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ABSTRACT
It is becoming increasingly common for organizations to
collect very large amounts of data over time, and to need
to detect unusual or anomalous time series. For example,
a large internet company has banks of mail servers that
are monitored over time. Many measurements on server
performance are collected every hour for each of thousands
of servers. We wish to identify servers that are behaving
unusually.

We compute a vector of features on each time series, mea-
suring characteristics of the series. The features may include
lag correlation, strength of seasonality, spectral entropy, etc.
Then we use a principal component decomposition on the
features, and use various bivariate outlier detection methods
applied to the first two principal components. This enables
the most unusual series, based on their feature vectors, to
be identified. The bivariate outlier detection methods used
are based on highest density regions and α-hulls.

Keywords
Feature Space, Multivariate Anomaly Detection, Outliers,
Time Series Characteristics

1. INTRODUCTION
In the past decade a lot of work has been done on finding
the most similar time series efficiently [21, 13]. In this
paper we focus on finding the least similar time series in
a large set. We shall refer to such time series as unusual

or anomalous. Figure 1 gives a visual motivation for our
approach. Each graph in the left column shows a collection of
100 time series, two of which are outliers having an abnormal
trend or seasonality. The second column shows the first two
principal components which we use to identify unusual time
series. Some unusual time series are not easy to identify (e.g.,
seasonality anomalies in Figure 1); for this reason, a robust,
accurate and automated solution is critical.

Figure 1: Different types of anomalies and cor-

responding first two principal components which

our method uses for unusual time series detection.

These types of anomalous time series may be due to

an abnormal server or a malicious user.

An important motivation for efficiently finding anomalous
time series comes from large internet companies. At such
companies, thousands of servers power user services providing
an uninterrupted and secure user experience. It is therefore
critical to monitor the server metrics (e.g., latency, cpu),
represented by time series, for any unusual behavior.

We are interested in the time series that are anomalous
relative to the other time series in the same cluster, or more
generally, in the same set. This type of anomaly detection
is different from univariate anomaly detection or even from
a multivariate point anomaly detection [6] because we are
interested in identifying entire time series that are behaving
unusually in the context of other metrics. Early detection of
these anomalous time series is critical for taking preemptive
action to protect users and provide a better user-experience.
The solution presented in this paper has been deployed at
scale within a large internet company and the open-source



version of the proposed method is being released as an R
package [16]. As shown in Section 4, the proposed method
has impressive performance for a wide variety of anomalies
present in the time series, making it applicable to other
use-cases such as identifying anomalous users, data-base
transactions, retail sales and many others.

We make three fundamental contributions. First, we in-
troduce a novel and accurate method of using PCA with
α-convex hulls for finding anomalous time series. Second
we perform a study of possible features that are useful for
the types of time series dynamics seen in web-traffic time
series. Lastly we perform experiments on both synthetic and
real world data and demonstrate the usefulness and wide
applicability of our method to finding interesting time series
in a collection of other time series.

In Section 2 we present our approach that uses PCA and
α-convex hulls. In Section 3 we look at the features used for
explaining the variance in different scenarios. Experiments
of the method are described in Section 4. Related work and
conclusions are presented in Sections 5 and 6 respectively.

2. APPROACH
We first extract n features (see Section 3) from m time series.
We then use Principal Component Analysis (PCA) (similar
to [21]) to identify the patterns (i.e., principal components).
The first two principal components (PCs) are then selected
and a two dimensional outlier detection algorithm is used to
find the top k ∈ m outliers.

PCA is a tool for dimension reduction in high dimensional
data. A principal component is a combination of the original
variables after a linear transformation. For example the first
principal component captures the maximum variation in the
rows of the m× n matrix. More formally, the first principal
component c1 is given by c1 = argmax||c||=1||yc||

. Therefore,
loosely speaking the first k principal components capture the
k most prevalent patterns in the data.

Figure 2 shows the fraction of the variance captured by the
first k principal components from real time series. We found
that using the first two principal components was sufficient
for our use-cases. To find anomalies in the first two PCs
we use a multi-dimensional outlier detection algorithm. We
have implemented a density-based and an α-hull based multi-
dimensional outlier detection algorithms.

The density based multi-dimensional anomaly detection al-
gorithm [7] finds points in the first two principal components
with lowest density. The α-hull method [15] is a generaliza-
tion of the convex hull [6] which is a bounding region of a
point set. The α parameter in the α-hull method defines a
generalized disk of radius α. When α is sufficiently large, the
α-hull method is equivalent to the convex hull. Given α, an
edge of the α-shape is drawn between two members of the
finite point set if there exists a generalized disk of radius α
containing the entire point set and the two points lie on its
boundary.

3. FEATURES
We now describe the time series features we use in the PCA.
While we focus on our use-case of identifying anomalous

servers in a large internet company, we attempt to make our
approach general and applicable to other use-cases where
finding anomalous time series is critical.

The features identified should capture the global information
of the time series. The features identified in our research
add to an already existing set of well established features
that describe time series [4] including measures of trend, sea-
sonality, and serial correlation [20] and spectral entropy [5].
Some of features have been specifically selected to address
our use-case. For example we divide a series into blocks of
24 observations to remove any daily seasonality. Then the
variances of each block are computed and the variance of the
variances across blocks measures the “lumpiness” of the series.
Some of our features rely on a robust STL decomposition [3].
For example, the size and location of the peaks and troughs
in the seasonal component are used, and the spikiness feature
is the variance of the leave-one-out variances of the remainder
component. Other features measure structural changes over
time. The “level shift” is defined as the maximum difference
in mean between consecutive blocks of 24 observations, “vari-
ance change” is computed similarly using variances, and the
Kullback-Leibler (KL) score is the maximum difference in KL
divergence (measured using kernel density estimation) be-
tween consecutive blocks of 48 observations. “Flat spots” are
computed by dividing the sample space of a time series into
ten equal-sized intervals, and computing the maximum run
length within any single interval. Finally, “crossing points”
are defined as the number of times a time series crosses the
mean line.

A more detailed look at the features will be presented in the
longer version of our paper.

Feature Description

Mean Mean.
Var Variance.
ACF1 First order of autocorrelation.
Trend Strength of trend.
Linearity Strength of linearity.
Curvature Strength of curvature
Season Strength of seasonality.
Peak Strength of peaks.
Trough Strength of trough.
Entropy Spectral entropy.
Lumpiness Changing variance in remainder.
Spikiness Strength of spikiness
Lshift Level shift using rolling window.
Vchange Variance change.
Fspots Flat spots using disretization.
Cpoints The number of crossing points.
KLscore Kullback-Leibler score.
Change.idx Index of the maximum KL score.

Table 1: Summary of features used for detecting

unusual time series.

4. EXPERIMENTS
We now evaluate the effectiveness of our anomaly detec-
tion method using real-world and synthetic data comprising
normal and anomalous time series. Our goal is to detect
anomalous time series accurately.

The real dataset comes from a large internet company and
represents the various server metrics (e.g., memory usage,



Figure 2: Scree plots showing that on our real dataset, a significant proportion of the variation can be

captured using the first three to five components. For unusual time series detection we found that the first

2 components are sufficient.

Baseline Method Description

Baseline 1 Computes Mean Absolute Difference
between time series.

Baseline 2 Computes similarity between time se-
ries using discrete wavelet transform
(DWT) [9].

Baseline 3 Uses PCA to extract raw time series
features and uses K-Means for cluster-
ing. The time series in the smallest
cluster are labeled as outliers [18].

Table 2: Summary of the baseline method.

latency, cpu). The unusual time series in the real dataset are
based on a malicious activity, new feature deployment or a
traffic shift. The synthetic dataset was generated by varying
various time series parameters such as the trend, seasonality
and noise. Both the synthetic and real datasets contain
approximately 1500 time series with labeled anomalies.

4.1 Overall Detection Accuracy
Here we evaluate the average performance of our method
relative to the baseline methods. Recall that our approach
first extracts the two most significant principal components
(PC)s from all time series and then determines the outliers
in the new 2D “feature space”. For PC extraction, we have
tested the regular PCA and Robust PCA (RPCA). For
multidimensional outlier detection on the PC space we show
results for the density-based method (HDR) and for the
α-hull method.

The baselines are described in Table 2. Because our method
has no direct competitor, we use time series similarity and
clustering techniques as baselines to detect unusual time
series. We label a time series as unusual if it has a low
average similarity score or it belongs to the smallest cluster.

For this experiment both real and synthetic datasets were
used. For the synthetic dataset, 10 sets of time series were
created. Each set consists of 1500 time series, 5 of which
were creating with unusual features (e.g., unusually high
seasonality). All methods were evaluated in terms of the
average accuracy = #correct

#total
across both real and synthetic

datasets.

Figure 3: Average accuracy of our method compared

to baseline approaches.

Figure 3 shows that our PCA + α-hull approach performs
the best. While it is not surprising that our technique out-
performed the baselines because we use a well-researched
feature-space, it is surprising that the Robust PCA method
did not perform well. This, however, can be explained by
looking at the optimization equation of Robust PCA [2]
which ignores outliers thereby potentially missing the princi-
pal component that explains the variance better.

4.2 Performance
Here we evaluate the performance of our algorithms com-
pared to the baseline methods. The performance is measured
in seconds as the number of total time series increases. Note
that the number of unusual time series also increases propor-
tionally to constitute roughly 2% of all time series. We can
observe from Figure 4 that our approach performs favorably
compared to others. Note that we were not able to run Base-
line method #2 due to extremely slow performance above



Figure 4: Scalability performance

100 time series therefore we do not include it in the compari-
son. Also note that the feature extraction and the anomaly
detection of the PCA + α-hull increases only slightly as the
number of time series is increased by an order of magnitude.

5. RELATED WORK
While our approach of identifying entire anomalous time
series is novel, there are some parallels with existing work.
For example authors in [10, 11, 12, 1] look at unusual subse-
quences within a single time series. PCA has also been used
for detecting anomalous functions in a sample of functions
[8], and for detecting univariate anomalies by [17, 19]. In
addition to anomaly detection, PCA has been employed as
a similarity measure used in clustering [21, 13]. Authors
in [14] use PCA for a multi-dimensional visualization of a
large collection of time series. None of the above methods,
however, address our problem of finding unusual time series
in a large collection of time series.

6. CONCLUSION
We propose using Principal Component Analysis (PCA) to-
gether with multi-dimensional anomaly detection to identify
unusual time series in a large collections of time series. Our
method is robust and accurate as demonstrated by the ex-
periments over synthetic and real data from a large internet
company. Our approach achieves a detection accuracy of over
80% (compared to 42% for baseline methods) and requires
less than 0.5 seconds to process 1000 time series which is at
least 3x faster than baseline algorithms. More experiments
such as the effect on performance as the number of principle
components used by the outlier detection method increases
are to be presented in our full paper. Our method requires
no a priori labeling or tuning of parameters other than the
user-acceptable sensitivity threshold. Our method incorpo-
rates thoughtful selection of features that measure the types
of anomalous behavior likely to occur in the time series col-
lection. The presented approach is to be open-sourced and is
already deployed at scale within a large internet company.
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