berkeley Lab and the University of California Berkeley have launched two 
research projects to do this. The first project uses reinforcement learning to make self-driving 
cars drive in a way that increases traffic flow and reduces energy consumption, the second 
project uses deep reinforcement learning to analyze satellite images, combined with traffic 
information from mobile phones and environmental monitors to collect data to improve air 
quality forecasts. 

3 Methodology 
Based on the one-dimensional traffic flow grid model, a one-dimensional traffic flow grid 
model that considers the nearest neighbour car and the next neighbour car and considers the 
interaction of the front and rear neighbour cars to optimize the traffic flow was proposed. 
The linear stability theory and the nonlinear theory were applied. The analysis is carried out 
to obtain the stability conditions of the traffic flow, and the equation describing the phase 
transition of traffic jams was derived. The solution of the equation was verified by numerical 
simulation. The stability of the traffic flow, and considering the optimized traffic flow of the 
front and rear neighbouring cars will reduce the stability. 

In probability theory and related fields, a stochastic or random process is a mathematical 
object usually defined as a family of random variables. Stochastic processes are widely used 
as mathematical models of systems and phenomena that appear to vary randomly. To use the 
stochastic process, we can analyze the traffic flow model in different situations. 

Queueing theory is the mathematical study of waiting lines, or queues as well. A queueing 
model is constructed so that queue lengths and waiting times can be predicted. Queueing 
theory is generally considered a branch of operations research because the results are often 
used when making business decisions about the resources needed to provide a service. 

Queueing theory has its origins in research by Agner Krarup Erlang when he created 
models to describe the system of Copenhagen Telephone Exchange Company, a Danish 
company[8]. The ideas have since seen applications including telecommunication, traffic 
engineering, computing[9], and, particularly in industrial engineering, in the design of 
factories, shops, offices, and hospitals, as well as in project management[10][11]. 

Using the stochastic process, queuing theory, and dynamic programming, we can realize 
accurate simulation and derivation of the road traffic flow model. Also, we need network 

MATEC Web of Conferences 355, 02010 (2022) 

ICPCM2021
https://doi.org/10.1051/matecconf/202235502010

4



analysis, that is graph theory. In mathematics, graph theory is the study of graphs, which are 
mathematical structures used to model pairwise relations between objects. A graph in this 
context is made up of vertices (also called nodes or points) that are connected by edges (also 
called links or lines). A distinction is made between undirected graphs, where edges link two 
vertices symmetrically and directed graphs, where edges link two vertices asymmetrically.  

4 Experiment design 
This paper intends to answer whether or not, and in which conditions, does a traffic network 
system work among a society that uses the same roads to travel in their everyday lives. In the 
context of our problem, and the efficient result is considered every time the number of users 
served by the traffic network system is greater than or equal to the number of users not served. 
For example, considering the total number of people who want to use the traffic network 
system (whether as drivers or users alone) as 400 people in total, such a system is considered 
competent enough if at least 200 people are served by it (that is, higher than 50%). 

The other issue besides the actual problem is which parameters, constraints, and/or 
variables we must define in our system to mirror an existing society. We describe every 
choice, assumption, and absence of our model, and how they are related to each other in the 
context of the entire system. We envisioned the whole simulation to always be as real as 
possible, and one of our primary goals was to create a world that mirrored ours as much as 
possible. As such, this paper also documents our attempts to encounter resemblances to the 
world we live in, and how we prioritized some similarities and discarded others we figured 
wouldn’t add much to the final result. 

We use NetLogo as a multi-agent modeling environment to create and simulate a traffic 
network system model. NetLogo is well known to create the desired conditions to simulate 
social and natural phenomena where people behind the model being created are free to set 
their rules and instructions that all the agents must follow. We set up the following input 
variables: grid size, number of cars, number of passengers per car, parking probability and 
how much time cars remain parked, Accident probability and how much time it takes for the 
accident to resolve itself and priority areas and what population percentage is stacked upon 
those areas. 

NetLogo is a multi-agent programmable modeling environment. It is used by many 
hundreds of thousands of students, teachers, and researchers worldwide. It also powers 
HubNet participatory simulations. It is authored by Uri Wilensky and developed at the CCL. 
You can download it free of charge. You can also try it online through NetLogo Web. 

NetLogo was designed by Uri Wilensky, in the spirit of the programming language Logo, 
to be "low threshold and no ceiling". It teaches programming concepts using agents in the 
form of turtles, patches, links, and the observer[12]. NetLogo was designed with multiple 
audiences in mind, in particular: teaching children in the education community, and for 
domain experts without a programming background to model related phenomena[13]. Many 
scientific articles have been published using NetLogo. The NetLogo environment enables the 
exploration of emergent phenomena. It comes with an extensive models library including 
models in a variety of domains, such as economics, biology, physics, chemistry, psychology, 
system dynamics[14]. NetLogo allows exploration by modifying switches, sliders, choosers, 
inputs, and other interface elements[15]. Beyond exploring, NetLogo allows authoring new 
models and modifying extant models. NetLogo is open source and freely available from the 
NetLogo website. It is in use in a wide variety of educational contexts from elementary school 
to graduate school. Many teachers make use of NetLogo in their curricula. 
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5 Numerical experiments 
In this experiment, we use NetLogo as a carrier for experiments. This software has a model 
called Traffic Grid. In this model, we can control traffic lights and global variables, such as 
the speed limit and the number of cars, and explore traffic dynamics. The maximum 
parameter setup we set in the model is 100. The major differences we compare are horizontal 
and vertical directions. The number of cars is 100, the car’s speed in the model is out of step 
with reality, so we choose 1 and assume it will be 60miles/h. The tricks per cycle are 20. Let 
m be the number of vertical lanes and n be the number of horizontal lanes. We did two 
simulations: 

The first condition to consider the square grid with m*m layout and we mainly consider 
these cases: 3*3, 5*5, 7*7, 9*9 lanes. And the second condition is to consider the non-square 
grid with m*n layout. Here, we implemented three kinds of comparisons on the following 
cases: (1) 6*3 and 9*3 compare with 3*3, (2) 7*5 and 9*5 compare with 5*5, (3) 9*7 
compares with 7*7. 

In the m*n grid, we compared what would happen if the lanes were different in the vertical 
and horizontal directions. The values that will be measured for comparison are the average 
waiting time of cars and average speed. 

6 Results and analysis 
In the first experiment, we record the data in the m*m grid. And create a time-average speed 
Figure 1 and time-wait timeline chart Figure 2. These two charts show that at the same speed 
and the same number of traffic, the more lanes and intersections there are, the longer the cars 
wait. But surprisingly, as the number of lanes increased, the average speed increased in 
Figure 1. However, the data graph also fluctuates more. It can be shown here that although 
the speed increases in smooth traffic, the speed of multi-lane traffic is much slower in 
congested traffic. 
 

  
Fig. 1. The average speed of cars in m*m grid.        Fig. 2. The average wait time of cars in m*m grid.  

In the second experiment, we compare the m*n grid and the m*m grid. The results show 
that the m*n grid’s average speed of cars in Figure 3 is greater than the m*m grid. Same as 
the conclusion of the above paragraph, the m*m grid has a smaller wait time in Figure 4. 
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Fig. 3. The average speed of cars in m*n grid.        Fig. 4. The average wait time of cars in m*n grid.  

7 Conclusion and future work 
In the simulation, we use a standard graph and simple rules on NetLogo. This will cause my 
simulation to be a bit limited. These roads are all straight and do not simulate curves, traffic 
lights can only be set as a single control. Among the whole network, many factors can’t be 
considered in a simple network system. 

Many random terms are difficult to be quantified: driving behaviors, differences among 
individual drivers, emergent situations like traffic accidents will affect the simulation. The 
driving behaviors in different countries and cultures will cause variable conditions. In certain 
situations, different individual drivers have different driving habits. Some drivers are 
aggressive while some are cautious. 

In the future, for more complex models, we can try to simulate a two-lane or even a four-
lane intersection. On these roads, different lanes play different roles and give different 
commands to vehicles: left/right turn or turn round. Also, multiple traffic lights controlling 
will affect the simulation. For example, like in an intersection of an 8-line road and 2-line 
road, the problem is how to allot lines to maximize the efficiency of traffic. The traffic lights 
need to be optimized as well since it is very difficult to control the time as there is a huge gap 
between the traffic flows on the two roads.  

Under complicated traffic rules and roads, the more complex simulation needs to be 
studied. In some countries and regions, the right turn lane does not set traffic lights while 
others set specific lights to control the right turn lane. Different types of roads such as 
freeways, urban expressways, and residential streets also have different driving speeds. 
 
This work was supported in part by  the Key Research and Development Project of Shandong Province 
under grant 2018GGX101032. 

References 
1.  H. Holden and N. Risebro, A mathematical model of traffic flow on a network of 

unidirectional roads, SIAM J. Math. Anal., 26 (1995), pp. 999–1017. 
2.  A. Reuschel, “Vehicle movements in a platoon,” Oesterreichisches Ingenieeur-Archir, 

vol. 4, pp. 193–215, 1950.  
3.  L. A. Pipes, “An operational analysis of traffic dynamics,” Journal of Applied Physics, 

vol. 24, no. 3, pp. 274–281, 1953. 
4. J. Shen and X. Jin, “Detailed traffic animation for urban road networks,” Graph. Models, 

vol. 74, no. 5, pp. 265–282, Sep. 2012. 
5. Lu, Xuequan, et al. "A personality model for animating heterogeneous traffic behaviors." 

Computer animation and virtual worlds 25.3-4 (2014): 361-371. 

MATEC Web of Conferences 355, 02010 (2022) 

ICPCM2021
https://doi.org/10.1051/matecconf/202235502010

7



6.  Doniec, Arnaud, et al. "A behavioral multi-agent model for road traffic simulation." 
Engineering Applications of Artificial Intelligence 21.8 (2008): 1443-1454. 

7.  K. Y. Chan, T. S. Dillon and E. Chang, "An Intelligent Particle Swarm Optimization for 
Short-Term Traffic Flow Forecasting Using on-Road Sensor Systems," in IEEE 
Transactions on Industrial Electronics, vol. 60, no. 10, pp. 4714-4725, Oct. 2013, doi: 
10.1109/TIE.2012.2213556. 

8.  Sundarapandian, V. (2009). "7. Queueing Theory". Probability, Statistics and Queueing 
Theory. PHI Learning. ISBN 978-8120338449. 

9. Lawrence W. Dowdy, Virgilio A.F. Almeida, Daniel A. Menasce. "Performance by 
Design: Computer Capacity Planning by Example". Archived from the original on 2016-
05-06. Retrieved 2009-07-08. 

10. Schlechter, Kira (March 2, 2009). "Hershey Medical Center to open redesigned 
emergency room". The Patriot-News. Archived from the original on June 29, 2016. 
Retrieved March 12, 2009 

11. Mayhew, Les, Smith, David (December 2006). Using queuing theory to analyse 
completion times in accident and emergency departments in the light of the Government 
4-hour target. Cass Business School. ISBN 978-1-905752-06-5. Retrieved 2008-05-20. 

12. Wilensky, Uri (1999–2019). "Types of Agents in NetLogo". The Center for Connected 
Learning and Computer-Based Modeling (CCL). Evanston, Illinois: Northwestern 
University. Retrieved 2019-05-03. 

13. Kornhauser, Daniel, Rand, William, Wilensky, Uri (November 15–17, 2007). 
Visualization Tools for Agent-Based Modeling in NetLogo (PDF). Agent2007. The 
Center for Connected Learning and Computer-Based Modeling (CCL). Chicago, Illinois: 
Northwestern University. Retrieved 2019-05-03. 

14. Wilensky, Uri (1999–2019). "NetLogo Models Library". The Center for Connected 
Learning and Computer-Based Modeling (CCL). Evanston, Illinois: Northwestern 
University. Retrieved 2019-05-03. 

15. Wilensky, Uri (1999–2019). "Interface Guide". The Center for Connected Learning and 
Computer-Based Modeling (CCL). Evanston, Illinois: Northwestern University. 
Retrieved 2019-05-03. 

MATEC Web of Conferences 355, 02010 (2022) 

ICPCM2021
https://doi.org/10.1051/matecconf/202235502010

8


	1 Introduction
	2 Related work
	3 Methodology
	4 Experiment design
	5 Numerical experiments
	6 Results and analysis
	7 Conclusion and future work

