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Abstract

Introduction Liquid chromatography-mass spectrometry

(LC-MS) is a commonly used technique in untargeted

metabolomics owing to broad coverage of metabolites,

high sensitivity and simple sample preparation. However,

data generated from multiple batches are affected by

measurement errors inherent to alterations in signal inten-

sity, drift in mass accuracy and retention times between

samples both within and between batches. These mea-

surement errors reduce repeatability and reproducibility

and may thus decrease the power to detect biological

responses and obscure interpretation.

Objective Our aim was to develop procedures to address

and correct for within- and between-batch variability in

processing multiple-batch untargeted LC-MS metabo-

lomics data to increase their quality.

Methods Algorithms were developed for: (i) alignment and

merging of features that are systematically misaligned

between batches, through aggregating feature presence/

missingness on batch level and combining similar features

orthogonally present between batches; and (ii) within-batch

drift correction using a cluster-based approach that allows

multiple drift patterns within batch. Furthermore, a

heuristic criterion was developed for the feature-wise

choice of reference-based or population-based between-

batch normalisation.

Results In authentic data, between-batch alignment resul-

ted in picking 15 % more features and deconvoluting 15 %

of features previously erroneously aligned. Within-batch

correction provided a decrease in median quality control

feature coefficient of variation from 20.5 to 15.1 %.

Algorithms are open source and available as an R package

(‘batchCorr’).

Conclusions The developed procedures provide unbiased

measures of improved data quality, with implications for

improved data analysis. Although developed for LC-MS

based metabolomics, these methods are generic and can be

applied to other data suffering from similar limitations.

Keywords Metabolomics � LC-MS � Data correction �
Batch alignment � Drift correction

1 Introduction

Untargeted metabolomics aims to profile the global meta-

bolome, i.e. the (semi-)quantitative collection of low

molecular weight metabolites within a biological system,

usually in biofluids such as urine, serum, plasma or tis-

sue/cellular extracts (Shulaev 2006; Patti et al. 2012;

Vinayavekhin and Saghatelian 2010; Yin and Xu 2014;

Alonso et al. 2015). Metabolomics thus finds its place

downstream of genomics and proteomics and represents the

omics technique closest to phenotype, through the inter-

actions of the previous omics levels with the exposome
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(Scalbert et al. 2014; Rappaport et al. 2014). Over the past

decade, it has become an increasingly used tool in bio-

logical and medical research through possibilities offered

for predictive biomarker discovery, elucidation of meta-

bolic pathway alterations and disease aetiology and

reflection of demography, lifestyle and exposures (Dunn

et al. 2011; Matsuda et al. 2009; Bajad and Shulaev 2011;

Beckmann et al. 2013; Dunn et al. 2012; Rappaport et al.

2014). Among the different techniques employed in

metabolomics, untargeted liquid chromatography-mass

spectrometry (LC-MS) is extensively used due to its high

sensitivity, simple sample preparation and broad coverage

of metabolites (Theodoridis et al. 2008; Fernandez-Albert

et al. 2014; Bajad and Shulaev 2011). Until recently, mass

spectrometric techniques were not sufficiently reproducible

for large-scale untargeted metabolomics studies involving

thousands of samples. However, advances in instrumenta-

tion, experimental protocols and data processing methods

now permit the use of LC-MS in large-scale untargeted

studies with thousands of samples for analysis (Ganna et al.

2014; Drogan et al. 2014).

Data from large-scale LC-MS based metabolomics

experiments are generally collected over long periods and

analysed in multiple batches. The data collected are

affected by systematic and random variability in signal

sensitivity, mass accuracy (m/z) and retention times (rt)

between samples both within and between batches. This

variability gives rise to critical challenges regarding

information loss and data processing (Dunn et al.

2011, 2012).

Within- and between-batch variations in signal intensity

(Warrack et al. 2009; Sysi-Aho et al. 2007; Dunn et al. 2011)

contribute to noise in the data and therefore have a negative

impact on statistical analysis and consequently on the dis-

covery and accurate quantification of metabolites of interest

(Veselkov et al. 2011;Wanget al. 2013). Shifts inm/z and rtof

molecular features between analytical runs result in different

extracted spectrum patterns for a single metabolite across

samples, with potential misalignment as a consequence. Such

drifts could therefore severely affect subsequent statistical

analysis and further metabolite identification (America et al.

2006; Nordström et al. 2006; Lange et al. 2008; Zhang et al.

2015). In a recent review (Smith et al. 2015), the state-of-the-

art on peak alignment algorithms is well summarised.

Unfortunately, current algorithms still suffer from shortcom-

ings, especially regarding between-batchmisalignment, since

m/z and rt shifts are generally much larger between batches

than within. Moreover, to the best of our knowledge there are

no available methods to specifically address systematic

misalignment across multiple batches. Improved algorithms

are thus urgently needed.

Different approaches for signal intensity drift manage-

ment are available. A common approach is to include

internal standards (Bijlsma et al. 2006; Sysi-Aho et al.

2007), but this may not be feasible for untargeted meta-

bolomics studies since available internal standards only

represent a limited number of metabolites and signal

intensity fluctuations may differ between various metabo-

lite classes (Ejigu et al. 2013; Dunn et al. 2012; Vinaya-

vekhin and Saghatelian 2010). In large-scale untargeted

metabolomics studies, the most simple normalisation

methods are based on total intensity or intensity of the most

stable features. However, these methods are questionable

since they assume similar intensity shifts for all features

between samples and consequently perform less well than

feature-based normalisation techniques (Kamleh et al.

2012). Slightly more advanced methods include e.g.

quantile normalisation techniques, which are based on the

assumption of similarity of signal intensity distributions,

rather than the intensities themselves (Kohl et al. 2012; Lee

et al. 2012). However, these methods do not take into

account specific feature drift patterns or different signal

intensity distributions between different sample classes

(e.g. case-control). More recently, quality control (QC)

sample strategies have been commonly applied in signal

drift management (Kirwan et al. 2013; Dunn et al.

2011, 2012; Kamleh et al. 2012). QC samples have a

matrix composition similar to that of the biological samples

to be studied, normally achieved by pooling aliquots of the

study samples. These QC samples are then injected ran-

domly or regularly within batches to evaluate the LC-MS

system and data pretreatment performance, followed by

algorithms aiming to discard noisy features or to reduce

sample-to-sample or batch-to-batch variations in signal

intensity (Dunn 2012; Nezami Ranjbar et al. 2013; Fer-

nandez-Albert et al. 2014; Dunn et al. 2011; Kamleh et al.

2012; Kirwan et al. 2013).

In the present work we introduce two new approaches

for overcoming the above-mentioned obstacles regarding

processing multiple batch LC-MS metabolomics data, i.e.

between-batch feature alignment and within-batch cluster-

based drift correction. We also introduce a heuristic suit-

ability criterion to aid in the choice of reference-based or

population-based between-batch signal intensity normali-

sation per feature. Although these approaches are designed

for untargeted LC-MS metabolomics, they can be extended

to other areas of chemical analysis, such as GC-MS or LC-

MS, and for purposes other than metabolomics where

signal intensity drift and alignment issues may occur.

2 Materials and methods

Throughout this article, the term ‘feature’ refers to a mass

spectral peak, i.e. a molecular entity with a unique m/z and

retention time as measured by an LC-MS instrument, such
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as a metabolite ion, isotope, adduct, fragment or random

noise.

2.1 Data set

Fasting plasma samples with heparin as anticoagulant

originating from a type 2 diabetes (T2D) case-control study

nested within the Northern Sweden Health and Disease

Study Cohort (Norberg et al. 2010) were obtained from the

Medical Biobank in Umeå (Hallmans et al. 2003). The

study was approved by the regional ethical review board in

Uppsala (Dnr 2011/228). The samples (n = 503) were

drawn in 1991–2005 from men and women who later

developed T2D, for whom previously unthawed plasma

samples were available, and from individually matched

controls who remained free of diabetes until the end of

follow-up. Additional fasting plasma samples (n = 187)

taken 10 years later from controls were used to assess the

long-term stability of potential biomarkers and repeat

samples from cases (n = 187) were analysed to assess

potential changes in metabolites related to the risk of

developing of T2D. Instrument analyses were performed

with approximately 250 samples per batch (including QC

and reference samples) in eight batches over 6 months. In

the instrumental analysis protocol, two independent bio-

logical sample types were used to monitor the stability and

functionality of the system throughout all analyses. These

were: batch-specific quality control samples (QCs), i.e.

pooled plasma samples of all biological samples within

batch; and long-term reference samples, i.e. pooled plasma

samples of healthy people stored and offered by the Insti-

tute of Public Health and Clinical Nutrition, Kuopio, Fin-

land, consistently used throughout all batches. The

reference samples were thus not of the same biological

origin as the samples and QCs and, unlike the QCs, were

therefore not directly representative of the sample popu-

lation. The QCs and reference samples were injected at the

beginning and end and as every 14th injection throughout

each batch sequence, and together constituted approxi-

mately 16 % of analytical samples. The LC-MS data used

were taken from three of the eight batches, selected ran-

domly, and constituted a subgroup of quality monitoring

samples, including 48 QCs and 42 reference samples.

LC-MS based metabolomics was conducted in collabo-

ration with the metabolomics platform at the University of

Eastern Finland. Preparation of fasting plasma samples for

metabolite profiling followed the procedure described by

Hanhineva et al. (2015b). In brief, 90 lL sample was

mixed with 360 lL acetonitrile, incubated in an ice bath

for 15 min and then centrifuged at 1200 g through 0.2 lm

polytetrafluoroethylene filters. After 5 min, clear, de-pro-

teinated filtrate was collected for analysis. Plasma samples

were analysed by ultra-high performance liquid

chromatography quadrupole time-of-flight mass spectrom-

etry (UHPLC-qTOF-MS, Agilent Technologies). The sys-

tem consisted of a 1290 LC system, a Jetstream

electrospray ionisation source and a 6540UHD accurate

mass qTOF spectrometer operating in positive ionisation

mode. The procedure for sample analysis was as described

in detail by Hanhineva et al. (2015b), with modification. In

brief, 4 lL of the sample solution were injected on the

column (Zorbax Eclipse XDB-C18, 2.1 9 100 mm,

1.8 lm) operating at 50 �C. The mobile phase was deliv-

ered in a reversed-phase gradient elution at 0.4 mL/min,

using water (eluent A) and methanol (eluent B), both

containing 0.1 % formic acid. The following gradient

profile was used: 2/100 % B (0–10 min), 100 % B

(10–14.5 min), 100/2 % B (14.5 min), 2 % B

(14.5–16.5 min). The MS conditions were set up as pre-

viously described (Hanhineva et al. 2015b) and the

instrument scanned from 20 to 1600 m/z. Data were col-

lected in centroid mode at an acquisition rate of 1.67

spectra/s with an abundance threshold of 150.

2Instrument data were exported to ‘xml’ file format and

processed in the R open source environment (v 3.2.0; R core

team 2016) using the XCMS package (Smith et al. 2006;

Tautenhahn et al. 2008). XCMS peak picking parameters

(prefilter, peakwidth, mzdiff, snthresh) were obtained using

the IPO R package (Libiseller et al. 2015). Final peak

picking parameters were: prefilter = c(3,440), peak-

width = c(5,76), snthresh = 6, mzdiff = 0.0045,

ppm = 15. Initial alignment (bw = 15, minfrac = 0.75,

minsamp = 1, mzwid = 0.015) and retention time correc-

tion (standard loess, family = ‘‘s’’, span = 0.2) were then

applied. For the final alignment, bw was set to the largest

observed retention time deviation from visual inspection of

XCMS retention time correction plots obtainedwithin batch.

Consequently, final alignment was applied with parameters:

bw = 1, mzwid = 0.015, minfrac = 0.75, and was fol-

lowed by filling in missing peaks (method = ‘chrom’).

2.2 Feature alignment between batches

Alignment of features systematically misaligned between

batches was performed in a multistep algorithm (Fig. 1a).

First, to investigate systematic missingness and filter out

random noise inherent in individual samples, feature

missingness was aggregated on batch level. This was done

by batch-wise per-feature calculation of the proportion of

missingness among the reference samples and flagging

batch absence for those features satisfying the criterion

(Eq. 1):

proportionNA;feature;batch ¼
nSamplesNA;feature;batch

nSamplesTotal;batch
[ 80%

ð1Þ
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where NA denotes missing value and nSamples denotes the

number of samples within a batch. The 80 % limit was

chosen as an extension of the 80 % rule often employed in

metabolomics (Smilde et al. 2005). Batch presence was

similarly flagged as non-absence. Candidates for batch

alignment were those features where the sum of presence

flags exceeded zero (representing being missing from all

batches, thus with no possibility for alignment) and lower

than the total number of batches (representing being pre-

sent in all batches, thus with no possibility for alignment).

For each candidate, correspondence with other candi-

dates (‘‘events’’) was investigated through distance, i.e.

within a user-defined box bounded by largest allowed

absolute m/z and rt differences under the constraint of

batch presence being orthogonal between features, i.e.

ensuring that two features present in the same batch cannot

be aligned. The boundary value for m/z (0.002 Da) was set

according to instrument resolution and rt (15 s) was

determined from maximum retention drift between batches

obtained from XCMS.

All distinct events thus consisted of two alignment

candidates. Events which shared common alignment can-

didates were then clustered. In the case where all such

cluster candidates were mutually orthogonal, correspon-

dence was assumed and alignment candidates would then

be merged. However, in some of these clusters multiple

alignment combinations were possible (Fig. 1b; All

coloured features), indicating correspondence to more than

one underlying feature. Multiple alignment candidates

were in that case disentangled into their respective corre-

spondences through a recursive sub-clustering algorithm:

The largest distances per cluster were iteratively removed

until single possible alignment candidates (sub-cluster, i.e.

unique correspondence) could be identified. All other

possible alignment candidates per cluster, including those

previously removed, then underwent the same recursive

algorithm until no further sub-clustering could be achieved

(Fig. 1b; Different colours for different sub-clusters, i.e.

unique correspondences).

2.3 Cluster-based within-batch drift correction

The multi-batch data were separated into batch-specific

subsets and within-batch drift correction was performed

separately on each of these subsets in an algorithm con-

sisting of four distinct steps (Fig. 2a): Clustering of fea-

tures; drift modelling per cluster; drift correction per

cluster; and removal of individual features with poor

reproducibility after cluster-based drift correction.

To facilitate clustering of variables, data were first

scaled by standard deviation but not centred, under the

assumption of predominantly multiplicative rather than

additive error terms in instrumental chemical analysis.

Clustering of variables was performed under the

Fig. 1 Proposed algorithm for between-batch feature alignment.

a Flowchart for alignment of features systematically misaligned

between batches. aA feature is considered a potential candidate for

alignment if 0\ total batch presence\ number of batches.
bAlignment candidates are considered similar if having m/z and rt

within user-defined tolerance. cCandidates are considered for align-

ment and subsequently clustered if not mutually present in the same

batch (i.e. presence vector orthogonality). dClusters containing

multiple possible alignments are recursively subdivided into sub-

clusters. b Deconvolution of multiple batch alignment candidates

within a selected cluster. During peak picking, five molecular features

(numbers 5007–5011) were detected within the specified m/z and rt

tolerance, in samples from three analytical batches. Feature presence/

absence was aggregated on batch level and marked as absent if

missing from [80 % of QC samples per batch. Presence (1) or

absence (0) is noted in the figure for the five features in vector format,

where each position in the vector corresponds to presence/absence in

the three batches. Candidates for alignment (i.e. the four colour-filled

features) were identified through (i) proximity in the m/z and rt

domains (i.e. closeness) and (ii) orthogonality of presence vectors (i.e.

two alignment candidates cannot be present in the same batch). Note

the unfilled feature number 5008, which due to the second criterion is

excluded as a possible alignment candidate. Multiple alignment

candidates were sub-clustered (different colour-filled features)

through a recursive deconvolution algorithm
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assumption that variables with similar drift pattern, in

addition to being strongly correlated, are characterised by

small Euclidean distances when seen as coordinates in the

multivariate sample (or observation) space as opposed to

viewing samples as observations in the variable space,

which is normally performed in multivariate statistical

modelling. A visualisation of distinct drift patterns using

lower-dimensionality synthetic data is available as sup-

plementary material (Suppl. Table 1, Figs. 1 and 2).

Clustering of variables in the observation space was

achieved by employing the ‘‘mclust’’ algorithm, which

utilises a Bayesian approach to determine the type (i.e.

geometrical constraint) and optimal number of clusters

inherent in the data (Fraley and Raftery 2002; Fraley et al.

2012). This algorithm was chosen to decrease operator bias

in the clustering operation. First, a wide range of geomet-

rical constraints in clusters are available, together with the

ability to specify a range in potential numbers of cluster to

examine. In the mclust algorithm, final cluster parameters

are automatically chosen from the Bayesian Information

Criterion (BIC) values from all combinations of user-sup-

plied parameter values (cluster type and number) and a BIC

plot is optionally produced for a visual overview of clus-

tering performance for the available parameter combina-

tions. It should be noted, however, that for large,

multidimensional data, mclust is a computationally

expensive algorithm. Initial testing revealed that restricting

the model type to ‘VVE’, i.e. ellipsoidal clusters with equal

orientation and number of clusters from 1 to 52 in steps of

three, provided a good balance between high quality,

unbiased clustering and computational cost. Applying these

parameter settings, clustering of 12–18 QC samples 9 11

815 features resulted in 25–28 clusters and required

approximately 12–18 min in the present case.

After clustering, scaled variables belonging to the same

cluster were pooled together and a cubic spline regression

Fig. 2 Proposed algorithms for within- and between-batch signal

intensity drift corrections. a Flowchart of cluster-based within-batch

intensity drift correction. aIn this example, cluster quality is

considered to be improved if rmsd(Ref)with correction\ rmsd(Ref)with-

out correction, where ‘rmsd’ denotes root mean squared distance from

the cluster centre point. Ref denotes long-term reference samples not

used for within-batch intensity drift modelling (see Materials and

methods section). b Flowchart of Between-batch intensity normali-

sation algorithm. aFeatures are considered reproducible if long-term

reference sample intensity per batch CV B 30 %. bReference sample

average feature intensity ratios between batches are considered within

limit if not deviating from corresponding average feature intensity

ratios by more than a fold change of five. For such features passing

both criteria, batches are normalised by average reference sample

intensity. For other features, long-term reference samples are not

considered sufficiently representative of the sample population and

features are thus normalised by median batch intensity
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was applied on the pooled cluster data vs injection order to

obtain a drift function. The algorithm performs this drift

calculation separately for all the clusters and optionally

produces plots of the clusters and their correction functions

(Fig. 2a, Suppl. Fig. 3). Finally, cluster-based drift cor-

rection was achieved by calculation of cluster-wise cor-

rection factors (Eq. 2) applied specifically for each

injection:

correctionFactorc;n ¼
driftValuec;1

driftValuec;n
ð2Þ

where correctionFactor are the cluster-based correction

factors derived from the corresponding drift function val-

ues driftValue for cluster c at injection n.

These correction factors are derived from the ratio

between drift function values at the reference point (i.e.

first injection) and at all subsequent injections obtained

from the cluster drift function. By multiplying these cor-

rection factors to the original unscaled variable data of the

cluster, intensity drift was thus normalised to the reference

level at the first injection (Suppl. Fig. 3).

Drift correction per cluster was performed only if pro-

viding an unbiased measure of increased quality of data

measured on non-QC reference samples. This was assessed

by cluster-wise evaluation of the root-mean-squared dis-

tance (rmsd) from the centre point of the long-term refer-

ence samples with and without correction. This provided an

unbiased measure since: (i) the long-term reference sam-

ples were of different biological origin than the QC sam-

ples and (ii) they were not included in drift modelling and

correction. Correction per cluster was thus only performed

if the rmsd was reduced after drift correction. After drift

correction, individual features were removed batch-wise

from the subset if QC sample CVAfter correction[ 30 %.

2.4 Between-batch normalisation

Between-batch normalisation was performed through an

iterative process (Fig. 2b). Aggregated batch data after

within-batch drift correction and alignment were first lim-

ited to common features, i.e. those features common

between all batches that were not excluded after cluster-

based drift correction per batch. Normalisation was then

achieved using either of two standard approaches: Nor-

malisation by reference sample intensity or population-

based (median) normalisation. However, to aid in the fea-

ture-wise choice between normalisation methods, a

heuristic was developed and applied to test for suitability of

batch normalisation by reference sample intensity. Nor-

malisation by average reference sample intensity per batch

and feature was performed if satisfying the following dual

criterion:

CVRef ; batch\0:3 for all batchesf g ð3Þ

log
Feature Intensity Ratioi;j

Average Feature Intesity Ratioi;j

� �

\ log 5 for all batches i; jf g

ð4Þ

where Feature Intensity Ratioi,j is the ratio of average

reference sample intensity for a specific feature measured

in batches i and j, respectively and Average Feature

Intensity Ratioi,j is the ratio for the average intensity of all

features within the batches i and j, respectively. The use of

log-transformation on each side of Eq. 4 is to provide

equidistant fold changes for batches i and j. A fold change

limit of 5 was used for this data, but the limit can be user-

defined (see Results and discussion). When the criterion

was not met, the reference samples were not considered

sufficiently representative of the sample population or

otherwise inadequate for normalisation, in which case

batches were normalised by median intensity of batch

sample populations under the assumption of similar pop-

ulation distributions between batches (data not shown).

2.5 Computer hardware and software

Algorithms were developed in the open source statistical

software environment R v 3.2.2 (R Core Team 2016) and

depended on the following non-base packages: ‘‘mclust’’ v

5.0.1 (Fraley and Raftery 2002; Fraley et al. 2012), ‘‘re-

shape’’ v 0.8.5 (Wickham 2007) and ‘‘XCMS’’ v 1.44.0

(Smith et al. 2006; Tautenhahn et al. 2008). All calcula-

tions were performed on a HP Elitebook with an Intel i7-

3687U processor operating under Windows 7. Functions

and data sets are available as an R package (batchCorr)

and, together with example data and script, are freely

available from https://gitlab.com/CarlBrunius/batchCorr.

3 Results and discussion

Multi-batch high-resolution LC-MS data present chal-

lenges in terms of signal intensity drift and feature

misalignment from instrument deviations in the m/z and rt

domains. These deviations have contributions both from

within- and between-batch irregularities, with the latter

generally expected to make a greater contribution. Data

sets should consequently be first examined for systematic

feature misalignment between batches to avoid loss of data

integrity, the type of which depends on the data pipeline

employed. In the case of forced integration data filling

(such as the fillPeaks algorithm in the XCMS package) and

data imputation, there is the obvious risk of splitting one

true informative feature into two or more with either less or

wrong information (Suppl. Fig. 4). Data filling creates
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artificially batch-specific features from the systematic dif-

ferences in presence/missingness, i.e. erroneous informa-

tion, whereas imputation in the best of cases results in two

(or more) identical features, although most imputation

techniques would struggle to achieve accurate imputations

with this type of batch-specific systematic missingness,

thus increasing noise in the variables and consequently in

following statistical analyses, i.e. providing/introducing

less and/or wrong information.

Available options for feature alignment (Smith et al.

2015) do not distinguish within-batch from between-batch

deviations and are therefore best suited for within-batch

alignment of features. To investigate and correct for sys-

tematic batch structures, presence/missingness was aggre-

gated per batch to filter out spurious random noise or

erroneous misalignment of individual samples. Batch

absence was decided employing an 80 % threshold (Bi-

jlsma et al. 2006), but robust results were in fact obtained

between threshold settings of 60–85 % (data not shown).

To be considered for alignment, features should be

sufficiently close in the m/z and the rt domains and also

have orthogonal feature vectors. Using features from

Fig. 1b as an example: Feature 5007, flagged as [1 1 0]

would be present in batches 1 and 2, but not in batch 3,

whereas feature 5010, flagged as [0 0 1] would be

orthogonally present and therefore a possible alignment

candidate. In the majority of cases, alignment candidates

were only involved with one other candidate. However,

multiple alignment combinations within the same m/z–rt

box were also observed (Fig. 1b; All coloured features),

possibly due to extreme similarity in retention time of e.g.

stereoisomers. Several approaches for disentanglement of

such multiple alignment candidates are possible. The naı̈ve

option to choose the alignment candidates with the shortest

distance in the m/z–rt box resulted in apparent misalign-

ments (data not shown). A recursive sub-clustering algo-

rithm was therefore developed to identify all unique

correspondences (Fig. 1b; different colours per correspon-

dence). The algorithm also optionally produces plots of

alignment events and sub-clusters. The effectiveness of the

clustering and sub-clustering algorithms was confirmed by

visual inspection of clustering and sub-clustering results.

This algorithm for systematic batch misalignment is

easily integrated with available sample-based alignment

methods. Within an analytical batch, m/z and rt can be

expected to remain within small tolerances relative to

between-batch variation, especially in the rt dimension. For

metabolomics data spanning several batches, low tolerance

settings thus increase the risk of misalignment, whereas

high tolerance risks binning unrelated features. Peak

alignment in workflows not addressing batch alignment

thus necessitates increasingly higher tolerance settings with

the number of batches being combined. In a workflow

employing batch-orthogonal alignment, between-sample

alignment can instead be optimised per batch, thus with

narrower m/z and rt setting, and later combined using

batch-aggregated data (Suppl. Fig. 4). For comparison,

using the current dataset and a bw = 15 setting, this cor-

responded to picking approximately 9800 features (Suppl.

Fig. 5). Using settings optimised for batch-specific peak

picking (bw = 1) and systematic batch alignment,

approximately 11,300 were instead picked. The advantage

was two-fold: (i) 1500 features previously aligned were

deconvoluted, contributing to noise reduction in 1500 of

the previously available features; and (ii) 1500 additional

features were added to the dataset, increasing the infor-

mation content. It should be noted that by decreasing

bandwidth setting alone, there is no effective means to

distinguish between true feature deconvolution and artifi-

cially splitting features between batches. In fact, without

the batch alignment algorithm, a bw = 1 setting picked

approximately 11,800 features, of which approximately

500 thus resulted from artificially splitting true features

between batches (Suppl. Fig. 5).

For the within-batch signal intensity drift correction

algorithm, clustering was automated to provide an unbiased

trade-off between drift modelling detail and power through

unbiased decision on optimum number of clusters through

Bayesian clustering (Fraley and Raftery 2002; Fraley et al.

2012). It was observed that for multivariate, authentic data,

model restrictions were not required to achieve repro-

ducible clustering. Restrictions were however imposed to

reduce computing time, without any apparent loss of

information content. It should be noted that clustering

could become computationally more efficient by paral-

lelising cluster model calculations, which remains a point

to consider in future algorithm development. Moreover, to

increase computational efficiency, other clustering methods

could also be considered. However, care should be taken to

provide automated, unbiased estimations of optimal num-

ber of clusters and distance/clustering functions (Rokach

2009). It should be noted that a major limitation of the

clustering is its poor capability for managing missing val-

ues, since the clustering is based on Euclidean distances in

the multivariate observation space. If values are lacking,

then these distances are effectively incalculable. Care must

therefore be taken to provide full data matrices, i.e. peak

tables without any missing data. This can be achieved

either by forced integration between consensus peak limits

such as performed by the ‘fillPeaks’ function of the XCMS

package, or by imputation.

Drift modelling was performed by cubic spline inter-

polation (Fig. 3). Smoothing functions are often sensitive

to parameter settings, but due to the high number of data

points per cluster compared with feature-wise interpola-

tion, smoothing was highly reproducible for a wide range
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of parameter settings. Similar performance was observed

using both local regression (LOESS) and cubic spline

regression, but we found that cubic splines tended to be

more insensitive to parameter fluctuations and thus less

sensitive to operator bias.

When observing the quality control samples in a prin-

cipal component analysis (PCA), the intensity drift easily

observed in the raw data from batch B (Fig. 4a) was

drastically reduced when applying the cluster-based drift

functions for signal correction (Fig. 4b). However, cluster-

wise drift correction was performed only if it increased the

quality of the data and such fitness estimation needs to rely

on examination of quality monitoring samples not included

in the modelling. In the present case, quality improvement

was assessed as decreased Euclidean distance in the mul-

tivariate feature space between long-term reference sam-

ples (Fig. 4c).

Cluster 18 (Fig. 3) constituted an interesting example of

this principle: Calculation of within-cluster drift provided a

decrease in QC CV from 23 to 15 %. However, since the

drift correction did not result in an increase in unbiasedly

assessed quality of independent reference samples, the drift

correction was not applied (Table 1). It should also be

noted that the algorithm can easily be adapted to suit other

schemes for fitness estimations and/or different experi-

mental protocols, such as the use of duplicate (or multiple)

Fig. 3 Authentic batch B QC features separated into different sized

clusters (n = 51–920 features per cluster in this subset) representing

different intensity drift behaviours. a Cluster 1, similarly to other

large clusters (not shown), closely followed the general within-batch

intensity drift, which for this batch was minor. Among the other

clusters (b–d), several distinctly diverse drift patterns were readily

discernible and CV was considerably reduced in those clusters. For

each cluster, the upper graph shows the scaled features in grey and the

cluster drift function in black. The lower half shows the same features

on the same y-scale after application of cluster-based drift correction
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injections of multiple samples or random subsampling

among QC samples. Using multiple samples, fitness can

e.g. be assessed through Euclidean distances with one-

tailed paired tests of H1\H0 (populations of distances

before/after correction). In the latter case, QCs would be

subsampled into two groups, for drift modelling and fitness

estimation, respectively.

A final quality control of features was performed by

removing individual features with CV[ 30 % in QC

samples after drift correction (Fig. 5). A notable effect of

the clustering algorithm was the fact that features with

poorer reproducibility, as indicated by final QC feature

CV[ 30 %, were in general clustered together (Table 1;

clusters 3, 8, 9 and 14), as were features with common,

highly reproducible drift patterns. It should also be noted

that the correction algorithm may not be relevant for these

clusters. However, in order to have a generalisable method,

clustering is anyway applied if resulting in unbiasedly

assessed increased data quality. According to the criteria,

correction led to quality improvement in clusters 3, 8 and

14. However, the quality improvement was not so large as

to warrant inclusion of most of these features in the final

peak table. The final result is thus a combination of mul-

tiple sub-algorithms. In the three batches of the authentic

data set, such clusters represented 13–19 % of the total

number of features. However, some clusters (Table 1,

clusters 3 and 14) consisted of both well and poorly

behaving features.

Median QC feature CV for the three batches decreased

from 20.5 to 18.7 % after drift correction and further to

Fig. 4 PCA score plots for performance of within-batch and

between-batch drift correction. For within-batch drift correction (a–

c) red circles represent within-batch QC samples and blue circles

represent the long-term reference samples. Color is scaled corre-

sponding to injection order. The drift observed in the raw, uncorrected

data from batch B (a), is drastically reduced using cluster-based

intensity drift correction either not employing (b) or employing

(c) the fitness criterion of improved reference sample homogeneity

and projected on the same scale as the uncorrected data. For between-

batch drift correction (d–e), batches B,F and H are presented as

circles, triangles and squares, respectively. Red represents within-

batch QC samples, blue the long-term reference samples and grey the

actual biological samples. The batch effect, clearly observed as the

main determinant of variance prior to normalisation (d) is drastically

reduced using the mixed normalisation procedure (e) when projected

on the same scale
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15.1 % after feature removal. In many protocols, a CV

limit of 20 % is applied, and also recommended in the

FDA guidelines for bioanalytical method validation (FDA

2001). For the three batches in the authentic data set, a

limit of 20 % resulted in 36–60 % of features being dis-

carded. We advocate that a more accommodating setting of

30 % be applied in exploratory, untargeted metabolomics

analysis, which in the present case resulted in 18–32 % of

the total number of features in the authentic data batches

being discarded (Suppl. Table 2). Allowing a less restric-

tive CV limit admits additional noise into the variables and

subsequent statistics, but also more variables of potential

interest into the statistical analyses. Noisy, uninformative

variables could then be excluded from the data set in a later

step, using e.g. statistical methods incorporating unbiased

variable selection (Hanhineva et al. 2015a; Buck et al.

2016).

In addition to drift correction and alignment, batch data

are typically intensity-normalised, although in some cases

this may not be required, e.g. when employing fold-chan-

ges between matched samples within batch as input data

for statistical modelling (Jonsson et al. 2015). Similarly to

within-batch intensity drift correction, unbiased fitness

estimation of normalisation performance should ideally be

carried out, although a thorough review of the literature

could not reveal established methods for this practice.

For the authentic data, feature-wise between-batch nor-

malisation using either long-term reference samples (with

the caveats described above) or sample population was

decided using a heuristic dual criterion quality indicator

(Fig. 1c), where the first criterion (Eq. 3) assessed the

precision of the reference sample intensity for the specific

feature and the second criterion (Eq. 4) was a proxy for

assessment of accuracy, under the assumption that large

Table 1 Characteristics of

clusters automatically identified

by the cluster-based within-

batch drift correction algorithm

based on quality control (QC)

samples from batch B (pooled

human plasma samples; see

Materials and methods for

details) in reverse phase,

positive electrospray ionisation

UHPLC-QTOF

Cluster Actiona Number of features Mean QC feature CV (%)

Beforeb Afterc Beforeb Correctiond Afterc

1 Corrected 920 920 24 23 23

2 Corrected 1177 1177 15 14 14

3 Corrected 715 7 36 35 29

4 Corrected 354 354 9 6 6

5 Corrected 860 860 13 11 11

6 Corrected 1137 1137 21 20 20

7 Corrected 771 771 10 9 9

8 Corrected 305 0 63 63 NA

9 No action 289 0 130 130 NA

10 Corrected 888 691 29 28 28

11 Corrected 309 309 26 25 25

12 Corrected 51 50 41 15 14

13 Corrected 198 198 21 12 12

14 Corrected 530 0 46 45 NA

15 Corrected 115 115 10 4 4

16 Corrected 154 154 30 16 16

17 Corrected 65 65 24 7 7

18 No action 98 83 23 15 21

19 Corrected 214 214 16 8 8

20 Corrected 107 107 12 8 8

21 Corrected 243 243 12 8 8

22 Corrected 1390 1390 18 17 17

23 Corrected 105 105 7 4 4

24 Corrected 221 221 8 6 6

25 Corrected 62 62 6 3 3

a Action performed on cluster: corrected if root-mean-squared distance (rmsd) of reference samples is

decreased after applied correction, no action otherwise
b Values pertaining to original QC features
c Values pertaining to QC features after entire within-batch correction procedure (Fig. 5)
d CV of drift-corrected clusters
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deviations from the general intensity ratio between batches

indicates inaccuracy. With increasing limits of intensity

ratio allowance, an increasing proportion of features are

normalised by reference sample intensities (Suppl. Fig. 6).

When long-term references were not considered represen-

tative of the sample population, as indicated by the

heuristic, batches were instead normalised by sample

population median under the assumption of similar batch

population distributions. For visualization purposes,

between-batch normalization was performed on the actual

study data from 562 samples in 3 analytical batches. When

observed in a PCA, samples were initially observed to

cluster according to batch (Fig. 4d), whereas these sys-

tematic differences were removed after normalization

(Fig. 4e).

The algorithms developed for within- and between-

batch correction are available as an R package (‘batch-

Corr’), which allows ease of implementation. These algo-

rithms can be used either alone or in combination to suit

any particular analytical situation. For example, within-

batch correction without alignment or normalisation can be

applied if samples are analysed within only one batch.

Moreover, in the case of multiple batches, these algorithms

can easily be chosen at will, combined with other drift

correction and/or normalisation procedures and incorpo-

rated into a customised workflow. The internal application

order of the batch correction algorithms developed also

leaves freedom of choice as to whether to perform drift

correction or alignment first. In the present study, align-

ment was performed on an entire dataset containing all

features, rather than batch-specific subsets with non-similar

features present. Moreover, clustering of variables in

within-batch drift correction was improved through the

removal of noisy non-relevant features by the alignment

procedure.

4 Conclusions

An approach including multiple algorithms for within- and

between-batch correction was developed to overcome

some of the measurement errors in LC-MS metabolomics

data and thereby improve the quality of data used for sta-

tistical analysis. Alignment of peaks systematically mis-

aligned between batches improved the quality of the

dataset by merging features otherwise split between bat-

ches. This was achieved by aggregating presence/miss-

ingness on batch level and combining similar features

orthogonally present between batches. Signal intensity drift

correction by clustering of features in the observation space

increased within-batch data quality by allowing for multi-

ple drift patterns within the same batch. It also minimised

the risk of overfitting (e.g. modelling of noise in individual

features) by adding statistical strength of multiple features

to the individual cluster regressions. Between-batch cor-

rection strategies must correspond to the experimental

setup at hand. Long-term reference or QC samples are not

necessarily representative of the sample population and

normalisation of such features can easily introduce severe

batch bias. A heuristic indicator was developed to assess

the suitability per feature to utilise different normalisation

techniques, i.e. reference-based or population-based

between-batch normalisation. Care should be taken to

employ unbiased measures for quality improvement using

data correction techniques to avoid overfitting and intro-

ducing bias.
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K., et al. (2013). Dietary exposure biomarker-lead discovery

based on metabolomics analysis of urine samples. The Proceed-

ings of the Nutrition Society, 72(3), 352–361.

Bijlsma, S., Bobeldijk, I., Verheij, E. R., Ramaker, R., Kochhar, S.,

Macdonald, I. A., et al. (2006). Large-scale human metabolo-

mics studies: a strategy for data (pre-) processing and validation.

Analytical Chemistry, 78, 567–574.

Buck, M., Nilsson, L. K. J., Brunius, C., Dabire, R. K., Hopkins, R., &

Terenius, O. (2016). Bacterial associations reveal spatial popu-

lation dynamics in Anopheles gambiae mosquitoes. Scientific

Reports. doi:10.1038/srep22806.

Drogan, D., Dunn, W. B., Lin, W., Buijsse, B., Schulze, M. B.,

Langenberg, C., et al. (2014). Untargeted metabolic profiling

identifies altered serum metabolites of type 2 diabetes mellitus in

a prospective, nested case-control study. Clinical Chemistry, 61,

487–497.

Dunn, W. B. (2012). Diabetes-the role of metabolomics in the

discovery of new mechanisms and novel biomarkers. Current

Cardiovascular Risk Reports, 7(1), 25–32.

Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-

McIntyre, S., Anderson, N., et al. (2011). Procedures for large-

scale metabolic profiling of serum and plasma using gas

chromatography and liquid chromatography coupled to mass

spectrometry. Nature Protocols, 6, 1060–1083.

Dunn, W. B., Wilson, I. D., Nicholls, A. W., & Broadhurst, D. (2012).

The importance of experimental design and QC samples in large-

scale and MS-driven untargeted metabolomic studies of humans.

Bioanalysis, 4, 2249–2264.

Ejigu, B. A., Valkenborg, D., Baggerman, G., Vanaerschot, M.,

Witters, E., Dujardin, J.-C., et al. (2013). Evaluation of

normalization methods to pave the way towards large-scale

LC-MS-based metabolomics profiling experiments. Omics: A

Journal of Integrative Biology, 17(9), 473–485.

FDA. (2001). Guidance for industry: Bioanalytical method valida-

tion. US Department of Health and Human Services, Food and

Drug Administration, Center for Drug Evaluation and Research

Fernandez-Albert, F., Llorach, R., Garcia-Aloy, M., Ziyatdinov, A.,

Andres-Lacueva, C., & Perera, A. (2014). Intensity drift removal

in LC/MS metabolomics by common variance compensation.

Bioinformatics, 30(20), 2899–2905.

Fraley, C., & Raftery, A. E. (2002). Model-based clustering,

discriminant analysis, and density estimation. Journal of the

American Statistical Association, 97(458), 611–631.

Fraley, C., Raftery, A., Murphy, T., & Scrucca, L. (2012). mclust

Version 4 for R: Normal mixture modeling for model-based

clustering, classification, and density estimation. Seattle:

University of Washington.

Ganna, A., Salihovic, S., Sundström, J., Broeckling, C. D., Hedman,
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Normalization method for metabolomics data using optimal

selection of multiple internal standards. BMC Bioinformatics, 8,

93.
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