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Abstract 40 

The International Cancer Genome Consortium (ICGC)’s Pan-Cancer Analysis of Whole Genomes 41 

(PCAWG) project aimed to categorize somatic and germline variations in both coding and non-42 

coding regions in over 2,800 cancer patients.  To provide this dataset to the research working 43 

groups for downstream analysis, the PCAWG Technical Working Group marshalled ~800TB of 44 

sequencing data from distributed geographical locations; developed portable software for uniform 45 

alignment, variant calling, artifact filtering and variant merging; performed the analysis in a 46 

geographically and technologically disparate collection of compute environments; and 47 

disseminated high-quality validated consensus variants to the working groups.  The PCAWG 48 

dataset has been mirrored to multiple repositories and can be located using the ICGC Data Portal. 49 

The PCAWG workflows are also available as Docker images through Dockstore enabling 50 

researchers to replicate our analysis on their own data. 51 

Introduction 52 

The International Cancer Genome Consortium (ICGC)/The Cancer Genome Atlas (TCGA) Pan-53 

Cancer Analysis of Whole Genomes (PCAWG) study has characterized the pattern of mutations 54 

in over 2,800 cancer whole genomes. Extending TCGA Pan-Cancer analysis project, which 55 

focused on molecular aberrations in protein coding regions only1, PCAWG undertook the study of 56 

whole genomes, allowing for the discovery of driver mutations in cis-regulatory sites and non-57 

coding RNAs, examination of the patterns of large-scale structural rearrangements, identification 58 

of signatures of exposure, and elucidation of interactions between somatic mutations and germline 59 

polymorphisms. 60 

The PCAWG dataset comprises a total of 5,789 whole genomes of tumors and matched normal 61 

tissue spanning 39 tumor types. The tumor/normal pairs came from a total of 2,834 donors 62 
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collected and sequenced by 48 sequencing projects across 14 jurisdictions (Supplementary Fig. 1). 63 

In addition, RNA-Seq profiles were obtained from a subset of 1,284 of the donors2. While the 64 

individual sequencing projects contributing to PCAWG had previously identified genomic variants 65 

within their individual cancer cohorts, each project had used their own preferred methods for read 66 

alignment, variant calling and artifact filtering. During initial evaluation of the data set, we found 67 

that the different analysis pipelines contributed high levels of technical variation, hindering 68 

comparisons across multiple cancer types3. To eliminate the variations arising from non-uniform 69 

analysis, we reanalyzed all samples starting with the raw sequencing reads and using a 70 

standardized set of alignment, variant calling and filtering methods. These “core” workflows 71 

yielded uniformly analyzed genomic variants for downstream analyses by various PCAWG 72 

working groups. A subset of these variants were validated through targeted deep sequencing to 73 

estimate the accuracy of our approach4. 74 

To create this uniform analysis set, multiple logistic and technical challenges had to be overcome. 75 

First, projects participating in the PCAWG study employed their own metadata conventions for 76 

describing their raw sequencing data sets. Hence, we had to establish a PCAWG metadata standard 77 

suitable for all the participating projects. Second, and more significantly, the data was large in size 78 

-- 800TB of raw sequencing reads -- and distributed geographically across the world. During 79 

realignment, the data transiently doubled in size, and after final variant calling and other 80 

downstream analysis, the full data set reached nearly 1PB. Furthermore, the compute necessary to 81 

fully harmonize the data was estimated at more than 30 million core-hours. Both the storage and 82 

compute requirements made it impractical to complete the analysis at any single research institute.  83 

In addition, legal constraints across the various jurisdictions imposed restrictions as to where 84 

personal data could be stored, analyzed and redistributed5.  Hence, we needed a protocol to spread 85 
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the compute and storage resources across multiple commercial and academic compute centers. 86 

This requirement, in turn, necessitated the development of analysis pipelines that would be 87 

portable to different compute environments and yield consistent analysis results independent of 88 

platform. With multiple analysis pipelines running simultaneously in multiple compute 89 

environments, the assignment of workload, tracking of progress, quality checking of data and 90 

dissemination of results all required sophisticated and flexible planning. 91 

Our approach to tackling these challenges was unique and substantially different from previous 92 

large-scale genome analysis endeavors. First, as a collaborative effort among a wide range of 93 

institutions not backed by a centralized funding source, a high degree of coordination among a 94 

large task force of volunteer software engineers, bioinformaticians and computer scientists was 95 

required. Second, the project fully embraced the use of both public and private cloud compute 96 

technologies while leveraging established high-performance computing (HPC) infrastructures to 97 

fully utilize the compute resources contributed by the partner organizations. The cloud technology 98 

platforms we utilized included both Infrastructure as a Service (IaaS): OpenStack, Amazon Web 99 

Services and Microsoft Azure; and Platform as a Service (PaaS): Seven Bridges (SB). Lastly, the 100 

project made heavy use of Docker, a new lightweight virtualization technology that ensured 101 

workflows, tools and infrastructure would work identically across the large number of compute 102 

environments utilized by the project. 103 

Utilizing the compute capacity contributed by academic HPC, academic clouds and commercial 104 

clouds (Table 1), we were able to complete a uniform analysis of the entire set of 5,789 whole 105 

genomes in just over 23 months (Figure 1). Figure 3 illustrates the three broad phases of the project: 106 

(1) Marshalling and upload of the data into data analysis centres (3 months); (2) Alignment and 107 

variant calling (18 months); and (3) Quality filtering, merging, synchronization and distribution of 108 
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the variant calls to downstream research groups (2 months). A fourth phase of the project, in which 109 

PCAWG working groups used the uniform variant calls for downstream analysis, such as cancer 110 

driver discovery, began in the summer of 2016 and continued through the first two quarters of 111 

2017. 112 

The following sections will describe the technical solutions used to accomplish each of the phases 113 

of the project. 114 

Phase 1: Data Marshalling and Upload 115 

A significant challenge for the project was that at its inception, a large portion of the raw read 116 

sequencing data had yet to be submitted to a read archive and thus had no standard retrieval 117 

mechanism. In addition, the metadata standards for describing the raw data varied considerably 118 

from project to project. For this reason, we asked the participating projects to prepare and upload 119 

the 774 TB of raw whole genome sequencing (WGS) data and 27 TB raw RNA-seq data into a 120 

series of geographically distributed data repositories, each running a uniform system for registering 121 

the data set, accepting and validating the raw read data and standardized metadata. 122 

We utilized seven geographically distributed data repositories located at: (1) Barcelona 123 

Supercomputing Centre (BSC), (2) European Bioinformatics Institute (EMBL-EBI) in the UK, (3) 124 

German Cancer Research Center (DKFZ) in Germany; (4) the University of Tokyo in Japan; (5) 125 

Electronics and Telecommunications Research Institute (ETRI) in South Korea; (6) the Cancer 126 

Genome Hub (CGHub) and (7) the Bionimbus Protected Data Cloud (PDC) in the USA (Figure 2 127 

and Suppl Table 1). 128 

To accept and validate sequence set uploads, each data repository ran a commercial software 129 

system, GNOS (Annai Systems). We chose GNOS because of the heavy testing it had previously 130 
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received as the engine powering TCGA CGHub, and its support for validation of metadata 131 

according to the Sequence Read Archive (SRA) standard and file submission, strong user 132 

authentication and encryption, as well as its highly optimized data transfer protocol6. Each of the 133 

seven data centers initially allocated several hundred terabytes of storage to accept raw sequencing 134 

data from submitters within the region. The data centers also provided co-located compute 135 

resources to perform alignment and variant calling on the uploaded data. 136 

Genomic data uploaded to the GNOS repositories was accompanied with detailed and accurate 137 

metadata to describe the cancer type, sample type, sequencing type and other attributes for 138 

managing and searching the files. We required that identifiers for project, donor, sample follow a 139 

standardized convention such that validation and auditing tools could be implemented. Most of the 140 

naming conventions in PCAWG were adopted from the well established ICGC data dictionary 141 

(http://docs.icgc.org/dictionary/about/). 142 

Since most member projects at the time of upload already had sequencing reads aligned and 143 

annotated using their own metadata standards, a non-trivial effort was required to prepare the 144 

sequencing data for submission to GNOS. Each member project had to (1) prepare lane-level 145 

unaligned reads in BAM format, (2) reheader the BAM files with metadata following the PCAWG 146 

conventions, (3) generate metadata XML files, and (4) upload the BAM files along with the 147 

metadata XML files to GNOS. To facilitate this process, we developed the PCAP-core tool 148 

(https://github.com/ICGC-TCGA-PanCancer/PCAP-core) to extract the metadata from the BAM 149 

headers, validate the metadata, transform the metadata into the XML files conforming to the SRA 150 

specifications, and submitting the BAM files along with the metadata XML files to GNOS. 151 

 152 
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Phase 2: Sequence Alignment and Variant Calling 153 

We began the process of sequence alignment about two months after the uploading process had 154 

begun. Both tumor and matched normal reads were subjected to uniform sequence alignment using 155 

BWA-MEM7 on top of a common GRCh37-based reference genome that was enhanced with decoy 156 

sequences, viral sequences, and the revised Cambridge reference genome for the mitochondria. 157 

Efforts by the project QC group demonstrated that employing multiple variant callers in ensemble 158 

fashion improved calling sensitivity3, thus the aligned tumor/normal pairs were subjected to 159 

somatic variant calling using three “best practice” software pipelines. These pipelines were 160 

developed by the Sanger Institute8-11; jointly by DKFZ12 and the European Molecular Biology 161 

Laboratory (EMBL)13; and the Broad Institute14 with contribution from MD Anderson Cancer 162 

Center-Baylor College of Medicine15.  Each pipeline represents the best practices from the 163 

authoring organizations and include the current versions of each institute’s flagship tools. Each 164 

pipeline consists of multiple software tools for calling of single and multiple nucleotide variants 165 

(SNVs and MNVs), small insertions/deletions (indels), structural variants (SVs) and somatic copy 166 

number alterations (SCNAs). The minimum compute requirements, median runtime and the 167 

analytical algorithms for each pipeline are shown in Table 2. 168 

When possible, both the alignment and variant calling pipelines were executed in the same regional 169 

compute centers to which the data sets were uploaded. As the project progressed, we utilized 170 

additional compute resources from AWS, Azure, iDASH, the Ontario Institute for Cancer 171 

Research (OICR), the Sanger Institute, and Seven Bridges (Figure 2). These centers computed on 172 

data sets located in the same region to optimize data transfer. Over the course of the project, some 173 

centers outpaced others and we rebalanced data sets as needed to use resources as efficiently as 174 
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possible.  Figure 1 shows the progress of the analytic pipelines with more details shown in 175 

Supplementary Figures 2-6. 176 

Phase 3: Variant merging, filtering, and synchronization 177 

Following the completion of the three variant calling workflows, variants were passed to an 178 

additional pipeline referred as the “OxoG workflow”. This pipeline filtered out oxidative artifacts 179 

in SNVs using the OxoG algorithm16, normalized indels using the bcftools “norm” function, 180 

annotated genomic features for downstream merging of variants, and generated one “minibam” 181 

per specimen using the VariantBam algorithm17. Minibams are a novel format for representing the 182 

evidence that underlies genomic variant calls. Read pairs spanning a variant within a specified 183 

window were extracted from the whole genome BAM to generate the minibam. The windows we 184 

chose were +/- 10 base pairs (bp) for SNVs, +/- 200 bp for indels, and +/- 500 bp for SV 185 

breakpoints. The resulting minibams are about 0.5% of the size of whole genome BAMs, totalling 186 

to about four terabytes for all PCAWG specimens, making it much easier to download and store 187 

for the purpose of inspecting variants and their underlying read evidence. 188 

Following  filtering, we applied a series of merge algorithms to merge variants from the multiple 189 

variant calling pipelines into consensus call sets with higher accuracies than the individual 190 

pipelines alone. The SNV and indel merge algorithms were developed on the basis of experimental 191 

validation of the individual variant calling pipelines using deep targeted sequencing, a process 192 

detailed in the PCAWG-1 marker paper4.  The algorithm for consensus SVs is described in the 193 

PCAWG-6 marker paper18.  The consensus SCNAs were built upon the base-pair breakpoint 194 

results from the consensus SVs using a multi-tiered bespoke approach combining results from 6 195 

SCNA algorithms19. 196 
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Following merging, the SNV, indel, SV and SCNA consensus call sets were subjected to intensive 197 

examination by multiple groups in order to identify anomalies and artefacts, including uneven 198 

coverage of the genome, strand and orientation bias, contamination with reads from non-human 199 

species, contamination of the library with DNA from an unrelated donor, and high rates of common 200 

germline polymorphisms among the somatic variant calls4,11. In keeping with our mission to 201 

provide a high-quality and uniformly annotated data set, we developed a series of filters to annotate 202 

and/or remove these artefacts. Tumor variant call sets that were deemed too problematic to use for 203 

downstream analysis were placed on an “exclusion list” (353 specimens, 176 donors). In addition, 204 

we established a “grey list” (150 specimens, 75 donors), of call sets that had failed some tests but 205 

not others and could be used, with caution, for certain types of downstream analysis.  The criteria 206 

for classifying callsets into exclusion and grey list are described in more detail in the PCAWG-1 207 

paper10. 208 

Following the filtering steps, we used GNOS to synchronize the aligned reads and variant call sets 209 

among a small number of download sites for use by PCAWG downstream analysis working groups 210 

(Suppl Table 2). We also provided login credentials to members of PCAWG working groups for 211 

compute cloud-based access to the aligned read data across several of the regional data analysis 212 

centers, which avoided the overhead of downloading the data. 213 

Software and Protocols 214 

This section describes the software and protocols developed for this project in more detail. All the 215 

software that we created for this project is available for use by any research group to conduct 216 

similar cloud-based cancer genome analyses economically and at scale. 217 

 218 
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Centralized Metadata Management System 219 

The metadata describing the donors, specimens, raw sequencing reads, WGS and RNA-Seq 220 

alignments, variant calls from the three pipelines, OxoG-filtered variants, and mini-BAMs were 221 

collected from globally distributed GNOS repositories, consolidated and indexed nightly using 222 

ElasticSearch (https://www.elastic.co) in a specially designed object graph model. This centrally 223 

managed metadata index was a key component of our operations and data provenance tracking. 224 

First, the metadata index was critical for tracking the status of each sequencing read set and for 225 

scheduling the next analytic step. The index also tracked the current location of each BAM and 226 

variant call set, allowing the pipelines to access the needed input data efficiently. Second, the 227 

metadata index provided the basis for a dashboard (http://pancancer.info) for all stakeholders to 228 

track day-to-day progress of each pipeline at each compute site. By reviewing the throughput of 229 

each compute site on a daily basis, we were able to identify issues early and to assign work 230 

accordingly to keep our compute resources productive. Third, the metadata index was also used 231 

by the ICGC Data Coordination Centre (DCC) to transfer PCAWG core datasets to long-term 232 

genomic data archive systems. Finally, the metadata index was imported into the ICGC Data Portal 233 

(https://dcc.icgc.org) to create a faceted search for PCAWG data allowing users to quickly locate 234 

data based on queries about the donor, cancer type, data type or data repositories. 235 

Docker Containers & Consonance 236 

Given that the compute resources donated to the PCAWG project were a mix of cloud and HPC 237 

environments, we required a mechanism to encapsulate the analytical workflows to allow them to 238 

run smoothly across a wide variety of compute sites. The approaches we used evolved over time 239 

to incorporate better ways of abstracting and packaging tools to facilitate this portability. Initially, 240 

we used SeqWare workflow execution engine20 for bundling software and executing workflows, 241 
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but this system required extensive and time consuming setup for the worker virtual machines 242 

(VMs). Later, we adopted Docker (http://www.docker.com) as a key enabling technology for 243 

running workflows in an infrastructure-independent manner. As a lightweight, infrastructure-244 

agnostic containerization technology, Docker allowed PCAWG pipeline authors to fully 245 

encapsulate tools and system dependencies into a portable image. This included the fleet of VMs 246 

on commercial and academic clouds, as well as the project’s HPC clusters that were modified to 247 

support Docker containers. Each of our major pipelines was encapsulated in a single Docker 248 

image, along with a suitable workflow execution engine, reference data sets, and software libraries 249 

(Table 2) . 250 

Another key component of the PCAWG software infrastructure stack was cloud-agnostic 251 

technology to provision virtual machines on both academic and commercial clouds. Our initial 252 

attempts to scale the analytic pipelines across multiple cloud systems were complicated by 253 

transient failures in many of the academic cloud environments, subtle differences between 254 

seemingly identical clouds, and misconfigured services within the clouds. Initially, we attempted 255 

to replicate within the clouds standard components of conventional HPC environments, including 256 

shared file systems and cluster load balancing systems. However, we quickly learned that these 257 

perform poorly in the dynamic environments of the cloud. After several design iterations, we 258 

developed Consonance (https://github.com/consonance), a cloud-agnostic provisioning and 259 

queueing platform. For each of the cloud platforms in use in PCAWG, including OpenStack, 260 

VMWare, AWS, and Azure, Consonance provided a queue where work scheduling was decoupled 261 

from the worker nodes. As the fleet of working nodes shrank or expanded, each queue queried the 262 

centralized metadata index to obtain the next batch of tasks to execute. Consonance then created 263 

and maintained a fleet of worker VMs, launched new pipeline jobs, detected and relaunched failed 264 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 10, 2017. ; https://doi.org/10.1101/161638doi: bioRxiv preprint 

http://www.docker.com/
https://github.com/consonance
https://doi.org/10.1101/161638


12 

VMs, and reran workflows as needed. Consonance allowed us to dynamically allocate cloud 265 

resources depending on the workload at hand, and even interacted with the AWS spot marketplace 266 

to minimize our commercial cloud costs. 267 

The Operations: whitelist, work queue, cloud shepherds 268 

For the duration of the project, several personnel were required to operate the Docker images, 269 

Consonance and the metadata index effectively (Figure 4). Each compute environment was 270 

managed by a “cloud shepherd” responsible for completing the workflows on a set of pre-assigned 271 

donors or specimens. All the HPC environments (BSC, DKFZ, UTokyo, UCSC, Sanger) were 272 

shepherded by personnel local to the institute who were already familiar with the specific file 273 

systems and work schedulers, and obtained technical support from their local system 274 

administrators. The majority of the cloud environments (AWS, Azure, DKFZ, EMBL-EBI, ETRI, 275 

OICR, PDC) granted tenancy to OICR whose personnel acted as cloud shepherds. The other clouds 276 

(iDASH, SB), newly launched at the time, assigned their own cloud shepherds who also tested and 277 

fine tuned their environments in the process. 278 

A project manager acted as the point of contact for all the cloud shepherds to report any technical 279 

issues and progress, such that the overall availability of compute resources and throughput at any 280 

time point could be estimated. Combining this knowledge with the information from the 281 

centralized metadata index, the project manager assigned donors and workflows to compute 282 

environments in the form of “whitelists” on a weekly basis. Cloud shepherds then added the 283 

whitelist of donors to their workflow queue for execution. This approach allowed us to be agile in 284 

responding to data availability disruptions, planned or unplanned downtime while optimizing data 285 

transfer and operations throughput. 286 
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While quotas shifted throughout the duration of the analysis, as demands and workloads on the 287 

individual centers changed, the overall peak commitment received was on the order of the 15,000 288 

cores, approximately 60TB of RAM, and a peak usage of ~630 virtual machines. 289 

Software Distribution through Dockstore 290 

The workflows used during PCAWG production include several PCAWG-specific elements that 291 

may limit their usability by researchers outside of the project. To facilitate the long term usage of 292 

these workflows by a broad range of cancer genomic researchers, we have simplified the tools to 293 

make most workflows standalone (Suppl Table 4). These Docker-packaged workflows have been 294 

extensively tested for their reproducibility and are registered on the Dockstore21 295 

(http://dockstore.org), a service compliant with Global Alliance for Genomics and Health 296 

(GA4GH) standards to provide computational tools and workflows through Docker and described 297 

with Common Workflow Language22 (CWL). This enables other researchers to run the workflows 298 

on their own data, extend their utility, and replicate the work we have done in any CWL-compliant 299 

environment. By running the identical PCAWG workflows on their own data, researchers will be 300 

able to make direct comparisons and add to the existing PCAWG dataset. 301 

The Docker-packaged BAM alignment and variant calling workflows were tested in different 302 

cloud environments and found to be easy to enact by third parties. Some discrepancies with the 303 

official data were observed and attributed to improvements in the underlying software (Sanger, 304 

Delly) or to the stochastic nature of the software, and deemed to have a low overall impact. Despite 305 

not achieving a completely identical results, the reproducibility of the process is satisfactory, 306 

especially considering that it involves software developed independently by different teams. 307 

 308 
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Data Distribution / Data Portal 309 

While GNOS was used for the core pipelines, Synapse23 was used to provide an interface to the 310 

files generated by the working groups and other intermediate results created throughout the project. 311 

Unlike GNOS which is focused on archival storage, Synapse allowed for collective editing in the 312 

form of a wiki, provenance tracking and versioning of results through a web interface as well as 313 

programmatic APIs. While Synapse provided an interface that allowed analyses to be shared 314 

rapidly across the consortia, the controlled access data was stored on a secure SFTP server 315 

provided by the National Cancer Institute (NCI). When the working groups complete their 316 

analysis, the metadata is retained in Synapse while the final version of the results is transferred to 317 

the ICGC Data Portal for archival. 318 

In addition to GNOS-based repositories, the PCAWG dataset has been mirrored to multiple 319 

locations: the European Genome-phenome Archive (EGA, 320 

https://www.ebi.ac.uk/ega/studies/EGAS00001001692), AWS Simple Storage Service (S3, 321 

https://dcc.icgc.org/icgc-in-the-cloud/aws), and the Cancer Genome Collaboratory 322 

(http://cancercollaboratory.org). The data holdings at each repository at the time of publication are 323 

summarized in Suppl Table 2. To help researchers locate the PCAWG data, the ICGC Data Portal 324 

(https://dcc.icgc.org) provides a faceted search interface to query about donor, cancer type, data 325 

type or data repositories. Users can browse the collection of released PCAWG data and generate 326 

a manifest that facilitates downloading of the selected files. 327 

The data repositories hosted at AWS S3 and the Collaboratory are powered by an open source 328 

object-based ICGC Storage System (https://github.com/icgc-dcc/dcc-storage) that enables fast, 329 

secure and multi-part downloads of files. Since AWS and the Collaboratory also have compute 330 

power co-located with the PCAWG data, they serve as effective cloud resources for researchers 331 
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wishing to conduct further analyses on the PCAWG data without having to provision local 332 

compute resources and to download terabytes of data to their local compute environment. 333 

Discussion: Replicating PCAWG Analysis on Your Own Data 334 

This project provided us with a rare opportunity to directly compare three categories of compute 335 

environment: traditional HPC, academic compute clouds and commercial clouds. In terms of 336 

stability and first time setup effort, we found that the traditional HPC environment routinely 337 

outperformed academic cloud systems, and often outperformed the commercial clouds. However, 338 

most of the academic cloud systems we worked with had been recently installed and some of the 339 

stability issues resulted from the shake-down period. The major benefit of the commercial clouds 340 

was the ability to scale compute resources up or down as needed, the ease of replicating the setup 341 

in different regions, and the availability of cloud-based data centers in different geographic 342 

regions, which allowed us to minimize data transfer overhead. For groups interested in replicating 343 

PCAWG results, or using the analytic pipelines for their own data, we are comfortable 344 

recommending running the analysis on a commercial cloud. 345 

In terms of cost, we have summarized in Figure 5 the costs of computing on AWS and the tradeoff 346 

in accuracy if running a subset of the variant calling pipelines. The cost of aligning one normal 347 

specimen and one tumor specimen, and running three variant calling workflows followed by the 348 

OxoG workflow is about $100 per donor. This is based on a mean WGS coverage of 30X for 349 

normal specimens, and a bimodal coverage distribution with maxima at 38X and 60X for tumor 350 

specimens24. In addition, the hourly rate of the VMs are approximated from the spot instance 351 

pricing we experienced during production runs. With three variant calling workflows, we achieved 352 

an F1 score of 0.92. If one is willing to sacrifice some accuracy in order to reduce costs, then 353 
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running only one variant calling workflow may be an option. Despite the higher costs, running two 354 

workflows does not result in increased accuracy. Unfortunately, we were not able to directly 355 

compare the analysis costs among commercial clouds, academic clouds and HPC due to the 356 

difficulty in assessing the fully loaded cost of provisioning and running an academic compute 357 

cluster. 358 

In terms of time, the major benefit of operating on commercial clouds is the availability of ample 359 

resources for simultaneous parallel runs. For example, in a scenario to analyze a total of 100 360 

donors, one runs 200 VMs each aligning one tumor or normal specimen, followed by 300 VMs 361 

each running one of the three variant calling workflows on one donor, and 100 VMs to run OxoG 362 

workflow, the analysis will in principle take under 9 days to complete. In practice, additional time 363 

must be allowed for testing, scaling up, and the inevitability of failed jobs. A more realistic 364 

estimate of the time taken to run 100 donors through the complete PCAWG analysis on a 365 

commercial cloud is a few weeks. 366 

Another issue when planning a large-scale genome analysis project is the variance in execution 367 

time from donor to donor. The variant calling pipelines took between 40 and 65 hours of wall time 368 

to complete a tumor/genome pair, with the EMBL/DKFZ pipeline running the quickest and the 369 

Broad and Sanger pipelines taking somewhat longer. In addition to the variant calling step, the 370 

Broad pipeline was preceded by a GATK co-cleaning process taking an additional 24 hours.  For 371 

each pipeline there was significant variation in the runtime taken for each genome, and some 372 

tumor/normal pairs required an excessive amount of time to complete. Because long-running jobs 373 

can have economic and logistic impacts, we investigated the cause of this variation by applying 374 

linear regression to a number of features describing the raw sequencing sets, including coverage, 375 

read quality and mapping scores, number of mismatched end pairs and others (data not shown). 376 
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We found that a single factor, genomic coverage, explained the variation in wall clock time which 377 

increased roughly linearly with coverage. 378 

In conclusion, we tackled the challenge of performing uniform analysis on a large dataset across a 379 

geographically and technologically disparate collection of compute resources by developing 380 

technologies that realized the efficiencies of moving algorithms to the data. This is becoming a 381 

necessity as genomic datasets continue to increase in size and are geographically distributed with 382 

some jurisdictions restricting the geographical storage and computing of specific datasets. Our 383 

approach serves as a model for large scale collaborative efforts that engage many organizations 384 

and spread the computation work around the globe. 385 

Our effort resulted in three key deliverables. First and foremost, we produced a high-quality, 386 

validated consensus variant and alignment dataset of 2,834 cancer donors. To date, this is the 387 

largest whole genome cancer dataset analyzed in a consistent and uniform way. The dataset formed 388 

the basis for the research by the PCAWG working groups, and will continue to provide value to 389 

the research community for many years into the future. Second, we produced a series of best-390 

practice analytical workflows that are portable through the use of Docker and are available on the 391 

Dockstore. These workflows are usable in a multitude of compute environments giving researchers 392 

the ability to replicate our analysis on their own data. Finally, the infrastructure we built to 393 

coordinate analyses between cloud and HPC environments will be helpful for other projects 394 

requiring the same distributed approaches. 395 
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Figures 556 

 557 
 558 

Figure 1: Progress of the 5 workflows over time.  The “flat line” of the BWA workflow was due to 559 

two major tranches of sequencing data submissions, with a first tranche of ~2000 donors and a 560 

second tranche of ~800 donors that were uploaded later. The staggered start of the three 561 

variant calling pipelines was dictated more by the time required to develop and package the 562 

workflows, and less by the availability of compute power.  The “dips” on the plots resulted from 563 

quality issues with some sets of variant calls that were withdrawn, reprocessed and resubmitted.  564 

In the case of the Broad workflow, the variant calls were withdrawn for post-processing before 565 

being considered complete.  If all workflows and data would have been in place at the beginning 566 

of the project, we estimate the computation across the full set of 5,789 genomes could have 567 

been completed in under 6 months.  568 
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 569 
Figure 2: Geographical distribution of compute centers (C), GNOS servers (G), and  570 

S3-compatible data storage (S). 571 
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 573 
 574 

Figure 3: The uniform analysis of whole genomes involves three broad phases. Phase 1: Data 575 

marshalling and upload.  Phase 2: Sequence alignment and variant calling. Phase 3: Variant 576 

merging and filtering.  The algorithms for merging SNVs and indels are described in the 577 

PCAWG-1 paper, SVs in the PCAWG-6 paper, and CNVs in the PCAWG-11 paper. 578 
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 580 
Figure 4: Infrastructure used on cloud and HPC compute environments for core analysis.   581 
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 583 
 584 

Figure 5: Costs for analyzing a tumor/normal pair through BWA-Mem, different combinations of 585 

variant calling pipelines, and OxoG filtering.  The cost is calculated based on AWS instances at 586 

average spot pricing we experienced during the project, and includes egress costs to transfer 587 

the result files.  PCAWG ran all 3 variant calling pipelines and achieved an F1 score of 0.9151 588 

for SNVs.  If running only one or two pipelines, there will be savings in cost but sacrifice in 589 

accuracy.  Detailed cost analysis is shown in Suppl Table 3. 590 
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Tables 592 

 593 

Table 1. Compute resources. * Shared between environments. ** Transient storage used for 594 

local data processing. 595 

 596 

 Type Allocated 
CPU/Cores 

Allocated 
memory 

Data Co-location 
Repository 

Local Storage 
Amount 

AWS Cloud variable variable Y 420TB 

Azure Cloud variable variable N - 

BSC HPC 1000 7.75TB Y 300TB 

Collaboratory Cloud 350 3.2TB Y 132TB 

DKFZ HPC 800 3.5TB Y 1.7PB* 

DKFZ Cloud 1024 4TB Y 1.7PB* 

EMBL-EBI Cloud 1000 4TB Y 1PB 

ETRI Cloud 800 2TB Y 750TB 

iDASH Cloud 304 2.8TB N 9TB** 

PDC Cloud 108 324GB Y 732TB 

Sanger HPC 1500 12TB N 750TB** 

SBG Cloud variable variable Y - 

UCSC HPC 4000 33TB Y 300TB 

UTokyo HPC 2496 2.5TB Y 400TB 
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Table 2. The five core workflows. Components for calling (1) SNVs, (2) indels, (3) SVs and (4) 598 

SCNAs in each of the three variant calling workflows are listed.  Because we utilized a large 599 

number of compute environments with various configurations of cores and RAM, the average 600 

runtime for each pipelines varied with large standard deviations (Suppl Fig. 7-10).  The runtime 601 

for the Broad pipeline included the 24 hours required to run GATK co-cleaning of BAMs.  The 602 

measured runtime included time to download input files, but not the time to upload result files. 603 

(#) MuSE was developed at MD Anderson Cancer Center and Baylor College of Medicine. 604 

 605 

 BWA Sanger DKFZ/EMBL Broad OxoG 

Analytical 
components in 
workflow 

BWA-Mem 
Picard 

Biobambam 
samtools 

CaVEMan1 

cgpPindel2 
BRASS3 

ascatNgs4 

dkfz_snv1 
Platypus2 
DELLY3 

ACE-seq4 

GATK cocleaning 
MuTect1 
MuSE1,# 

Snowman2,3 
dRanger3  

 
OxoG 

VariantBam 

Workflow controller SeqWare SeqWare 
Roddy, 

SeqWare 
Galaxy SeqWare 

Recommended 
compute 
requirements  

4 cores, 
15GB RAM 

16 cores, 
4.5GB 

RAM/core 

16 cores, 
64GB RAM 

32 cores,  
244GB RAM 

8 cores,  
64GB  RAM 

Average runtime 
across all compute 
environments 

2.0 +/- 1.7 
days 

5.3 +/- 5.5 
days 

3.2 +/- 1.7 
days 

5.1 +/- 2.2 
days 

2.6 +/- 1.3 
hours 

Benchmark on 
AWS 

5.8 days on  
4-core 

m1.xlarge 

2.2 days on 
32-core 

r3.8xlarge 

1.7 days on 
32-core 

r3.8xlarge 

3.7 days on  
32-core r3.8xlarge 

4 hours on  
8-core 

m2.4xlarge 

Core hours per run 557 1690 1306 2842 32 

Output files per run  120GB 2 GB 5 GB 35 GB 1.5 GB 
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Supplementary Information 607 

 608 

 609 
 610 

Supplementary Figure 1: Whole genomes from 2,834 donors across 39 cancer types were 611 

collected from 48 ICGC and TCGA projects in 14 jurisdictions. 612 
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 614 
Supplementary Figure 2: Progress of BWA-Mem alignment over time at 7 compute sites. 615 

 616 
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 617 
Supplementary Figure 3: Progress of Sanger variant calling workflow over time at 13 compute 618 

sites. 619 

 620 
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 621 
Supplementary Figure 4: Progress of DKFZ/EMBL variant calling workflow over time at 7 622 

compute sites. 623 
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 625 
Supplementary Figure 5: Progress of Broad variant calling workflow over time at 3 compute 626 

sites. 627 
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 629 
Supplementary Figure 6: Progress of OxoG and minibam workflow over time at 2 compute sites. 630 
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 632 
Supplementary Figure 7: Average runtimes for BWA-Mem alignment workflow 633 
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 635 
Supplementary Figure 8: Average runtime for the Sanger somatic variant calling workflow. 636 
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 638 
Supplementary Figure 9: Average runtime for the DKFZ/EMBL somatic variant calling workflow. 639 
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 641 
Supplementary Figure 10: Average runtime for the Broad somatic variant calling workflow.  642 

Preceding the variant calling workflow, the GATK co-cleaning step takes an additional 24 hours. 643 

  644 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 10, 2017. ; https://doi.org/10.1101/161638doi: bioRxiv preprint 

https://doi.org/10.1101/161638


41 

Supplementary Table 1.  Percentage samples/donors run at each site for each pipeline 645 

 646 

 BWA Sanger DKFZ/EMBL Broad/MuSE OxoG 

AWS Ireland 5.0 16.4 0.6  31.1 

Azure 0.4 0.6 2.6 8.6  

BSC 10.2 17.2 28.5   

Collaboratory     68.9 

DKFZ (HPC)   55.8   

DKFZ 
(OpenStack) 

14.5 10.2 8.5   

EMBL-EBI 12.6 3.3    

ETRI 2.1 5.8    

iDASH  4.8    

OICR 1.8 5.6 1.0   

PDC 11.8 
 

4.2    

Sanger  7.0 3.0   

Seven Bridges    23.1  

UCSC 30.6 13.0  68.2  

UTokyo 10.9 11.9    

  647 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 10, 2017. ; https://doi.org/10.1101/161638doi: bioRxiv preprint 

https://doi.org/10.1101/161638


42 

Supplementary Table 2. Data distribution as of May 2017. While ETRI GNOS and CGHub 648 

served as data centres during the project, they have since been retired.  Variant calls include 649 

those from individual variant calling pipelines and the final consensus callsets.  Long-term 650 

repositories are denoted by asterisk (*) and will increase their data holdings over time while 651 

GNOS servers are gradually being retired.  Latest information can be found at 652 

https://dcc.icgc.org/repositories  653 

 654 

 ICGC Data TCGA Data 

Data Repository % WG 
Alignments 
(534 TB) 

% RNA-Seq 
Alignments 
(13 TB) 

% Variant 
calls  
(520 GB) 

% WG 
Alignments 
(240 TB) 

% RNA-Seq 
Alignments 
(14 TB) 

% 
Variant 
calls 
(228 GB) 

BSC GNOS 100.0 30.0 0.3    

DKFZ GNOS 25.0  62.9    

EMBL-EBI GNOS 100.0 59.3 98.6    

UTokyo GNOS 54.6 17.1 1.6    

UChicago-ICGC 
GNOS 

16.8 40.3 28.7    

UChicago-TCGA 
GNOS 

   100.0 100.0 100.0 

EGA* 97.8      

Collaboratory* 100.0 100.0 100.0    

AWS* 76.7 80.1 75.1    

Bionimbus PDC*    100.0 100.0 0.2 
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The following set of tables show how costs are calculated for Figure 5 which compares the 656 

costs and accuracies of running the different combination of variant calling pipelines. 657 

 658 

Supplementary Table 3a.  The average run time for each workflow was rounded up to the 659 

nearest hour to reflect how AWS charges for EC2 instances that run for part of an hour.  The 660 

size of the output files are noted as they contribute to either egress or storage costs. 661 

Workflow Average wall clock 
run time (hours) 

Size of output files 
(GB) 

AWS EC2 Instances 
Used 

BWA-Mem 140 134 m1.xlarge 

Sanger 53 2 r3.8xlarge 

DKFZ/EMBL 41 5 r3.8xlarge 

Broad 89 35 r3.8xlarge 

OxoG 4 1.5 m2.4xlarge 

 662 

 663 

Supplementary Table 3b. The project utilized EC2 spot instances in US East (N. Virginia), US 664 

West (Oregon), EU (Ireland) regions.  Because spot pricing fluctuates, users should consult 665 

real-time information.  The average spot pricing listed here was based on our own usage 666 

throughout the project. 667 

AWS EC2 
Instances 

vCPU Mem (GiB) Storage (GB) Average spot pricing 

m1.xlarge 4 15 4 x 420 $0.0426 

r3.8xlarge 32 244 2 x 320 $0.3382 

m2.4xlarge 8 68.4 2 x 840 $0.0834 

 668 

 669 

Supplementary Table 3c. Cost calculations are based on the above spot pricing and an egress 670 

cost of $0.09 per GB.  The analysis time is made up of 3 steps: (1) running the BWA-Mem 671 

workflow on two separate instances to align simultaneously one tumor and one normal 672 

specimen; (2) running the variant calling workflows simultaneously with the longest running 673 

workflow dictating the run time of this step; (3) running the OxoG workflow after all variant 674 

calling workflows are completed.  If analyzing 100 donors with all 3 variant calling pipelines, the 675 

analysis will involve running a fleet of 200, 300 and 100 EC2 instances, respectively in the 3 676 

steps.  We have no other significant storage cost as the reference files amount to ~35GB 677 

costing under $1/month in S3.  An alternative to transferring the data out is to store the 312 GB 678 

of data for each donor in S3 for under $8/month. 679 
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Variant Calling 
Pipelines 

Total 
Cost 

Compute 
Cost  

Egress 
Cost 

Analysis 
Time 
(days) 

Median Sensitivity, 
Precision, F1 

All 3 pipelines 102.19 7.15 28.04 9.7 0.9047 +/- 0.03145 
0.9348 +/- 0.03785 
0.9151 +/- 0.02820 

Sanger only 54.63 30.19 24.44 8.2 0.8032 +/- 0.06515 
0.9550 +/- 0.03855 
0.8629 +/- 0.04795 

DKFZ/EMBL 
only 

50.84 26.13 24.71 7.7 0.7565 +/- 0.0544 
0.9352 +/- 0.0365 
0.8313 +/- 0.05125 

Broad only 69.77 42.36 27.41 9.7 0.9095 +/- 0.01955 
0.8386 +/- 0.06335 
0.8687 +/- 0.04085 

Sanger & 
DKFZ/EMBL 

68.94 44.05 24.89 8.2 Union 
0.8454 +/- 0.0572 
0.9032 +/- 0.04405 
0.8669 +/- 0.0509 
Intersect 
0.7228 +/- 0.05385 
0.9954 +/- 0.00980 
0.8216 +/- 0.04390 

Sanger & Broad 87.88 60.29 27.59 9.7 Union 
0.9374 +/- 0.01935 
0.8183 +/- 0.06395 
0.8653 +/- 0.04220 
Intersect 
0.7856 +/- 0.0566 
0.9913 +/- 0.0111 
0.8632 +/- 0.03755 

DKFZ/EMBL & 
Broad 

84.09 56.23 27.86 9.7 Union 
0.9339 +/- 0.01955 
0.801 +/- 0.06505 
0.8576 +/- 0.0429 
Intersect 
0.7384 +/- 0.05865 
0.9939 +/- 0.0186 
0.8315 +/- 0.0456 
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Supplementary Table 4. DOIs for PCAWG core analysis workflows 682 

 683 

Workflow/Tool Dockstore Latest DOI Version Github 

pcawg-bwa-
mem-workflow 

https://dockstore
.org/containers/q
uay.io/pancance
r/pcawg-bwa-
mem-workflow  

https://doi.org/10.
5281/zenodo.192
377 
 

2.6.8_1.2 https://github.co

m/ICGC-TCGA-

PanCancer/Seq

ware-BWA-

Workflow 

 

pcawg-dkfz-
workflow 

https://dockstore
.org/containers/q
uay.io/pancance
r/pcawg-dkfz-
workflow  

https://doi.org/10
.5281/zenodo.19
2376 
 
 

2.0.1_cwl1.0 https://github.co

m/ICGC-TCGA-

PanCancer/DE

WrapperWorkflo

w 

pcawg-sanger-
cgp-workflow 

https://dockstore
.org/containers/q
uay.io/pancance
r/pcawg-sanger-
cgp-workflow  

https://doi.org/10
.5281/zenodo.19
2162 
 
 

2.0.3 https://github.co

m/ICGC-TCGA-

PanCancer/CGP

-Somatic-Docker 

pcawg_delly_wo
rkflow 

https://dockstore
.org/containers/q
uay.io/pancance
r/pcawg_delly_w
orkflow  

https://doi.org/10
.5281/zenodo.19
2166 
 
 

2.0.1-cwl1.0 https://github.co

m/ICGC-TCGA-

PanCancer/DE

WrapperWorkflo

w 

broad     

oxog     
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