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Abstract

It has long been suspected that the rate of mutation varies across the human genome at a

large scale based on the divergence between humans and other species. However, it is now

possible to directly investigate this question using the large number of de novomutations

(DNMs) that have been discovered in humans through the sequencing of trios. We investi-

gate a number of questions pertaining to the distribution of mutations using more than

130,000 DNMs from three large datasets. We demonstrate that the amount and pattern of

variation differs between datasets at the 1MB and 100KB scales probably as a consequence

of differences in sequencing technology and processing. In particular, datasets show differ-

ent patterns of correlation to genomic variables such as replication time. Never-the-less

there are many commonalities between datasets, which likely represent true patterns. We

show that there is variation in the mutation rate at the 100KB, 1MB and 10MB scale that can-

not be explained by variation at smaller scales, however the level of this variation is modest

at large scales–at the 1MB scale we infer that ~90% of regions have a mutation rate within

50% of the mean. Different types of mutation show similar levels of variation and appear to

vary in concert which suggests the pattern of mutation is relatively constant across the

genome. We demonstrate that variation in the mutation rate does not generate large-scale

variation in GC-content, and hence that mutation bias does not maintain the isochore struc-

ture of the human genome. We find that genomic features explain less than 40% of the

explainable variance in the rate of DNM. As expected the rate of divergence between spe-

cies is correlated to the rate of DNM. However, the correlations are weaker than expected if

all the variation in divergence was due to variation in the mutation rate. We provide evidence

that this is due the effect of biased gene conversion on the probability that a mutation will

become fixed. In contrast to divergence, we find that most of the variation in diversity can be

explained by variation in the mutation rate. Finally, we show that the correlation between

divergence and DNM density declines as increasingly divergent species are considered.
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Author summary

Using a dataset of more than 130,000 de novomutations we show that there is large-scale

variation in the mutation rate at the 100KB and 1MB scales. We show that different types

of mutation vary in concert and in a manner that is not expected to generate variation in

base composition; hence mutation bias is not responsible for the large-scale variation in

base composition that is observed across human chromosomes. As expected, large-scale

variation in the rate of divergence between species and the variation within species across

the genome, are correlated to the rate of mutation, but the correlation between divergence

and the mutation rate is not as strong as it could be. We show that biased gene conversion

is responsible for weakening the correlation. In contrast, we find that most of the variation

across the genome in diversity can be explained by variation in the mutation rate. Finally,

we show that the correlation between the rate of mutation in humans and the divergence

between humans and other species, weakens as the species become more divergent.

Introduction

Until recently, the distribution of germ-line mutations across the genome was studied using

patterns of nucleotide substitution between species in putatively neutral sequences (see [1] for

review of this literature), since under neutrality the rate of substitution should be equal to the

mutation rate. However, the sequencing of hundreds of individuals and their parents has led

to the discovery of thousands of germ-line de novomutations (DNMs) in humans [2–6]; it is

therefore possible to analyse the pattern of DNMs directly rather than inferring their patterns

from substitutions. Initial analyses have shown that the rate of germ-line DNM increases with

paternal age [4], a result that was never-the-less inferred by Haldane some 70 years ago [7],

maternal age [6], varies across the genome [5] and is correlated to a number of factors, includ-

ing the time of replication [3], the rate of recombination [3], GC content [5] and DNA hyper-

sensitivity [5].

Previous analyses have demonstrated that there is large scale (e.g. 1MB) variation in the

rate of DNM in both the germ-line [3, 5] and the somatic tissue [8–12]. Here we focus exclu-

sively on germ-line mutations. We use a collection of over 130,000 germ-line DNMs to address

a range of questions pertaining to the large-scale distribution of DNMs. First, we quantify how

much variation there is at different scales and investigate whether the variation in the mutation

rate at a large-scale can be explained in terms of variation at smaller scales. We also investigate

to what extent the variation is correlated between different types of mutation, and to what

extent it is correlated to a range of genomic variables.

We use the data to investigate a long-standing question–what forces are responsible for the

large-scale variation in GC content across the human genome, the so called “isochore” struc-

ture [13]. It has been suggested that the variation could be due to mutation bias [14–18], natu-

ral selection [13, 19, 20], biased gene conversion [21–24], or a combination of all three forces

[25]. There is now convincing evidence that biased gene conversion plays a role in the generat-

ing at least some of the variation in GC-content [26–28]. However, this does not preclude a

role for mutation bias or selection. With a dataset of DNMs we are able to directly test whether

mutation bias causes variation in GC-content.

The rate of divergence between species is known to vary across the genome at a large scale

[1]. As expected this appears to be in part due to variation in the rate of mutation [3]. However,

the rate of mutation at the MB scale is not as strongly correlated to the rate of nucleotide sub-

stitution between species as it could be if all the variation in divergence between 1MB windows
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was due to variation in the mutation rate [3]. Instead, the rate of divergence appears to corre-

late independently to the rate of recombination. This might be due to one, or a combination,

of several factors. First, recombination might affect the probability that a mutation becomes

fixed by the process of biased gene conversion (BGC) (reviewed by [26]). Second, recombina-

tion can affect the probability that a mutation will be fixed by natural selection; in regions of

high recombination deleterious mutations are less likely to be fixed, whereas advantageous

mutations are more likely. Third, low levels of recombination can increase the effects of

genetic hitch-hiking and background selection, both of which can reduce the diversity in the

human-chimp ancestor, and the time to coalescence and the divergence between species.

There is evidence of this effect in the divergence of humans and chimpanzees, because the

divergence between these two species is lower nearer exons and other functional elements [29,

30]. And fourth, the correlation of divergence to both recombination and DNM density might

simply be due to limitations in multiple regression; spurious associations can arise if multiple

regression is performed on two correlated variables that are subject to sampling error. For

example, it might be that divergence only depends on the mutation rate, but that the mutation

rate is partially dependent on the rate of recombination. In a multiple regression, divergence

might come out as being correlated to both DNM density and the recombination rate, because

we do not know the mutation rate without error, since we only have limited number of

DNMs. Here, we introduce a test that can resolve between these explanations.

As with divergence, we might expect variation in the level of diversity across a genome to

correlate to the mutation rate. The role of the mutation rate variation in determining the level

of genetic diversity across the genome has long been a subject of debate. It was noted many

years ago that diversity varies across the human genome at a large scale and that this variation

is correlated to the rate of recombination [31–33]. Because the rate of substitution between

species is also correlated to the rate of recombination, Hellmann et al. [31, 32] inferred that the

correlation between diversity and recombination was at least in part due to a mutagenic effect

of recombination, an inference that has been confirmed by recent studies of recombination [3,

34, 35]. However, no investigation has been made as to whether variation in the rate of muta-

tion explains all the variation in diversity, or whether biased gene conversion, direct and linked

selection have a major influence on diversity at a large scale.

Results

De novo mutations

To investigate large scale patterns of de novomutation in humans we compiled data from

three studies which between them had discovered more than 130,000 autosomal DNMs:

105,385 from Jonsson et al. [36], 26,939 mutations fromWong et al. [6], and 11016 mutations

from Francioli et al. [3] The datasets are henceforth referred to by the name of the first author.

We divided the mutations up into 9 categories reflecting the fact that CpG dinucleotides have

higher mutation rates than non-CpG sites, and the fact that we cannot differentiate which

strand the mutation had occurred on: CpG C>T (a C to T or G to A mutation at a CpG site),

CpG C>A, CpG C>G and for non-CpG sites C>T, T>C, C>A, T>G, C<>G and T<>A

mutations.

The proportion of mutations in each category in each of the datasets is shown in Fig 1. We

find that the pattern of mutation differs significantly between the studies (Chi-square test of

independence on the number of mutations in each of the 9 categories, p< 0.0001). This

appears to be largely due to the relative frequency of C>T transitions in both the CpG and

non-CpG context; a discrepancy which has been noted before[37, 38]. In the data fromWong

et al. [6] the frequency of C>T transitions at CpG sites is ~13% whereas it is ~16–17% in the
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other two datasets. For non-CpG sites the frequency of C>T transitions is ~24% in all studies

except that of Wong et al. in which it is 26%. It is not clear whether these patterns reflect differ-

ences in the mutation rate between different cohorts of individuals, possibly because of age [3,

4, 6] or geographical origin [39] or whether the differences are due to methodological prob-

lems associated with detecting DNMs.

Distribution of rates

To investigate whether there is large scale variation in the mutation rate we divided the

genome into non-overlapping windows of 10KB, 100KB, 1MB and 10MB and fit a gamma dis-

tribution to the number of mutations per region, taking into account the sampling error asso-

ciated with the low number of mutations per region. We focussed our analysis at the 1MB

scale since this has been extensively studied before. However, we show that the variation at

1MB forms part of a continuum of variation. We also repeated almost all our analyses at the

100KB scale with qualitatively similar results (these results are reported in supplementary

tables).

We find that the amount of variation differs significantly between the three studies (likeli-

hood ratio tests: p< 0.001), although, the differences are quantitatively small at the 1MB (Fig

2) and 100KB (S1 Fig) scales. The variation between datasets might be due to differences in age

or ethnicity between the individuals in each study, or methodological problems–for example,

there might be differences between studies in the ability to identify DNMs. We can test

whether callability is an issue in the Wong dataset because Wong et al. [6] estimated the num-

ber of trios at which a DNMwas callable at each site. If we reanalyse the Wong data using the

sum of the callable trios per MB, rather than the number of sites in the human genome assem-

bly, we obtain very similar estimates of the distribution: the coefficient of variation (CV) for

the distribution is 0.27 when we use the number of sites and 0.24 when we use the sum of call-

able trios.

As expected the number of DNMs per site is significantly correlated between the datasets

(1MB Francioli v Wong r = 0.15, p<0.001; Francioli v Jonsson r = 0.19 p<0.001; Wong v

Fig 1. The proportion of DNMs in each mutational category in the three datasets. CpG X>Y is an X>Y DNM at a
CpG site, non X>Y is an X>Y DNM at a non-CpG site.

https://doi.org/10.1371/journal.pgen.1007254.g001
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Jonsson r = 0.29, p<0.001). The correlation is weak, but this is likely to be in part due to sam-

pling error. If we simulate data assuming a common distribution, estimating the shape param-

eter as the mean CV of the distributions fit to the individual datasets, the mean simulated

correlations are: Francioli v Wong r = 0.20; Francioli v Jonsson r = 0.29; Wong v Jonsson

r = 0.41. This suggests that a substantial proportion of the variation is common to the three

datasets, however in each case less than 5% of the simulated correlations are less than the

observed correlation suggesting that some portion of the variation in the three datasets is

uncorrelated.

The CV of the gamma distribution fitted to the density of DNMs is 0.18, 0.27 and 0.15 for

the Francioli, Wong and Jonsson datasets respectively (Fig 2). The level of variation is signifi-

cant (i.e. the lower 95% confidence interval of the CV is greater than zero), however the level

of variation is modest (Fig 2). A gamma distribution with a coefficient of variation of 0.18 is

one in which 90% of regions have a mutation rate within 30% of the mean (i.e. if the mean is

one, between 0.7 and 1.3). The gamma distribution fits the distribution of rates qualitatively

quite well (S2 Fig; S3 Fig for 100KB), even though a goodness-of-fit test rejects the model at

both the 100KB and 1MB scales in all three datasets (p<0.001 in all cases). At the 1MB the

observed distribution is more peaked than the fitted gamma distributed; there are too many

regions with very low, very high and intermediate numbers of DNMs.

If we include estimates of the distribution for 10KB, 100KB and 10MB we find, as expected,

that the variance in the mutation rate declines as the scale gets larger (Figs 3 and 4). This is

more marked for the Francioli dataset than for the Wong and Jonsson datasets (Figs 3 and 4).

If we plot the CV of the fitted gamma distribution against the window size we find that the log

of the CV of the gamma distribution is approximately linearly related to the log of the window

size for the Francioli andWong datasets (Fig 4); the relationship appears curvi-linear for the

Jonsson dataset. The fact that the CV declines gradually across scales suggests that the variation

at the 1MB scale is part of a continuum of variation at different scales. The linearity of the rela-

tionship in two of the datasets suggests that a simple phenomenon may underlie the variation

at different scales.

If all the variation at the larger scales is explainable by variation at a smaller scale, then the

CV at scale x should be equal to the CV at some finer scale, y, divided by the square-root of x/

y; on a log-log scale this should yield a slope of -0.5. The slope for each dataset is shallower

Fig 2. Gamma distributions fitted to the DNM density at the 1MB scale. In order of decreasing variance: Maroon–
Wong, Blue–Francioli, Olive–Jonsson.

https://doi.org/10.1371/journal.pgen.1007254.g002
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Fig 3. Gamma distribution fitted at different scales and to different categories of mutation. The gamma distribution fitted to the number of DNMs per
window at different scales: 10KB (blue) 100KB (maroon), 1MB (olive) and 10MB (green) for the A) Francioli C) Wong, and E) Jonsson data; and the CV of
the distribution fitted to various mutational categories at the 1MB scale for B) Francioli D) Wong, and F) Jonsson data.

https://doi.org/10.1371/journal.pgen.1007254.g003
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than this (Francioli b = -0.25; Wong b = -0.10; Jonsson b = -0.16). This therefore suggests that

there is variation at a larger scale that cannot be explained by variation at a smaller scale. To

test whether this is the case, we ran a series of one-way ANOVAs; testing variation at the

100KB scale using 10KB windows, 1MB using 100KB windows and 10MB using 1MB win-

dows. The results were significant for all datasets (p<0.001 in all cases).

Mutational types

If we estimate the distribution for individual mutational types we find that in many cases the

lower CI on the CV is zero; this might be because we do not have enough data to reliably esti-

mate the distribution for each individual mutational type. We therefore combined mutations

into a variety of non-mutually exclusive categories. In each case we estimated the distribution

for the relevant category of sites–e.g. in considering the distribution of CpG rates we consider

the number of CpG DNMs at CpG sites, not at all sites. We find that the estimated distribu-

tions are similar for different mutational types except that there is rather more variation at

CpG sites in the Francioli dataset (Fig 3; 100KB results S1 Table). Although the distributions

are fairly similar for different mutational types, likelihood ratio tests demonstrate that there

are significant differences between mutational categories (S2 Table for 1MB and 100KB

results); this is particularly apparent for the Jonsson dataset, probably as a consequence of the

size of this dataset. Never-the-less the differences between different mutational categories are

relatively small.

Correlations between mutational types

Given that there is variation in the mutation rate at the 1MB scale and that this variation is

quite similar in magnitude for different mutational types, it would seem likely that the rate of

mutation for the different mutational types are correlated. We find that this is indeed the case.

We observe significant correlations between all categories of mutations in the three datasets

(Table 1; S3 Table for 100KB). The correlations are weak but this is to be expected given the

large level of sampling error. To compare the correlation to what we might expect if the two

Fig 4. The coefficient of variation of the fitted distribution across scales.Note both variables are plotted on a log-
scale.

https://doi.org/10.1371/journal.pgen.1007254.g004

Large scale variation in the rate of de novomutation

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1007254 March 28, 2018 7 / 30

https://doi.org/10.1371/journal.pgen.1007254.g004
https://doi.org/10.1371/journal.pgen.1007254


categories of mutation shared a common distribution and were perfectly correlated, we simu-

lated data under a common distribution, estimating the CV of the common distribution as the

mean of the distributions fitted to the two mutational categories. We find that generally the

observed correlations are similar, and not significantly different, to the expected correlations.

In some cases, we observe that the simulated correlation is actually consistently weaker than

the observed correlation; this may reflect the inadequacy of the gamma distribution in describ-

ing the distribution of rates.

Variation in base composition

The fact that the rates of Strong to Weak base pairs (S>W) andW>S mutation covary

(Table 1) suggests that mutational biases are unlikely to generate much variation in GC-con-

tent across the genome. To investigate this further, we used two approaches to test whether

there was variation in the pattern of mutation that could generate variation in GC content.

First, we used the DNM data for each window to predict the equilibrium GC content to which

the sequence would evolve, fitting a model by maximum likelihood (ML) in which this equilib-

rium GC-content could vary across the genome. The ML estimate for the mean equilibrium

GC-content is similar in all datasets at ~0.32. The ML estimate and its 95% CIs for the standard

deviation for the equilibrium GC-content are 0.02 (0, 0.060), 0.001 (0, 0.036) and 0.011 (0,

0.024) for the Francioli, Wong and Jonsson respectively; in each case confidence intervals

encompass 0, suggesting that a model with no variation in equilibrium GC-content fits the

data well. Furthermore, the upper confidence interval is small, suggesting that at most varia-

tion in the pattern of mutation generates little variation in GC-content.

However, the ML method does not rule out the possibility that there is some variation in

the pattern of mutation. Furthermore, the method does not take into account the difference in

the mutation rate between CpG and non-CpG sites. We therefore used a second approach in

which we grouped windows together based on their current GC-content. We then estimated

the mutation rates for the 9 categories of mutation using the DNM data and used these

Table 1. The correlation between different mutational types at the 1MB scale.

Comparison Observed correlation Expected correlation Proportion of simulated correlations> observed

Francioli

CpG v. nonCpG 0.097��� 0.057 0.96

nonCpG ts v. nonCpG tv 0.052�� 0.036 0.73

S>W v. W>S 0.061�� 0.024 0.94

Wong

CpG v. nonCpG 0.16��� 0.16 0.48

nonCpG ts v. nonCpG tv 0.22��� 0.20 0.83

S>W v. W>S 0.22��� 0.18 0.95

Jonsson

CpG v. nonCpG 0.16��� 0.26 0.0

nonCpG ts v. nonCpG tv 0.31 0.24 1.0

S>W v. W>S 0.23 0.17 1.0

The observed correlation is given along with the mean correlation from simulated data under the assumption that the two categories have the same distribution and are

perfectly correlated. The proportion of 100 simulations in which the simulated correlation was less than the observed is also given
� p<0.05
��p<0.01
���p<0.001

https://doi.org/10.1371/journal.pgen.1007254.t001
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estimated mutation rates in a simulation of sequence evolution, in which we evolved the

sequence to its equilibrium GC content. We find no correlation between the equilibrium GC

content to which the sequence evolves and the current GC content (Fig 5; S4 Fig for 100KB).

Mutation models

It has been suggested that the mutation rate at a site is predictable based on genomic features,

such as replication time, by Michaelson et al. [5], or the 7-mer sequence in which a site is

found, by Aggarwala et al. [40]. To investigate whether these models can explain the variation

at large scales we used the models to predict the average mutation rate for each 100KB or 1MB

region and correlated these predictions against the observed number of DNMs per site.

We find that the density of DNMs is significantly correlated to the rates predicted under

the 7-mer model of Aggarwala et al. [40]. This correlation is significantly positive for the

Wong and Jonsson datasets, as we might expect, but significantly negative for the Francioli

dataset (Table 2; S4 Table for 100KB results). To compare these correlations to what we might

expect if the Aggarwala model explained all the variation at large scales, we simulated the

appropriate number of DNMs across the genome according to this model. The observed

Fig 5. The equilibriumGC content from a simulation of sequence evolution. The equilibrium GC content from a
simulation of sequence evolution is plotted against the current GC-content of the windows from which the mutation
pattern was estimated. Note several of the points are coincident.

https://doi.org/10.1371/journal.pgen.1007254.g005

Table 2. Correlation between the density of DNMs and the mutation rate estimates from the models of Aggarwala et al. [40] andMichaelson et al. [5] at the 1MB
scale.

Aggarwala Michaelson

Observed Expected Observed Expected

Francioli -0.16��� 0.16��� 0.084��� 0.41���

Wong 0.18��� 0.25��� 0.018 0.58���

Jonsson 0.068��� 0.44��� 0.13��� 0.80���

The expected values are the mean correlations observed from 1000 simulations
��� p< 0.001

https://doi.org/10.1371/journal.pgen.1007254.t002

Large scale variation in the rate of de novomutation

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1007254 March 28, 2018 9 / 30

https://doi.org/10.1371/journal.pgen.1007254.g005
https://doi.org/10.1371/journal.pgen.1007254.t002
https://doi.org/10.1371/journal.pgen.1007254


correlation is significantly smaller than the expected correlation for all datasets, however, the

observed and expected correlations are quite similar for the Wong dataset suggesting that

much of the variation in DNM density in this dataset is explainable by the model of Aggarwala

et al. [40]. However, the model explains almost none of the variation in the Jonsson dataset.

In contrast, the density of DNMs is significantly positively correlated to the predictions of

the Michaelson model in the Francioli and Jonsson datasets, but not for the Wong dataset.

However, in all cases the correlation is substantially and significantly smaller than it could be if

the model explained all the variation (Table 2; S4 Table for 100KB results) suggesting that this

model fails to capture much of the variation at the 1MB and 100KB scales.

Correlations with genomic variables

To try and understand why there is large scale variation in the mutation rate, we compiled a

number of genomic variables which have previously been shown to correlate to the rate of

germline or somatic DNM, or divergence between species: male and female recombination

rate, GC content, replication time, nucleosome occupancy, transcription level, DNA hypersen-

sitivity and several histone methylation and acetylation marks [3, 5, 9, 41, 42].

Surprisingly, the three datasets yield different patterns of correlation. The overall density of

DNMs is significantly positively correlated to male and female recombination rates across all

datasets, but otherwise there is no consistency (Table 3; 100KB results S5 Table); for example,

DNM density is negatively correlated to replication time (later replicating regions have higher

mutation rates) in the Francioli and Jonsson datasets, but positively correlated in the Wong

dataset, and despite containing 10-times as much data, the correlation is weaker in the Jonsson

than the Francioli dataset. Overall, the correlations are more similar in their direction in the

Francioli and Jonsson datasets.

Many of the genomic variables are correlated to each other. If we use principle components

to reduce the dimensionality, the first principle component (PC) explains 58% of the variation

Table 3. The correlation between the density of DNMs and various genomic variables at the 1MB scale.

Francioli Wong Jonsson Wong (callable) W<>W and S<>S substitutions

Male recombination rate 0.072��� 0.225��� 0.156��� 0.208��� 0.254���

Female recombination rate 0.06��� 0.240��� 0.084��� 0.215��� 0.116���

H3K4me1 -0.097��� 0.156��� -0.002 0.123��� -0.136���

H3K4me3 -0.176��� -0.012 -0.066�� -0.032 -0.424���

H3K27me3 -0.080��� 0.039 -0.025 0.027 -0.199���

H3K27ac -0.134��� 0.10��� -0.019 0.070�� -0.396���

Transcription rate -0.122��� -0.033 -0.003 -0.043� -0.214���

H3K4me1PB -0.119��� 0.105��� -0.062�� 0.080��� -0.385���

H3K9me3PB 0.106��� -0.169��� 0.012 -0.133��� 0.420���

Nucleosome occupancy -0.070�� 0.224��� 0.019 0.184��� -0.357���

DNAse hypersensitivity -0.144��� 0.086��� 0.013 0.062�� -0.302���

Replication time -0.154��� 0.045� -0.087��� 0.019 -0.474���

GC content -0.110��� 0.167��� 0.032 0.132��� -0.324���

Also shown are the correlations when the number of DNMs in the Wong dataset divided by the sum of the callable trios and the number of W<>W and S<>S

substitutions per site between human and chimpanzee.
� p<0.05
��p<0.01
���p<0.001.

https://doi.org/10.1371/journal.pgen.1007254.t003
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in the genomic variables, the second 13%, the third and fourth 6.9 and 5.7% of the variation.

We find that the density of DNMs is significantly negatively correlated to the first PC in the

Francioli data (r = -0.14, p<0.001), significantly positively in the Wong data (r = 0.14,

p<0.001) and uncorrelated in the Jonsson data (r = -0.013, p = 0.54). All are significantly posi-

tively correlated to the second PC (Francioli, r = 0.14, p<0.001; Wong, r = 0.27, p<0.001; Jons-

son, r = 0.15, p< 0.001), uncorrelated to the third component andWong and Jonsson are

significantly correlated to the fourth component but in opposite directions (Wong, r = -0.059,

p = 0.005; Jonsson, r = 0.1, p<0.001).

It is possible that the differences between Wong and the other datasets are due to biases in

the ability to call DNMs. However, analysing the Wong data using the number of callable trios

at each site does not qualitatively alter the pattern of correlation in the Wong dataset (Table 3)

or the correlations to the principle components of the genomic features (PC1, r = 0.11

p<0.001; PC2, r = 0.25, p<0.001; PC3, r = -0.019, p = 0.37; PC4, r = -0.048, p = 0.019).

To investigate whether these patterns are consistent across mutational types, we calculated

the correlation between the density of each mutational type (e.g. CpG C>T mutations at CpG

sites) and the first two PCs of the genomic features. For the Francioli and Jonsson datasets the

patterns are perfectly consistent; all mutational types, if they show a significant correlation, are

significantly negatively correlated to the first PC, and significantly positively correlated to the

second (S6 Table). For the Wong data, the patterns are more heterogeneous; all mutational

types are positively correlated to the second PC, but some mutational types are significantly

positively correlated to the first PC and others significantly negatively correlated.

In order to try and disentangle which factors might be most important in determining the

rate of mutation we used stepwise regression. We find, as expected, that the models selected

for the three datasets are different (Table 4); only male recombination rate is common to and

correlated in the same direction in all three models. The differences are not due to variation in

the ability to call DNMs in the Wong dataset since repeating the analyses using the sum of

Table 4. The standardised regression coefficients from a stepwise multiple regression with forward variable selection.

Francioli Wong Jonsson Wong (callable)

Male recombination rate 0.10��� 0.14��� 0.10���

Female recombination rate 0.069�� 0.091�� 0.084��

H3K4me1 0.12��

H3K4me3 -0.084� -0.13��� -0.13���

H3K27me3

H3K27ac

Transcription rate

H3K4me1PB

H3K9me3PB -0.074�

Nucleosome occupancy 0.49��� -0.12� 0.44���

DNAse hypersensitivity -0.12�� 0.14� 0.15�

Replication time -0.12�� -0.12�

GC content -0.39�� 0.24�� -0.38��

r2 0.044 0.10 0.042 0.084

Parameters had to be significant at p<0.05 to be added to the model.
� p <0.05
�� p < 0.01
��� p< 0.001

https://doi.org/10.1371/journal.pgen.1007254.t004
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callable trios rather than sites, does not alter the patterns (Table 4). At the 100KB scale, replica-

tion time joins male recombination factor as a common factor in all three datasets (S7 Table).

The differences between the three datasets could be due to paternal age since Francioli et al.

[3] showed that the correlation between DNM density and replication time was only evident

amongst individuals born to young fathers (<28 years), and paternal age differs between the

three studies: the average paternal age was 27.7 years in the Francioli dataset (Laurent Francioli

pers comm), 33.4 years in the Wong data [6] and 32.0 in the Jonsson data (calculated from

their supplementary data). To investigate whether this could explain the differences between

the datasets we divided the DNMs into those discovered in individuals with young (<28 years)

and old fathers (�28 years), and regressed the normalised DNM density (dividing by the mean

DNM density for each dataset in each age cohort) against replication time and PC1. We find

no evidence that the relationship between DNM density and replication time (or PC1) is stron-

ger in individuals born to young fathers in the Wong and Jonsson datasets (Table 5).

The amount of variation explained by the multiple regression models is small– 0.044, 0.10

and 0.042 for Francioli, Wong and Jonsson respectively—but this might be expected given the

small number of DNMs per MB and hence the large sampling error. To investigate how much

of the explainable variance the model explains we sampled rates from the gamma distribution

fitted to the distribution of DNMs across the genome and generated DNMs using these rates

and then correlated these simulated rates to the true rates (i.e. those sampled from the gamma

distribution). The average coefficient of determination for the simulated data is 0.11, 0.39 and

0.42 for the Francioli, Wong and Jonsson datasets respectively suggesting that the regression

model explains ~37%, ~26% and ~10% of the explainable variance for the three datasets. In all

cases, none of the simulated datasets have a coefficient of determination that is as low as the

observed.

Correlation with divergence

The rate of divergence between species is expected to depend, at least in part, on the rate of

mutation. To investigate whether variation in the rate of substitution is correlated to variation

in the rate of mutation we calculated the divergence between humans and chimpanzees, ini-

tially by simply counting the numbers of differences between the two species. There are at least

three different sets of human-chimpanzee alignments: pairwise alignments between human

and chimpanzee (PW)[43] found on the University of California Santa Cruz (UCSC) Genome

Browser, the human-chimp alignment from the multiple alignment of 46 mammals (MZ)[44]

from the same location, and the human-chimp alignment from the Ensembl Enredo, Pecan

and Ortheus primate multiple alignment (EPO) [45].

Table 5. Testing for an effect of paternal age.

Replication time PC1

Young Old P-value Young Old P-value

Wong 2.81 (1.29)� 0.839 (0.502) n.s. 0.0577 (0.0202)�� 0.0500 (0.0078)��� n.s.

Jonsson -0.656 (0.429) -1.23 (0.30)��� n.s. -0.00484 (0.00673) -0.00148 (0.00467) n.s.

The slope of the regression, and its standard error, between DNM density and replication time or PC1 in individuals born to young (less than 28 years) or old (28 years

and older) fathers. The DNM density was normalised for each age group such that the mean DNM density was one. Also given is the p-value from a test of whether the

slopes are the same.
� p<0.05
�� p<0.01
��� p<0.001.

https://doi.org/10.1371/journal.pgen.1007254.t005

Large scale variation in the rate of de novomutation

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1007254 March 28, 2018 12 / 30

https://doi.org/10.1371/journal.pgen.1007254.t005
https://doi.org/10.1371/journal.pgen.1007254


We find that the correlation depends upon the human-chimpanzee alignments used and

the amount of each 1MB window covered by aligned bases (Fig 6). The correlation is signifi-

cantly negative if we include all windows for the UCSC PW and MZ alignments at the 1MB

scale, but becomes more positive as we restrict the analysis to windows with more aligned

bases. In contrast, the correlations are always positive when using the EPO alignments, and the

strength of this correlation does not change once we get above 200,000 aligned bases per 1MB.

Further analysis suggests there are some problems with the PW and MZ alignments because

divergence per MB window is negatively correlated to mean alignment length (r = -0.31,

p< 0.0001) for the PW alignments and positively correlated (r = 0.57, p< 0.0001) for the MZ

alignments (S5 Fig). The EPO alignment method shows no such bias and we consider these

alignments to be the best of those available. Therefore, we use the EPO alignments for the rest

of this analysis.

To gain a more precise estimation of the number of substitutions we used the method of

Duret and Arndt [21], which is a non-stationary model of nucleotide substitution that allows

the rate of transition at CpG dinucleotides to differ to than that at other sites. As expected the

divergence along the human lineage (since humans split from chimpanzees) is significantly

correlated to the rate of DNMs (Francioli, r = 0.20 p<0.001; Wong, r = 0.16, p<0.001; Jonsson,

r = 0.31, p<0.001). However, the correlation between the rate of DNMs and divergence is not

expected to be perfect even if variation in the mutation rate is the only factor affecting the rate

of substitution between species; this is because we have relatively few DNMs and hence our

estimate of the density of DNMs is subject to a large amount of sampling error. To investigate

how strong the correlation could be, we follow the procedure suggested by Francioli et al. [3];

we assume that variation in the mutation rate is the only factor affecting the variation in the

substitution rate across the genome between species and that we know the substitution rate

without error (this is an approximation, but the sampling error associated with the substitution

rate is small relative to the sampling error associated with DNM density because we have so

many substitutions). We generated the observed number DNMs according to the rates of

Fig 6. The quality of human-chimp alignments. The correlation between the divergence from human to chimpanzee
and the density of DNMs in humans is plotted against the number of aligned sites per 1MB window for three sets of
alignments: UCSC pairwise alignments (PW, blue), UCSC multi-way alignments (MZ, orange) and EPOmulti-species
alignments (EPO, green).

https://doi.org/10.1371/journal.pgen.1007254.g006
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substitution, and then considered the correlation between these simulated DNM densities and

the observed substitution rates. We repeated this procedure 1000 times to generate a distribu-

tion of expected correlations. Performing this simulation, we find that we would expect the

correlation between divergence and DNM density to be 0.30, 0.44 and 0.68 for the Francioli,

Wong and Jonsson datasets respectively, considerably greater than the observed values of 0.20,

0.16 and 0.31 respectively. In none of the simulations was the simulated correlation as low as

the observed correlation.

There are several potential explanations for why the correlation is weaker than it could

be; the pattern of mutation might have changed [39, 46–48], or there might be other factors

that affect divergence. Francioli et al. [3] showed that including recombination in a regres-

sion model between divergence and DNM density significantly improved the fit of the

model; a result we confirm here; the coefficient of determination when the sex-average

recombination rate is included in a regression of divergence versus DNM density increases

from 0.039 to 0.14, 0.026 to 0.12 and 0.095 to 0.18 for the Francioli, Wong and Jonsson data-

sets respectively; similar patterns are observed for male and female recombination rates

separately.

As detailed in the introduction there are at least four explanations for why recombination

might be correlated to the rate of divergence independent of its effect on the rate of DNM: (i)

biased gene conversion, (ii) recombination affecting the efficiency of selection, (iii) recombi-

nation affecting the depth of the genealogy in the human-chimpanzee ancestor and (iv) prob-

lems with regressing against correlated variables that are subject to sampling error. We can

potentially differentiate between these four explanations by comparing the slope of the regres-

sion between the rate of substitution and the recombination rate (RR), and the rate of DNM

and the RR. If recombination affects the substitution rate, independent of its effects on DNM

mutations, because of GC-biased gene conversion (gBGC), then we expect the slope between

divergence and RR to be greater than the slope between DNM density and RR for Weak-

>Strong (W>S), smaller for S>W, and unaffected for S<>S andW<>W changes. The rea-

son is as follows; gBGC increases the probability that a W>S mutation will get fixed but

decreases the probability that a S>Wmutation will get fixed. This means that regions of the

genome with high rates of recombination will tend to have higher substitution rates of W>S

mutations than regions with low rates of recombination hence increasing the slope of the rela-

tionship between divergence and recombination rate. The opposite is true for S>Wmutations,

and S<>S andW<>Wmutations should be unaffected by gBGC. If selection is the reason

that divergence is correlated to recombination independently of its effects on the mutation

rate, then we expect all the slopes associated with substitutions to be less than those associated

with DNMs. The reason is as follows; if a proportion of mutations are slightly deleterious then

those will have a greater chance of being fixed in regions of low recombination than high

recombination. If the effect of recombination on the substitution rate is due to variation in the

coalescence time in the human-chimp ancestor, then we expect all the slopes associated with

substitution to be greater than those associated with DNMs; this is because the average time to

coalescence is expected to be shorter in regions of low recombination than in regions of high

recombination. Finally, if the effect is due to problems with multiple regression then we might

expect all the slopes to become shallower. Since the DNM density and divergences are on dif-

ferent scales we divided each by their mean to normalise them and hence make the slopes

comparable.

The results of our test are consistent with the gBGC hypothesis; the slope of divergence ver-

sus RR is greater than the slope for DNM density versus RR for W>S mutations and less for

S>Wmutations (Fig 7); we present the analyses using sex-averaged RR, but the results are

similar for either male or female recombination rates, and for 100KB windows (S6 and S7
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Figs and S8 and S9 Tables). These differences are significant in the expected direction for all

comparisons except W>S from the Wong data (Table 6)(significance was assessed by boot-

strapping the data by MB regions 100 times and then recalculating the slopes). There are no

significant differences between the slope for W<>W and S<>S mutations and the slope for

substitutions, consistent with gBGC, except for the Jonsson dataset in which the DNM slope is

significantly less than the slope for substitutions. This latter result suggests that there might

also be an effect of linked selection, but this result should be treated with caution given that the

other two datasets show the opposite pattern.

Correlation with diversity

Just as we expect there to be correlation between divergence and DNM rate, so we might

expect there to be correlation between DNA sequence diversity within the human species and

the rate of DNM. To investigate this, we compiled the number of SNPs in 1MB and 100KB

windows from the 1000 genome project [49, 50]. There is a positive correlation between SNP

density and DNM density in all datasets (Francioli r = 0.18 p<0.001; Wong r = 0.31, p<0.001;

Jonsson r = 0.43, p<0.001).

Using a similar strategy to that used in the analysis of divergence we calculated the correlation

we would expect if all the variation in diversity was due to variation in the mutation rate by

assuming that the level of diversity is known without error, and hence is a perfect measure of the

mutation rate (we have on average 31,000 SNPs per MB, so there is little sampling error associ-

ated with the SNPs). We then simulated the observed number of DNMs according to these

inferred mutation rates. The expected correlations are 0.24, 0.35 and 0.58 in the Francioli, Wong

and Jonsson datasets, which are slightly higher than the observed correlation, significantly so for

Francioli and Jonsson (p<0.01 in both cases). The observed correlations are 74%, 89% and 74%

of the expected correlations for Francioli, Wong and Jonsson respectively. A similar pattern is

observed for individual mutational types at both the 1MB and 100KB scale, with some being

greater and others smaller than expected (S10 Table). These results suggest that much of the vari-

ation in diversity at the 1MB scale is due to variation in the mutation rate.

Although much of the variation in diversity appears to be due to variation in the mutation

rate we tested for the effect of gBGC. We find the slopes are consistent with gBGC for the Fran-

cioli dataset, but the other datasets show inconsistent patterns; in the Wong data, the slope of

DNM versus RR is significantly greater than the slope of SNP density versus RR across all muta-

tional categories and the opposite pattern is found in Jonsson (p<0.01 in all cases) (Fig 7).

Table 6. Testing the difference in slopes.

S>W W>S S<>S W<>W

Substitutions

Francioli 0.99 0 0.74

Wong 1 0.13 0

Jonsson 1 0 0

SNPs

Francioli 0.8 0 0.83

Wong 1 1 0.95

Jonsson 0 0 0

Given is the proportion of bootstrap replicates (out of 100) in which the slope of the normalised DNM density versus

sex-averaged recombination rate, is greater than the slope of the normalised number of substitutions (or SNPs)

versus recombination rate.

https://doi.org/10.1371/journal.pgen.1007254.t006
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Divergence to other species

The divergence between species, usually humans and macaques, is often used to control for muta-

tion rate variation in various analyses. But how does the correlation between divergence and the

DNM rate in humans change as the species being compared get further apart? Terekhanova et al.

[48] showed that the rate of S<>S andW<>W substitutions (chosen to eliminate the influence

of gBGC) along the human lineage at the 1MB scale is correlated to that along other primate line-

ages, but that the correlation declines as the evolutionary distance increases. This suggests that the

mutation rate evolves at the 1MB relatively rapidly. However, they did not consider DNMs in

detail. To investigate further, we compiled data from a variety of primate species–human/chim-

panzee/orangutan (HCO) considering the divergence along the human and chimp lineages,

human/orangutan/macaque (HOM) considering the divergence along the human and orangutan

lineages, and human/macaque/marmoset (HMM) considering the divergence along the human

and macaque lineages. This yields two series of divergences of increasing evolutionary divergence:

the human lineage fromHCO, HOM and HMM, and chimp fromHCO, orangutan fromHOM

andmacaque fromHMM.We estimated the divergence using the non-stationary method of

Duret and Arndt [21] that treats CpG sites separately. We do not restrict ourselves only to DNMs

in the aligned regions but used all DNMs in each window. In this way, the average number of

DNMs per window is independent of the evolutionary divergence. As expected, we find that the

correlation between the density of DNM and the rate of substitution declines as the evolutionary

divergence increases, except the correlation between the density of DNMs in the Francioli dataset

and the divergence along the human lineage since the divergence from orangutan which is slightly

lower than the correlation with divergence since humans split frommacaques (Fig 8). It is also

notable that the decrease in the correlation is quite modest in many cases.

Fig 7. Testing why divergence is correlated to recombination rate. The slope (and SE) between normalised DNM
density and normalised sex-averaged recombination rate (RR) (Wong—blue, Francioli–orange, Jonsson–green),
normalised substitution density and RR (yellow) and normalised SNP density and RR (light blue). In each case the
values were normalised by dividing by the mean.

https://doi.org/10.1371/journal.pgen.1007254.g007
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Discussion

We have considered the large-scale (1MB or 100KB) distribution of DNMs along the human

genome using an analysis of 3 datasets obtained by the sequencing of trios (an individual and

their parents). Unfortunately, there are significant differences between these datasets; most

conspicuously they show different patterns of correlation to genomic variables. For example,

the density of DNMs at the 1MB scale is significantly negatively correlated to the density of

H3K4me1 epigenetic marks in the dataset of Francioli et al. [3], significantly positively corre-

lated inWong et al. [6] and uncorrelated in Jonsson et al. [36] despite this being by far the larg-

est dataset. However, these correlations to genomic variables are weak, and explain only a

small fraction of the explainable variance, and there are many commonalities between datasets,

which likely represent true patterns. There appears to be rather little variation in the mutation

rate at a large scale in all datasets. However, there is variation at a large scale that cannot be

explained by variation at smaller scales, and large-scale variation forms part of a continuum of

variation across different scales. Furthermore, the level of variation for different mutational

types is similar and different mutational types covary together. There is no evidence that varia-

tion in the pattern of mutation generates variation in GC content that would underlie the

maintenance of isochores. In all datasets, the correlations to genomic variables are weak and

explain little of the explainable variance. We confirm that the correlation between the muta-

tion rate, as measured by DNM density, and divergence, is not as strong as it could be across

datasets, and demonstrate that this is in part due to BGC. In contrast, we find that variation in

diversity at large scales is largely a consequence of variation in the mutation rate. Finally, we

demonstrate that the correlation between the rate of DNM and the rate of substitution,

declines as increasingly divergent species are considered.

It is possible that the differences between datasets are due to parental age, since Francioli

et al. [3] found that the correlation between DNM density and replication time was only

Fig 8. The decrease in the correlation between DNM density and divergence with increasing evolutionary
divergence. The graph shows the correlation between DNM density and the substitution rate for different
phylogenetic branches (with 95% confidence intervals). Francioli-1, Wong-1 and Jonsson-1 are the correlations
involving the divergence along the human lineages from the comparison of human-chimp-orangutan (HCO), human-
orangutan-macaque (HOM) and human-macaque-marmoset (HMM). Francioli-2, Wong-2 and Jonsson-2 involve the
divergences along the chimpanzee, orangutan and macaque lineages.

https://doi.org/10.1371/journal.pgen.1007254.g008
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evident in individuals born to young fathers, and paternal age differs between our datasets.

However, like Besenbacher et al. [51], we find no evidence that paternal age affects the rela-

tionship between the mutation rate and replication time or genomic variables, as summarised

by the first principle component of the genomic variables, in either the Wong or Jonsson

datasets.

It is also possible that the differences between the datasets are due to ethnicity, since it has

been shown that the rate and pattern of mutation, at the single nucleotide scale, varies over

short timescales, such that it can vary between human populations [39, 46, 47]; for example,

the rate of TCC to TTC is elevated in Europeans [39, 46]. It has also been demonstrated that

the mutation pattern evolves at larger scales. Terekhanova et al. [48] considered the correlation

between the rate of S<>S andW<>W substitution along the human and other primate line-

ages at the 1MB scale. They showed that the strength of the correlation declines as more distant

species are considered suggesting that the mutation rate evolves at this scale. However, the rate

of decline was fairly slow, and human populations would not be predicted to show very differ-

ent patterns from this analysis. Furthermore, it seems that the populations considered by the

three studies were dominated by individuals from the same population, Europeans: Dutch in

the study of Francioli et al. [3], Icelanders in Jonsson et al. [36] and mostly North American

Europeans in Wong et al. [6] (see [52] for ethic details).

Without any other obvious explanation, it therefore seems likely that the differences

between datasets are due to sequencing technology, or the pipelines used to call the DNMs.

The Francioli [3] and Jonsson [36] datasets were largely sequenced using Illumina Hiseq at

13x and 35x coverage respectively. The Wong [6] dataset was sequenced using the DNA nano-

ball technology at 60x coverage. The datasets were subject to a variety of different methods to

call DNMs. One potential problem is a GC-bias that has been documented for Illumina

sequencing [53], in which high and low GC-content reads are under-represented [54]. To

investigate whether this might be the cause of the differences between datasets we regressed

the number of DNMs per MB against GC content, and the square of the GC content, to allow

for non-linearity. We find that both linear and quadratic terms are significant for the Francioli

(p<0.05 for both terms) andWong (p<0.001 for both terms) datasets, but neither coefficient

is significant in the Jonsson dataset. In the Francioli dataset high GC-content regions have

fewer DNMs, whereas in Wong it is the low GC-content regions that have a deficit (Fig 9). If

we take the residuals from the regression and correlate these against genomic variables we find

consistent patterns across datasets (Table 7): the GC-content corrected DNM density is signifi-

cantly positively correlated to male and female recombination rates, and significantly nega-

tively correlated to replication time and H3K4me3 across all datasets. There are some other

significant correlations to histone marks in each of the datasets, with the sign of the correlation

being consistent across datasets. If we calculate the principle components for the genomic vari-

ables, excluding GC-content, we find that the first four components explain 55, 14, 7.4 and

6.2% of the variance respectively. We find consistent patterns of correlation across datasets in

terms of the sign of the correlation (Table 7)—the GC-corrected density of DNMs is negatively

correlated to the first PC, but only significant for Jonsson, significantly positively correlated to

the second PC in all datasets, uncorrelated to the third and only significantly correlated to the

fourth in Jonsson (Table 7).

Despite the fact that the GC-corrected densities of DNMs show similar correlations to

genomic variables, we do not find similar models selected by forward selection in a multiple

regression (Table 7). Only one feature is common to all datasets–replication time. The differ-

ences between the datasets may reflect the strong correlations between genomic variables,

which makes it difficult for any procedure to select the correct model.
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Fig 9. The relationship between DNM density, or divergence, and GC content. The relationship was estimated from
a regression of DNM density or human-chimp divergence, against GC-content and the square of the GC-content at
the 1MB scale. Blue–Francioli, Light Orange–Wong, Green–Jonsson and Dark Orange–W<>Wand S<>S
substitutions between human and chimpanzee.

https://doi.org/10.1371/journal.pgen.1007254.g009

Table 7. Correlation between the GC-corrected density of DNMs and various genomic variables.

Individual correlations Multiple regression

Francioli Wong Jonsson Francioli Wong Jonsson

Male recombination rate 0.092��� 0.18��� 0.15��� 0.099��� 0.15���

Female recombination rate 0.10��� 0.16��� 0.074��� 0.078�� 0.072��

H3K4me1 -0.006 0.015 -0.028 0.13�� 0.12��

H3K4me3 -0.096��� -0.12��� -0.090�� -0.091�� -0.18���

H3K27me3 -0.040 -0.023 -0.036

H3K27ac -0.047� -0.037 -0.044� 0.11��

Transcription rate -0.050� -0.094��� -0.029

H3K4me1PB -0.051� -0.015 -0.080��� 0.055� -0.071�

H3K9me3PB 0.022 0.004 0.032

Nucleosome occupancy 0.020 0.040 -0.001

DNAse hypersensitivity -0.031 -0.024 -0.026

Replication time -0.090��� -0.079��� -0.10��� -0.13��� -0.087� -0.14��

PC1 -0.040 -0.026 -0.048�

PC2 0.14��� 0.23��� 0.15���

PC3 -0.012 -0.010 0.000

PC4 0.025 -0.005 0.084���

Also given are standardised slopes from a multiple regression with forward parameter selection (p<0.05 for inclusion). The density of DNMs was corrected for GC-

content by regressing DNM density against GC-content and the squared GC-content and taking the residuals.
� p < 0.05
�� p < 0.01
��� p< 0.001

https://doi.org/10.1371/journal.pgen.1007254.t007
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The fact that correcting for GC content yields similar patterns of correlation to genomic

variables, suggests that there is a GC-bias in detecting DNMs. However, regressing against

GC-content does not necessarily yield the correct pattern, because there may be a genuine rela-

tionship between the mutation rate and GC-content. For example, if we regress the number of

W<>W and S<>S substitutions, chosen to remove the influence of BGC, between human

and chimpanzee against GC-content we find a U-shaped relationship, unlike that seen for any

of the DNM datasets (Fig 9); this might reflect the true pattern. Are there any clues as to which

dataset reflects the true pattern of correlation? If we consider the correlation between S<>S

andW<>W substitutions, and genomic variables (1MB Table 3; 100KB S5 Table) we find the

correlations most closely parallel those in the Francioli dataset; when there is a significant cor-

relation both the substitution date and the Francioli DNMs are significant in the same direc-

tion. In contrast, the sign of the correlation is usually the same in the substitution and Jonsson

datasets, but the correlations are often non-significant in the Jonsson data. Wong shows very

different patterns with some significant correlations in opposite directions.

If the differences between datasets are due to sequencing and processing technology then

this has important implications for understanding the reasons the mutation rate varies across

the genome because no two datasets show identical patterns of correlation between DNM den-

sity and genomic variables. We would suggest that unless a pattern can be shown to be consis-

tent across datasets generated by different sequencing and processing technologies then it

must be treated with some caution.

There are two additional points to make about correlations to genomic variables. First, it is

evident that many genomic variables are highly correlated to each other so disentangling them

will be difficult. Applying multiple regression may not be informative because few of the geno-

mic variables are known without error, so the variables which come out as correlated may not

be the causative factors, but those known with the least error. Second, genomic variables

explain rather little of the variance in the rate of DNM. This may be because the genomic vari-

ables are measured with considerable error, or it may be that we are not assaying the factors

which are important; but what these might be, is far from clear.

The evolution of the large-scale variation in GC-content across the human genome has

been the subject of much debate [25]; mutation bias [14–18], selection [13, 19, 20] and biased

gene conversion [21–24] have all been proposed as explanations. There is good evidence that

biased gene conversion has some effect on the base composition of the human genome [24,

26–28]. However, this does not preclude a role for mutation bias. We have tested the mutation

bias hypothesis using the DNM data and two different tests. We find no evidence that the pat-

tern of mutation varies across the genome in a way that would generate variation in GC-con-

tent. Instead we provide additional evidence that biased gene conversion influences the chance

that mutations become fixed in the genome.

We find that previous models of mutation rate variation do not explain the variation in

DNM density seen in our datasets at large scales. This is perhaps not surprising. The model of

Michaelson et al. [5] was derived by regressing a small number (~600) of DNMs against a suite

of genomic variables at multiple scales. So, whilst the model took into account genomic vari-

ables at large scales it was principally aimed at estimating the rate of mutation at a single site.

The model of Aggarwala et al. [40] estimated the mutation rate at individual sites based on the

7-mer context. It therefore contained no explicit information about large-scale variation.

As expected the rate of divergence between species is correlated to the rate of DNM, how-

ever, the strength and even the sign of the correlation depends on the alignments being used.

The correlations between divergence and DNM density are actually negative if no filtering is

applied to the UCSC alignments, and there is a negative correlation between divergence and

alignment length for the pairwise alignments from the UCSC genome browser, and a positive
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correlation for the multi-species alignment. It is clear that there are problems with these align-

ments and that they should be used with caution.

As Francioli et al. [3] showed, the correlation between divergence and DNM density is

worse than it would be if variation in the mutation rate was the only factor affecting diver-

gence. This is perhaps not surprising because the substitution rate depends both on the rate of

mutation and the probability of fixation, both of which may vary across the genome. Francioli

et al. [3] further demonstrated that although the rate of DNM is correlated to the rate of

recombination, divergence is correlated to the rate of recombination independently of this

effect. There are at least four explanations for the effect of recombination on divergence: (i)

biased gene conversion, (ii) direct selection, (iii) linked selection and (iv) problems with multi-

ple regression. We have provided evidence for an effect of biased gene conversion, but no clear

evidence of three other factors–i.e. the slope of the regression between DNM density and RR is

not significantly different to the slope of the regression between divergence and RR for S<>S

andW<>Wmutations, except in the Jonsson data. However, whilst the slope of DNMs versus

RR is lower than the slope of divergence versus RR in Jonsson, we see the opposite pattern in

the other two datasets.

The fact that there is no obvious effect of indirect selection is surprising given the results of

McVicker et al. [29]. They showed that the divergence between humans and chimpanzees was

significantly lower near exons and other regions of the genome subject to evolutionary con-

straint. A similar reduction was not observed in the divergence of human and macaque and

human and dog, suggesting that the pattern was not due to selection outside exons, or regions

identified as being subject to selection (though see Phung et al.[30] who detected a correlation

between divergence and proximity to functional DNA in the divergence between humans and

rodents). They therefore inferred that the reduction was due to the effect of linked selection

reducing diversity in the human-chimpanzee ancestor. There are several possible reasons why

we see no evidence of this effect in our analysis. First, our test may not be powerful enough. Sec-

ond, the effects may be counteracted by direct selection which is expected to affect the slope of

the regression between divergence and RR in the opposite direction to indirect selection. Third,

the scale, magnitude and variation in the effects of indirect selection may be not large enough to

affect the relationship between divergence and the rate of mutation; if there is little variation in

the magnitude of the indirect effects of selection across the genome at the 1MB (or 100KB) level

then indirect selection will have no effect on the correlation between the rate of mutation and

divergence. McVicker et al. [29] and Phung et al.[30] presented evidence of indirect selection

affecting the divergence between humans and chimpanzees, but over short scales of<100KB. It

is possible that at fine scales indirect selection may be more important.

In contrast to the pattern with divergence, we find that much of the variation in diversity, at

least at the 1MB and 100KB scales, can be explained by variation in the mutation rate. This

suggests that much of the correlation between diversity and RR [31–33, 55–57] is due to varia-

tion in the mutation rate not to linked selection. However, the correlation between DNM den-

sity and diversity is not as strong as it could be and this could be due to linked selection.

Considering that much of the variation in diversity is due to variation in the mutation rate, it

is perhaps not surprising that the analysis of DNM density versus RR and SNP density versus

RR slopes are inconclusive. The results from Francioli are consistent with BGC affecting the

relationship between SNP and DNM density, but the data fromWong and Jonsson are not.

Divergence between species has often been used to control for mutation rate variation in

humans (for example [29, 55, 58, 59]). This is clearly not satisfactory given that the correlation

between divergence and rate of DNM is only about half as strong as it could and this correla-

tion gets worse as more divergent species are considered (see also Terekhanova et al. [48]).

Unfortunately, correcting for mutation rate variation is likely to be difficult because
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attempting to predict mutation rates from genomic features is unreliable, given that regression

models explain less than half the explainable variation. Furthermore, the largest amounts of

variation are at the smallest scales (Fig 4) where we have the lowest density of DNMs.

We find, as others have before [3, 5], that the rate of germ-line DNM is correlated to a num-

ber of genomic features. However, we find that these features explain less than 50% of the

explainable variance leaving the majority of the variance unexplained. Our inability to predict

the mutation rate might be because the genomic features have not been assayed in the relevant

tissue, the germ-line, or that there are important features that have yet to be assayed. Interest-

ingly, Terekhanova et al. [48] showed that this unexplained component of the substitution rate

evolves more rapidly than the explained component. They demonstrated that the substitution

rates at the 1MB level in a range of primate species were almost as well correlated to genomic

features in humans, as the substitution rate along the human lineage. This implies that the vari-

ance in the substitution rate not explained by genomic features, evolves rapidly, given that the

correlation between the substitution rate in humans and other lineages declines as they get

more distant. There is clearly much we do not currently understand about the why there is

large scale variation in the mutation rate and how it evolves through time. Understanding

these patterns is challenging given that different datasets show different patterns. Never-the-

less there are some patterns which are common to all datasets.

Materials andmethods

DNM data

Details of DNMmutations were downloaded from the supplementary tables of the respective

papers or from the relevant web-sites: 105,385 mutations from Jonsson et al. [36], 26,939 muta-

tions fromWong et al. [6] and 11016 mutations from Francioli et al. [3]. The data from Jons-

son et al. was mapped to hg38 so the liftover tool was used to map these to hg19. Only

autosomal DNMs were used.

Alignments

Three sets of alignments were used in this analysis, all based on human genome build hg19/

GRCh37: (i) the University of California Santa Cruz (UCSC) pairwise (PW) alignments [43] for

human-chimpanzee (hg19-panTro4 downloaded from http://hgdownload.cse.ucsc.edu/golden

path/hg19/vsPanTro4/) (ii) the UCSCMultiZ (MZ) 46-way alignments [44] downloaded from

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/multiz46way/ and (iii) Ensembl Enredo, Pecan,

Ortheus (EPO) 6 primate multiple alignment, release 74, [45] downloaded from ftp://ftp.ensembl.

org/pub/release-74/emf/ensembl-compara/epo_6_primate/. We found that the EPO alignments

were the most reliable–see main text–and they were used for the majority of the analyses.

Selection and filtering of SNPs

All SNPs from the 1000 genomes project phase 3 [50] were downloaded from http://

hgdownload.cse.ucsc.edu/gbdb/hg19/1000Genomes/phase3/. After removing all multi-allelic

SNPs and, structural variants and indels we were left with 77,818,368 autosomal SNPs. After

filtering out windows which had less than 50% of nucleotides aligning between human-chim-

panzee-orangutan and no recombination rate scores we were left with 71,917,321 SNPs.

Mutational models

We considered how well the variation at the 100KB and 1MB scale was predicted by two mod-

els of mutation rates: the rates estimated by Aggarwala et al. [40] based on the 7-mer context
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surrounding a site, and the rates estimated for each site by Michaelson et al. based on a variety

of genomic features. The rates for Aggarwala et al. [40] were taken from their S7 Table, and the

context of each site was used to predict the average mutation rate for each 100KB or 1MB win-

dow using their model. The mutability indices from the Michaelson et al. study [5] were pro-

vided by the authors. The analysis of the model of Michaelson et al. [5] is more complex since

they give the probability of detecting a DNM in their data at each site in the genome, referred

to as the mutability index (MI), but these do not translate directly into mutation rates. Using

their DNM data we tabulated the number of sites in the genome with a given MI along with

the number of DNMs from their study that had been observed at those sites. Because DNMs

are not observed at some MIs we grouped MIs into groups of ten starting from the first MI

with at least one DNM.We then regressed the log of the number of DNMs over the number of

sites against the mean MI (see S8 Fig). The regression line was estimated to be log(mutation

rate) = -6.73 + 0.0103 x MI. Using this equation, we predicted the mutation rate at each site in

the genome. Michaelson et al. [5] give MIs mapped to hg18; we lifted these over the hg19 using

the liftover tool.

Genomic features

Male, female and sex-averaged standardised recombination rate data [60] were downloaded

from http://www.decode.com/additional/male.rmap, which provides recombination rates in

10KB steps. For each 100KB and 1MB windows the recombination rate was calculated as the

mean of these scores with a score assigned to the window in which the position of its first base

resided. GC content was calculated directly from the human genome (hg19/GCRh37) for

100kb and 1Mb windows. All other feature data was taken from the ENCODE project [61] and

downloaded from the UCSC genome browser. Where possible we used data from the embry-

onic stem cell line H1-hESC. The mean value was taken for each genome feature across the

window. For replication time data, we downloaded the ENCODE Repli-seq wavelet smoothed

signal data [62, 63], provided in 1KB steps, for the GM12878, HeLa, HUVEC, K562, MCF-7

and HepG2 cell lines. Replication times were assigned to windows based upon their start coor-

dinates. We computed the mean replication time for all autosomes for 100KB and 1MB win-

dows across all 6 cell lines. We measured transcription rate using RNA-seq data. Nucleosome

occupancy was taken from the GM12878 cell line, histone modifications and RNA-seq data

from the stem cell line H1-hESC. We only included windows in our analysis in which>50%

of the window had data from all features.

Statistical analysis

SPSS version 22 andMathematica version 10 were used for all statistical analyses.

To estimate the mutation rate distribution we use the method of [8]. In brief, we assume

that the mutation rate in each window is a�u where �u is the average mutation rate per site and

α is the rate above or below this mean. α is assumed to be gamma distributed. The number of

mutations per window is assumed to be Poisson distributed with a mean a�ul where l is the

length of the window. This means that the number of mutations per window is a negative

binomial. In considering a particular category of mutations, such as CpG transitions, we con-

sidered the number of CpG transition DNMs at CpG sites. We fit the distribution using maxi-

mum likelihood using the NMaximize function inMathematica. Initial analyses suggested that

the maximum likelihood value of the mutation rate parameter was very close to the mean esti-

mate of the mutation rate; as a consequence, to speed up the maximization we fixed the muta-

tion rate to its estimated mean and found the ML estimate of the shape parameter of the

gamma distribution.
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We investigated the correlation between different types of mutation across windows by fit-

ting a single distribution to both types of mutation, estimating the shape parameter of the

shared distribution as the mean of the CV of the ML estimates of distributions fitted to the two

categories independently. We then used this distribution to simulate data; we drew a random

variate for each window from the distribution assigning this as the rate for that window. We

then generated two Poisson variates with the appropriate means such that the total number of

DNMs for each type of mutation was expected to be equal the total number of DNMs of those

types.

To test whether the mutation pattern varied across the genome in a manner that would gen-

erate variation in the mutation rate we fit the following model. Let us assume that the mutation

rate from strong (S) to weak (W) base pairs, where strong are G:C and weak are A:T, be μ(1 −

fe), where μ is the mutation rate and fe is the equilibrium GC-content to which the sequence

would evolve if there was no selection or biased gene conversion. Let the mutation rate in the

opposite direction be μfe and the current GC-content be f. Then we expect the proportion of

mutations that are S->W to be

x fe; fð Þ ¼
fmð1� feÞ

fmð1� feÞ þ ð1� f Þmfe
¼

f ð1� feÞ

f ð1� feÞ þ ð1� f Þfe
ð1Þ

Let us assume that fe is normally distributed. Then the likelihood of observing i S>Wmuta-

tions out of a total of n S>W and w>S mutations is

L ¼
R 1

0
Nð fe;

�fe ; sÞBðn; i; xð fe; f ÞÞdfe=
R 1

0
Nð fe;

�fe ; sÞdfe ð2Þ

The total log-likelihood is therefore the sum of the log of Eq 2 for each MB or 100KB win-

dow across all the windows in the genome. The maximum likelihood values were obtained by

manually searching for the ML values inMathematica.

Simulations

In a number of analyses, we simulate DNMs under assumed model; for example, using the

7-mer model of Aggarwala et al. [40]. In these simulations, we calculate the expected number

of DNMs given the window’s mutation rate, the number of relevant sites and the total number

of DNMs, and then generated a random Poisson variate from this expectation. In each simula-

tion, we generated 1000 simulated datasets.

Supporting information

S1 Table. The CV of the gamma distribution fitted to the three datasets separately at the

100KB scale, along with the 96% confidence intervals.

(DOCX)

S2 Table. The CV of the gamma distribution fitted to the three datasets separately at the

100KB scale, along with the 96% confidence intervals.

(DOCX)

S3 Table. The correlation between different mutational types for the Francioli, Wong and

Jonsson datasets at the 100KB scale. The expected correlations were estimated by simulation

assuming a common distribution for two mutational categories. 100 simulations were con-

ducted. � p<0.05, �� p<0.01, ��� p<0.001.
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S4 Table. Correlation between the density of DNMs and the mutation rate estimates from

the mutation rate models of Aggarwala et al. and Michaelson et al. at the 100KB scale.
�p< 0.05 ��p< 0.01 ��� p< 0.001.

(DOCX)

S5 Table. Correlations between the density of DNMs and various genomic features at the

100KB scale. � p<0.05, �� p<0.01, ���p<0.001.

(DOCX)

S6 Table. Correlations between the density of DNMs and the first two principle components

of the genomic features at the 1MB scale.Note that DNM density is considered across the

appropriate type of site (e.g. CpG C>Tmutations at CpG sites). �p<0.05, ��p<0.01, ���p<0.001.

(DOCX)

S7 Table. The standardised regression coefficients from a stepwise multiple regression

with forward variable selection (parameter has to be significant at p<0.05 to be added to

the model) at the 100KB scale.

(DOCX)

S8 Table. Testing for the difference in slopes. Proportion of bootstrap replicates in which the

slope of the normalised DNM density at 1MB scale versus recombination rate, is greater than

the slope of the normalised number of substitutions (or SNPs) versus recombination rate. 100

bootstrap replicates were performed in each case. Results are shown for male and female spe-

cific recombination rates.

(DOCX)

S9 Table. Testing for difference in slopes. Proportion of bootstrap replicates in which the

slope of the normalised DNM density at 100KB versus sex-averaged recombination rate, is

greater than the slope of the normalised number of substitutions (or SNPs) versus recombina-

tion rate. 100 bootstrap replicates were performed in each case.

(DOCX)

S10 Table. The observed and expected correlations between DNM and SNP density at the

1MB scale for each category of mutation. The expected correlation is that expected if all the

variation in SNP density is due to variation in the mutation rate; this was estimated by generat-

ing 100 simulated datasets. The p-values in the expected column are for the proportion of sim-

ulated datasets in which the correlation was significantly higher, or lower) than the observed

correlation. �p<0.05, ��p<0.01.

(DOCX)

S1 Fig. The gamma distribution fitted to the three datasets at the 100KB scale. In order of

decreasing variance: Blue: Francioli, Maroon: Wong: Olive: Jonsson.

(TIF)

S2 Fig. Goodness of fit of the gamma distribution at 1MB scale. The distribution of

observed and expected number of blocks with a given number of DNMs. The expected num-

ber was estimated using the fitted gamma distribution. A) Francioli, B) Wong, C) Jonsson.

(TIF)

S3 Fig. Goodness of fit of the gamma distribution at 100KB scale. The distribution of

observed and expected number of blocks with a given number of DNMs. The expected num-

ber was estimated using the fitted gamma distribution. A) Francioli, B) Wong, C) Jonsson.

(TIF)
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S4 Fig. The predicted equilibrium GC content versus the current GC content at the 100KB

scale.Using mutation rates inferred from the Francioli (blue), Wong (orange) and Jonsson

(green) DNMs. Several of the datapoints are coincident.

(TIF)

S5 Fig. Divergence (number of substitutions per base pair) as a function of alignment

length for two sets of alignments. A) UCSD pairwise alignments (PZ) and B) UCSD multiz

alignments (MZ). Also given is the correlation coefficient and its significance.

(TIF)

S6 Fig. Investigating why divergence is correlated to RR using male and female recombina-

tion rates at 1MB. The slope between normalised DNM density and normalised recombina-

tion rate (RR) (Wong—blue, Francioli–orange, Jonsson–grey), normalised substitution

density and RR (yellow) and normalised SNP density and RR (light blue) at the 1MB scale. In

each case the values were normalised by dividing the values by the mean. Panel A is for male

recombination rates, panel B for female recombination rates.

(TIF)

S7 Fig. Investigating why divergence is correlated to RR at 100KB. The slope between nor-

malised DNM density and normalised recombination rate (RR) (Wong—blue, Francioli–

orange, Jonsson—grey), normalised substitution density and RR (yellow) and normalised SNP

density and RR (light blue) at the 100KB scale. In each case the values were normalised by

dividing the values by the mean. Sex-averaged RRs were used.

(TIF)

S8 Fig. The relationship between the log mutation rate (estimated as number of DNMs

over number of sites) and the mutability index fromMichaelson et al.

(TIF)
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