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Abstract

Convolutional Neural Networks (CNNs) have been es-

tablished as a powerful class of models for image recog-

nition problems. Encouraged by these results, we pro-

vide an extensive empirical evaluation of CNNs on large-

scale video classification using a new dataset of 1 million

YouTube videos belonging to 487 classes. We study mul-

tiple approaches for extending the connectivity of a CNN

in time domain to take advantage of local spatio-temporal

information and suggest a multiresolution, foveated archi-

tecture as a promising way of speeding up the training.

Our best spatio-temporal networks display significant per-

formance improvements compared to strong feature-based

baselines (55.3% to 63.9%), but only a surprisingly mod-

est improvement compared to single-frame models (59.3%

to 60.9%). We further study the generalization performance

of our best model by retraining the top layers on the UCF-

101 Action Recognition dataset and observe significant per-

formance improvements compared to the UCF-101 baseline

model (63.3% up from 43.9%).

1. Introduction

Images and videos have become ubiquitous on the in-

ternet, which has encouraged the development of algo-

rithms that can analyze their semantic content for vari-

ous applications, including search and summarization. Re-

cently, Convolutional Neural Networks (CNNs) [15] have

been demonstrated as an effective class of models for un-

derstanding image content, giving state-of-the-art results

on image recognition, segmentation, detection and retrieval

[11, 3, 2, 20, 9, 18]. The key enabling factors behind these

results were techniques for scaling up the networks to tens

of millions of parameters and massive labeled datasets that

can support the learning process. Under these conditions,

CNNs have been shown to learn powerful and interpretable

image features [28]. Encouraged by positive results in do-

main of images, we study the performance of CNNs in

large-scale video classification, where the networks have

access to not only the appearance information present in

single, static images, but also their complex temporal evolu-

tion. There are several challenges to extending and applying

CNNs in this setting.

From a practical standpoint, there are currently no video

classification benchmarks that match the scale and variety

of existing image datasets because videos are significantly

more difficult to collect, annotate and store. To obtain suffi-

cient amount of data needed to train our CNN architectures,

we collected a new Sports-1M dataset, which consists of 1

million YouTube videos belonging to a taxonomy of 487

classes of sports. We make Sports-1M available to the re-

search community to support future work in this area.

From a modeling perspective, we are interested in an-

swering the following questions: what temporal connectiv-

ity pattern in a CNN architecture is best at taking advantage

of local motion information present in the video? How does

the additional motion information influence the predictions

of a CNN and how much does it improve performance over-

all? We examine these questions empirically by evaluating

multiple CNN architectures that each take a different ap-

proach to combining information across the time domain.

From a computational perspective, CNNs require exten-

sively long periods of training time to effectively optimize

the millions of parameters that parametrize the model. This

difficulty is further compounded when extending the con-

nectivity of the architecture in time because the network

must process not just one image but several frames of video

at a time. To mitigate this issue, we show that an effec-

tive approach to speeding up the runtime performance of

CNNs is to modify the architecture to contain two separate

streams of processing: a context stream that learns features

on low-resolution frames and a high-resolution fovea stream

that only operates on the middle portion of the frame. We
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observe a 2-4x increase in runtime performance of the net-

work due to the reduced dimensionality of the input, while

retaining the classification accuracy.

Finally, a natural question that arises is whether features

learned on the Sports-1M dataset are generic enough to

generalize to a different, smaller dataset. We investigate

the transfer learning problem empirically, achieving sig-

nificantly better performance (65.4%, up from 41.3%) on

UCF-101 by re-purposing low-level features learned on the

Sports-1M dataset than by training the entire network on

UCF-101 alone. Furthermore, since only some classes in

UCF-101 are related to sports, we can quantify the relative

improvements of the transfer learning in both settings.

Our contributions can be summarized as follows:

• We provide extensive experimental evaluation of mul-

tiple approaches for extending CNNs into video clas-

sification on a large-scale dataset of 1 million videos

with 487 categories (which we release as Sports-1M

dataset) and report significant gains in performance

over strong feature-based baselines.

• We highlight an architecture that processes input at two

spatial resolutions - a low-resolution context stream

and a high-resolution fovea stream - as a promising

way of improving the runtime performance of CNNs

at no cost in accuracy.

• We apply our networks to the UCF-101 dataset and re-

port significant improvement over feature-based state-

of-the-art results and baselines established by training

networks on UCF-101 alone.

2. Related Work

The standard approach to video classification [26, 16,

21, 17] involves three major stages: First, local visual fea-

tures that describe a region of the video are extracted ei-

ther densely [25] or at a sparse set of interest points [12, 8].

Next, the features get combined into a fixed-sized video-

level description. One popular approach is to quantize all

features using a learned k-means dictionary and accumulate

the visual words over the duration of the video into his-

tograms of varying spatio-temporal positions and extents

[13]. Lastly, a classifier (such as an SVM) is trained on

the resulting ”bag of words” representation to distinguish

among the visual classes of interest.

Convolutional Neural Networks [15] are a biologically-

inspired class of deep learning models that replace all three

stages with a single neural network that is trained end to

end from raw pixel values to classifier outputs. The spa-

tial structure of images is explicitly taken advantage of for

regularization through restricted connectivity between lay-

ers (local filters), parameter sharing (convolutions) and spe-

cial local invariance-building neurons (max pooling). Thus,

these architectures effectively shift the required engineer-

ing from feature design and accumulation strategies to de-

sign of the network connectivity structure and hyperparam-

eter choices. Due to computational constraints, CNNs have

until recently been applied to relatively small scale image

recognition problems (on datasets such as MNIST, CIFAR-

10/100, NORB, and Caltech-101/256), but improvements

on GPU hardware have enabled CNNs to scale to networks

of millions of parameters, which has in turn led to signif-

icant improvements in image classification[11], object de-

tection [20, 9], scene labeling [3], indoor segmentation [4]

and house number digit classification [19]. Additionally,

features learned by large networks trained on ImageNet

[7] have been shown to yield state-of-the-art performance

across many standard image recognition datasets when clas-

sified with an SVM, even with no fine-tuning [18].

Compared to image data domains, there is relatively lit-

tle work on applying CNNs to video classification. Since

all successful applications of CNNs in image domains share

the availability of a large training set, we speculate that this

is partly attributable to lack of large-scale video classifica-

tion benchmarks. In particular, commonly used datasets

(KTH, Weizmann, UCF Sports, IXMAS, Hollywood 2,

UCF-50) only contain up to few thousand clips and up to

few dozen classes. Even the largest available datasets such

as CCV (9,317 videos and 20 classes) and the recently in-

troduced UCF-101[22] (13,320 videos and 101 classes) are

still dwarfed by available image datasets in the number of

instances and their variety [7]. Despite these limitations,

some extensions of CNNs into the video domain have been

explored. [1] and [10] extend an image CNN to video

domains by treating space and time as equivalent dimen-

sions of the input and perform convolutions in both time

and space. We consider these extensions as only one of the

possible generalizations in this work. Unsupervised learn-

ing schemes for training spatio-temporal features have also

been developed, based on Convolutional Gated Restricted

Boltzmann Machines [23] and Independent Subspace Anal-

ysis [14]. In contrast, our models are trained end to end

fully supervised.

3. Models

Unlike images which can be cropped and rescaled to a

fixed size, videos vary widely in temporal extent and can-

not be easily processed with a fixed-sized architecture. In

this work we treat every video as a bag of short, fixed-sized

clips. Since each clip contains several contiguous frames

in time, we can extend the connectivity of the network in

time dimension to learn spatio-temporal features. There are

multiple options for the precise details of the extended con-

nectivity and we describe three broad connectivity pattern

categories (Early Fusion, Late Fusion and Slow Fusion) be-

low. Afterwards, we describe a multiresolution architecture

for addressing the computational efficiency.



Figure 1: Explored approaches for fusing information over

temporal dimension through the network. Red, green and

blue boxes indicate convolutional, normalization and pool-

ing layers respectively. In the Slow Fusion model, the de-

picted columns share parameters.

3.1. Time Information Fusion in CNNs

We investigate several approaches to fusing information

across temporal domain (Figure 1): the fusion can be done

early in the network by modifying the first layer convolu-

tional filters to extend in time, or it can be done late by

placing two separate single-frame networks some distance

in time apart and fusing their outputs later in the process-

ing. We first describe a baseline single-frame CNN and then

discuss its extensions in time according to different types of

fusion.

Single-frame. We use a single-frame baseline architec-

ture to understand the contribution of static appearance to

the classification accuracy. This network is similar to the

ImageNet challenge winning model [11], but accepts in-

puts of size 170 × 170 × 3 pixels instead of the original

224× 224× 3. Using shorthand notation, the full architec-

ture is C(96, 11, 3)-N -P -C(256, 5, 1)-N -P -C(384, 3, 1)-
C(384, 3, 1)-C(256, 3, 1)-P -FC(4096)-FC(4096), where

C(d, f, s) indicates a convolutional layer with d filters of

spatial size f ×f , applied to the input with stride s. FC(n)
is a fully connected layer with n nodes. All pooling layers P

pool spatially in non-overlapping 2× 2 regions and all nor-

malization layers N are defined as described in Krizhevsky

et al. [11] and use the same parameters: k = 2, n = 5, α =
10−4, β = 0.5. The final layer is connected to a softmax

classifier with dense connections.

Early Fusion. The Early Fusion extension combines in-

formation across an entire time window immediately on the

pixel level. This is implemented by modifying the filters on

the first convolutional layer in the single-frame model by

extending them to be of size 11× 11× 3× T pixels, where

T is some temporal extent (we use T = 10, or approxi-

mately a third of a second). The early and direct connectiv-

ity to pixel data allows the network to precisely detect local

motion direction and speed.

Late Fusion. The Late Fusion model places two sepa-

rate single-frame networks (as described above, up to last

convolutional layer C(256, 3, 1) with shared parameters a

distance of 15 frames apart and then merges the two streams

in the first fully connected layer. Therefore, neither single-

frame tower alone can detect any motion, but the first fully

connected layer can compute global motion characteristics

by comparing outputs of both towers.

Slow Fusion. The Slow Fusion model is a balanced

mix between the two approaches that slowly fuses temporal

information throughout the network such that higher lay-

ers get access to progressively more global information in

both spatial and temporal dimensions. This is implemented

by extending the connectivity of all convolutional layers

in time and carrying out temporal convolutions in addition

to spatial convolutions to compute activations, as seen in

[1, 10]. In the model we use, the first convolutional layer is

extended to apply every filter of temporal extent T = 4 on

an input clip of 10 frames through valid convolution with

stride 2 and produces 4 responses in time. The second and

third layers above iterate this process with filters of tempo-

ral extent T = 2 and stride 2. Thus, the third convolutional

layer has access to information across all 10 input frames.

3.2. Multiresolution CNNs

Since CNNs normally take on orders of weeks to train on

large-scale datasets even on the fastest available GPUs, the

runtime performance is a critical component to our ability

to experiment with different architecture and hyperparame-

ter settings. This motivates approaches for speeding up the

models while still retaining their performance. There are

multiple fronts to these endeavors, including improvements

in hardware, weight quantization schemes, better optimiza-

tion algorithms and initialization strategies, but in this work

we focus on changes in the architecture that enable faster

running times without sacrificing performance.

One approach to speeding up the networks is to reduce

the number of layers and neurons in each layer, but simi-

lar to [28] we found that this consistently lowers the per-

formance. Instead of reducing the size of the network, we

conducted further experiments on training with images of

lower resolution. However, while this improved the run-

ning time of the network, the high-frequency detail in the

images proved critical to achieving good accuracy.

Fovea and context streams. The proposed multiresolu-

tion architecture aims to strike a compromise by having two

separate streams of processing over two spatial resolutions

(Figure 2). A 178 × 178 frame video clip forms an input

to the network. The context stream receives the downsam-

pled frames at half the original spatial resolution (89 × 89
pixels), while the fovea stream receives the center 89 × 89
region at the original resolution. In this way, the the total

input dimensionality is halved. Notably, this design takes

advantage of the camera bias present in many online videos,

since the object of interest often occupies the center region.

Architecture changes. Both streams are processed by

identical network as the full frame models, but starting at



Figure 2: Multiresolution CNN architecture. Input frames

are fed into two separate streams of processing: a con-

text stream that models low-resolution image and a fovea

stream that processes high-resolution center crop. Both

streams consist of alternating convolution (red), normaliza-

tion (green) and pooling (blue) layers. Both streams con-

verge to two fully connected layers (yellow).

89 × 89 clips of video. Since the input is only of half the

spatial size as the full-frame models, we take out the last

pooling layer to ensure that both streams still terminate in a

layer of size 7×7×256. The activations from both streams

are concatenated and fed into the first fully connected layer

with dense connections.

3.3. Learning

Optimization. We use Downpour Stochastic Gradient

Descent [6] to optimize our models across a computing

cluster. The number of replicas for each model varies be-

tween 10 and 50 and every model is further split across 4

to 32 partitions. We use mini-batches of 32 examples, mo-

mentum of 0.9 and weight decay of 0.0005. All models are

initialized with learning rates of 1e−3 and this value is fur-

ther reduced by hand whenever the validation error stops

improving.

Data augmentation and preprocessing. Following

[11], we take advantage of data augmentation to reduce the

effects of overfitting. Before presenting an example to a net-

work, we preprocess all images by first cropping to center

region, resizing them to 200 × 200 pixels, randomly sam-

pling a 170× 170 region, and finally randomly flipping the

images horizontally with 50% probability. These prepro-

cessing steps are applied consistently to all frames that are

part of the same clip. As a last step of preprocessing we sub-

tract a constant value of 117 from raw pixel values, which

is the approximate value of the mean of all pixels in our

images.

4. Results

We first present results on our Sports-1M dataset and

qualitatively analyze the learned features and network pre-

dictions. We then describe our transfer learning experi-

ments on UCF-101.

4.1. Experiments on Sports­1M

Dataset. The Sports-1M dataset consists of 1 million

YouTube videos annotated with 487 classes. The classes

are arranged in a manually-curated taxonomy that contains

internal nodes such as Aquatic Sports, Team Sports, Winter

Sports, Ball Sports, Combat Sports, Sports with Animals,

and generally becomes fine-grained by the leaf level. For

example, our dataset contains 6 different types of bowling,

7 different types of American football and 23 types of bil-

liards.

There are 1000-3000 videos per class and approximately

5% of the videos are annotated with more than one class.

The annotations are produced automatically by analyzing

the text metadata surrounding the videos. Thus, our data is

weakly annotated on two levels: first, the label of a video

may be wrong if the tag prediction algorithm fails or if the

provided description does not match the video content, and

second, even when a video is correctly annotated it may still

exhibit significant variation on the frame level. For exam-

ple, a video tagged as soccer may contain several shots of

the scoreboard, interviews, news anchors, the crowd, etc.

We split the dataset by assigning 70% of the videos to

the training set, 10% to a validation set and 20% to a test

set. As YouTube may contain duplicate videos, it is pos-

sible that the same video could appear in both the training

and test set. To get an idea about the extent of this prob-

lem we processed all videos with a near-duplicate finding

algorithm on the frame level and determined that only 1755

videos (out of 1 million) contain a significant fraction of

near-duplicate frames. Furthermore, since we only use a

random collection of up to 100 half-second clips from ev-

ery video and our videos are 5 minutes and 36 seconds in

length on average, it is unlikely that the same frames occur

across data splits.

Training. We trained our models over a period of one

month, with models processing approximately 5 clips per

second for full-frame networks and up to 20 clips per sec-

ond for multiresolution networks on a single model replica.

The rate of 5 clips per second is roughly 20 times slower

than what one could expect from a high-end GPU, but we

expect to reach comparable speeds overall given that we use

10-50 model replicas. We further estimate the size of our

dataset of sampled frames to be on the order of 50 million

examples and that our networks have each seen approxi-

mately 500 million examples throughout the training period

in total.

Video-level predictions. To produce predictions for an

entire video we randomly sample 20 clips and present each

clip individually to the network. Every clip is propagated

through the network 4 times (with different crops and flips)



Figure 4: Predictions on Sports-1M test data. Blue (first row) indicates ground truth label and the bars below show model

predictions sorted in decreasing confidence. Green and red distinguish correct and incorrect predictions, respectively.

Model Clip Hit@1 Video Hit@1 Video Hit@5

Feature Histograms + Neural Net - 55.3 -

Single-Frame 41.1 59.3 77.7

Single-Frame + Multires 42.4 60.0 78.5

Single-Frame Fovea Only 30.0 49.9 72.8

Single-Frame Context Only 38.1 56.0 77.2

Early Fusion 38.9 57.7 76.8

Late Fusion 40.7 59.3 78.7

Slow Fusion 41.9 60.9 80.2

CNN Average (Single+Early+Late+Slow) 41.4 63.9 82.4

Table 1: Results on the 200,000 videos of the Sports-1M test set. Hit@k values indicate the fraction of test samples that

contained at least one of the ground truth labels in the top k predictions.

and the network class predictions are averaged to produce a

more robust estimate of the class probabilities. To produce

video-level predictions we opted for the simplest approach

of averaging individual clip predictions over the durations

of each video. We expect more elaborate techniques to fur-

ther improve performance but consider these to be outside

of the scope of the paper.
Feature histogram baselines. In addition to comparing

CNN architectures among each other, we also report the ac-

curacy of a feature-based approach. Following a standard

bag-of-words pipeline we extract several types of features

at all frames of our videos, discretize them using k-means

vector quantization and accumulate words into histograms

with spatial pyramid encoding and soft quantization. Ev-

ery histogram is normalized to sum to 1 and all histograms

are concatenated into a 25,000 dimensional video-level fea-

ture vector. Our features are similar to Yang & Toderici

[27] and consist of local features (HOG [5], Texton [24],

Cuboids [8], etc.) extracted both densely and at sparse

interest points, as well as global features (such as Hue-

Saturation, Color moments, number of faces detected). As

a classifier we use a multilayer neural network with Rec-

tified Linear Units followed by a Softmax classifier. We

found that a multilayer network performs consistently and

significantly better than linear models on separate validation

experiments. Furthermore, we performed extensive cross-

validations across many of the network’s hyperparameters

by training multiple models and choosing the one with best

performance on a validation set. The tuned hyper parame-

ters include the learning rate, weight decay, the number of

hidden layers (between 1-2), dropout probabilities and the



Figure 5: Examples that illustrate qualitative differences between single-frame network and Slow Fusion (motion-aware)

network in the same color scheme as Figure 4. A few classes are easier to disambiguate with motion information (left three).

Figure 3: Filters learned on first layer of a multiresolution

network. Left: context stream, Right: fovea stream. No-

tably, the fovea stream learns grayscale, high-frequency fea-

tures while the context stream models lower frequencies and

colors. GIFs of moving video features can be found on our

website (linked on first page).

number of nodes in all layers.

Quantitative results. The results for the Sports-1M

dataset test set, which consists of 200,000 videos and

4,000,000 clips, are summarized in Table 1. As can be

seen from the table, our networks consistently and signif-

icantly outperform the feature-based baseline. We empha-

size that the feature-based approach computes visual words

densely over the duration of the video and produces predic-

tions based on the entire video-level feature vector, while

our networks only see 20 randomly sampled clips individ-

ually. Moreover, our networks seem to learn well despite

significant label noise: the training videos are subject to

incorrect annotations and even the correctly-labeled videos

often contain a large amount of artifacts such as text, ef-

fects, cuts, and logos, none of which we attempted to filter

out explicitly.

Compared to the wide gap relative to the feature-based

baseline, the variation among different CNN architectures

turns out to be surprisingly insignificant. Notably, the

single-frame model already displays strong performance.

Furthermore, we observe that the foveated architectures are

between 2-4× faster in practice due to reduced input dimen-

sionality. The precise speedups are in part a function of the

details of model partitioning and our implementation, but in

our experiments we observe a speedup during training of 6

to 21 clips per second (3.5x) for the single-frame model and

5 to 10 clips per second (2x) for the Slow Fusion model.

Contributions of motion. We conduct further exper-

Sports class ∆ AP ∆ AP Sports class

Juggling Club 0.12 -0.07 Short Track Motor Racing

Pole Climbing 0.10 -0.07 Road Racing

Mountain Unicycling 0.08 -0.07 Jeet Kune Do

Tricking 0.07 -0.06 Paintball

Footbag 0.07 -0.06 Freeride

Skipping Rope 0.06 -0.06 Cricket

Rope Climbing 0.06 -0.06 Wrestling

Slacklining 0.05 -0.06 Modern Pentathlon

Tee Ball 0.05 -0.06 Krav Maga

Sheepdog Trial 0.05 -0.05 Rally Cross

Table 2: Classes for which a (motion-aware) Slow Fusion

CNN performs better than the single-frame CNN (left) and

vice versa (right), as measured by difference in per-class

average precision.

iments to understand the differences between the single-

frame network and networks that have access to motion in-

formation. We choose the Slow Fusion network as a rep-

resentative motion-aware network because it performs best.

We compute and compare the per-class average precision

for all Sports classes and highlight the ones that exhibit

largest differences (Table 2). Manually inspecting some of

the associated clips (Figure 5), we qualitatively observe that

the motion-aware network clearly benefits from motion in-

formation in some cases, but these seem to be relatively un-

common. On the other hand, balancing the improvements

from access to motion information, we observe that motion-

aware networks are more likely to underperform when there

is camera motion present. We hypothesize that the CNNs

struggle to learn complete invariance across all possible an-

gles and speeds of camera translation and zoom.

Qualitative analysis. Our learned features for the first

convolutional layer can be inspected on Figure 3. In-

terestingly, the context stream learns more color features

while the high-resolution fovea stream learns high fre-

quency grayscale filters.

As can be seen on Figure 4, our networks produce in-

terpretable predictions and generally make reasonable mis-

takes. Further analysis of the confusion matrix (attached

in the supplementary material) reveals that most errors are

among the fine-grained classes of our dataset. For exam-

ple, the top 5 most commonly confused pairs of classes are

deer hunting vs. hunting, hiking vs. backpacking, powered

paragliding vs. paragliding, sledding vs. toboggan, and bu-

jinkan vs. ninjutsu.



Model 3-fold Accuracy

Soomro et al [22] 43.9%

Feature Histograms + Neural Net 59.0%

Train from scratch 41.3%

Fine-tune top layer 64.1%

Fine-tune top 3 layers 65.4%

Fine-tune all layers 62.2%

Table 3: Results on UCF-101 for various Transfer Learning

approaches using the Slow Fusion network.

4.2. Transfer Learning Experiments on UCF­101

The results of our analysis on the Sports-1M dataset in-

dicate that the networks learn powerful motion features. A

natural question that arises is whether these features also

generalize to other datasets and class categories. We ex-

amine this question in detail by performing transfer learn-

ing experiments on the UCF-101 [22] Activity Recognition

dataset. The dataset consists of 13,320 videos belonging

to 101 categories that are separated into 5 broad groups:

Human-Object interaction (Applying eye makeup, brush-

ing teeth, hammering, etc.), Body-Motion (Baby crawling,

push ups, blowing candles, etc.), Human-Human interac-

tion (Head massage, salsa spin, haircut, etc.), Playing In-

struments (flute, guitar, piano, etc.) and Sports. This group-

ing allows us to separately study the performance improve-

ments on Sports classes relative to classes from unrelated

videos that are less numerous in our training data.

Transfer learning. Since we expect that CNNs learn

more generic features on the bottom of the network (such

as edges, local shapes) and more intricate, dataset-specific

features near the top of the network, we consider the fol-

lowing scenarios for our transfer learning experiments:

Fine-tune top layer. We treat the CNN as a fixed feature

extractor and train a classifier on the last 4096-dimensional

layer, with dropout regularization. We found that as little as

10% chance of keeping each unit active to be effective.

Fine-tune top 3 layers. Instead of only retraining the fi-

nal classifier layer, we consider also retraining both fully

connected layers. We initialize with a fully trained Sports

CNN and then begin training the top 3 layers. We intro-

duce dropout before all trained layers, with as little as 10%

chance of keeping units active.

Fine-tune all layers. In this scenario we retrain all net-

work parameters, including all convolutional layers on the

bottom of the network.

Train from scratch. As a baseline we train the full net-

work from scratch on UCF-101 alone.

Results. To prepare UCF-101 data for classification we

sampled 50 clips from every video and followed the same

evaluation protocol as for Sports across the 3 suggested

folds. We reached out to the authors of [22] to obtain the

YouTube video IDs of UCF-101 videos, but unfortunately

Group mAP

from

scratch

mAP

fine-tune

top 3

mAP

fine-tune

top

Human-Object Interaction 0.26 0.55 0.52

Body-Motion Only 0.32 0.57 0.52

Human-Human Interaction 0.40 0.68 0.65

Playing Musical Instruments 0.42 0.65 0.46

Sports 0.57 0.79 0.80

All groups 0.44 0.68 0.66

Table 4: Mean Average Precision of the Slow Fusion net-

work on UCF-101 classes broken down by category groups.

these were not available and hence we cannot guarantee that

the Sports-1M dataset has no overlap with UCF-101. How-

ever, these concerns are somewhat mitigated as we only use

a few sampled clips from every video.

We use the Slow Fusion network in our UCF-101 exper-

iments as it provides the best performance on Sports-1M.

The results of the experiments can be seen on Table 3. In-

terestingly, retraining the softmax layer alone does not per-

form best (possibly because the high-level features are too

specific to sports) and the other extreme of fine-tuning all

layers is also not adequate (likely due to overfitting). In-

stead, the best performance is obtained by taking a balanced

approach and retraining the top few layers of the network.

Lastly, training the entire network from scratch consistently

leads to massive overfitting and dismal performance.

Performance by group. We further break down our per-

formance by 5 broad groups of classes present in the UCF-

101 dataset. We compute the average precision of every

class and then compute the mean average precision over

classes in each group. As can be seen from Table 4, large

fractions of our performance can be attributed to the Sports

categories in UCF-101, but the other groups still display im-

pressive performance considering that the only way to ob-

serve these types of frames in the training data is due to label

noise. Moreover, the gain in performance when retraining

only the top to retraining the top 3 layers is almost entirely

due to improvements on non-Sports categories: Sports per-

formance only decreases from 0.80 to 0.79, while mAP im-

proves on all other categories.

5. Conclusions

We studied the performance of convolutional neural net-

works in large-scale video classification. We found that

CNN architectures are capable of learning powerful fea-

tures from weakly-labeled data that far surpass feature-

based methods in performance and that these benefits are

surprisingly robust to details of the connectivity of the ar-

chitectures in time. Qualitative examination of network out-

puts and confusion matrices reveals interpretable errors.

Our results indicate that while the performance is not

particularly sensitive to the architectural details of the con-

nectivity in time, a Slow Fusion model consistently per-

forms better than the early and late fusion alternatives. Sur-



prisingly, we find that a single-frame model already dis-

plays very strong performance, suggesting that local motion

cues may not be critically important, even for a dynamic

dataset such as Sports. An alternative theory is that more

careful treatment of camera motion may be necessary (for

example by extracting features in the local coordinate sys-

tem of a tracked point, as seen in [25]), but this requires

significant changes to a CNN architecture that we leave for

future work. We also identified mixed-resolution architec-

tures that consist of a low-resolution context and a high-

resolution fovea stream as an effective way of speeding up

CNNs without sacrificing accuracy.

Our transfer learning experiments on UCF-101 suggest

that the learned features are generic and generalize other

video classification tasks. In particular, we achieved the

highest transfer learning performance by retraining the top

3 layers of the network.

In future work we hope to incorporate broader categories

in the dataset to obtain more powerful and generic fea-

tures, investigate approaches that explicitly reason about

camera motion, and explore recurrent neural networks as

a more powerful technique for combining clip-level predic-

tions into global video-level predictions.
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