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Abstract

Given the enormous growth in user-generated videos,

it is becoming increasingly important to be able to navi-

gate them efficiently. As these videos are generally of poor

quality, summarization methods designed for well-produced

videos do not generalize to them. To address this challenge,

we propose to use web-images as a prior to facilitate sum-

marization of user-generated videos. Our main intuition

is that people tend to take pictures of objects to capture

them in a maximally informative way. Such images could

therefore be used as prior information to summarize videos

containing a similar set of objects. In this work, we apply

our novel insight to develop a summarization algorithm that

uses the web-image based prior information in an unsuper-

vised manner. Moreover, to automatically evaluate summa-

rization algorithms on a large scale, we propose a frame-

work that relies on multiple summaries obtained through

crowdsourcing. We demonstrate the effectiveness of our

evaluation framework by comparing its performance to that

of multiple human evaluators. Finally, we present results for

our framework tested on hundreds of user-generated videos.

1. Introduction

Over the years, there has been a tremendous growth in the

amount of user-generated video data [5]. These videos are

extremely diverse in their content, and can vary in length

from a few minutes to a few hours. It is therefore becom-

ing increasingly important to automatically extract a brief

yet informative summary of these videos in order to enable

a more efficient and engaging viewing experience. In this

work, we focus on the problem of automatic summarization

and evaluation of user-generated videos.

Summarizing user-generated videos is different from

well-produced videos in two important ways. First, user-

generated videos are usually of poor quality, with erratic

camera motion, variable illumination conditions, and scene

clutter. This makes it difficult to rely solely on the low-level

appearance and motion cues to find important key-frames,

as done by a majority of the previous approaches [13] [26].
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Figure 1: Consider a user listing of an automobile containing both

images and videos of a particular object (e.g., car). The top two

rows show the images, while the bottom two rows show eight

uniformly sampled frames from the corresponding user-generated

video. Unlike the individual images, that are taken from different

canonical viewpoints to capture the car in a maximally informative

way, very few of the sampled video-frames are as informative.

Secondly, most of the user-generated videos contain only

a small fraction of frames where some interesting event is

happening. Due to this content sparsity, techniques that at-

tempt to find representative frames with high appearance

differences amongst them usually do not produce semanti-

cally meaningful results [22] [15].

The main contribution of this work is the idea of using

web-images as a prior to facilitate the process of creating

summaries of user-generated videos. Our intuition is that

people tend to take pictures of objects and events from a

few canonical viewpoints in order to capture them in a max-

imally informative way. On the other hand, as shown in Fig-

ure 1, user-generated videos taken by hand-held cameras of-

ten contain many uninformative frames captured while tran-

sitioning between the various canonical viewpoints.

We therefore hypothesize that images of objects and

events present on the web contain information that could

be used as a prior for building semantically meaningful
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Figure 2: We start with an unlabeled corpus of images belonging to some class (e.g., automobiles), and cluster them into subclasses, where

each discovered subclass corresponds to a “canonical viewpoint”. We also learn a classifier for each of the discovered subclass. These

two operations are done iteratively by optimizing Equation 1. To improve our subclass models, we also use the unlabeled video data by

first assigning each video frame to a subclass, and then repeating the optimization procedure from Section 2.1 with both video frames and

images. Given a test video, we assign its frames to the learned subclasses, and compute the average decision score of the test examples

assigned to each subclass. We use this score to rank the subclasses for the given test video. Finally to generate the output summary with k

representative frames, we select the k frames from the test video, each of which is closest to the centroid the top k ranked subclasses.

summaries of user-generated videos in a scene-independent

manner. In this work, we apply our novel intuition to

propose a summarization algorithm that incorporates this

image-based prior to automatically select the maximally in-

formative frames from a video.

An important related question we explore in this work is

the evaluation of video summarization algorithms in a large-

scale setting. A majority of the previous work on video

summarization uses expert opinion to evaluate their results.

However, this evaluation methodology does not scale well

with the size of video data. Moreover, videos considered

by these methods are generally well-produced with their

content following a strict cinematographic structure. This

makes it possible to streamline the rules using which the ex-

perts could perform evaluation. Since user-generated videos

are produced at scale, and do not follow strict structure, us-

ing expert opinion for their evaluation is infeasible.

To this end, we propose to rely on crowd-sourcing to ob-

tain multiple candidate summaries of user-generated videos,

to get a general sense of what their summaries should look

like. We cast the question of matching the output of a sum-

marization algorithm and the crowd-sourced summarization

as a graph-theoretic problem. We compare the performance

of our automatic evaluation framework to that of expert

evaluation, demonstrating its effectiveness in capturing the

characteristics of a good summary.

The main contributions of our work are:

• A novel intuition to incorporate information from web

images as a prior to automatically select maximally in-

formative frames from user-generated videos without

using any human annotated summaries for training.

• A crowd-sourcing based automatic evaluation frame-

work to evaluate the results of multiple video summa-

rization algorithms.

• An analysis of our summarization mechanism tested

over a large set of user-generated videos.

In the following, we start by presenting the details of our

proposed algorithm in Section 2. We then explain how we

automatically evaluate different summarization results us-

ing a crowd-sourcing platform in Section 3, and present a

comparative analysis of our experiments and results in Sec-

tion 4. We discuss related work in Section 5 and conclude

this paper by summarizing our main findings and highlight-

ing potential directions for future research in Section 6.

2. Using Web Images for Summarization

Our goal is to discover a set of “canonical viewpoints” in

web-images related to an object class (e.g., automobiles).

Using these discovered viewpoints, we want to learn a dis-

criminative model to identify similar frames in a video cap-

turing a different instance of the object class. These key-

frames can be used to represent the video and summarize

its content. To this end, we propose to use a Support Vector

Machine (SVM) framework (Section 2.1) that jointly dis-

covers the canonical viewpoints (also called subclasses) as

well as learns their discriminative decision boundaries.

Since many user-generated videos are captured from

hand-held mobile devices, they contain a lot of variation in

the viewpoints from which they capture an object. As peo-

ple transition between canonical views of an object, they

tend to capture the object in atypical and often uninforma-

tive views. Therefore, frames from these videos can be used

as difficult-to-classify negative examples to further improve

models of the canonical viewpoints. To this end, we use

the pre-trained viewpoint classifiers learned only from web-

images to initialize a second round of training, where the

labels for both web-images and video frames are consid-



Algorithm 1 Video summarization algorithm (explained in

Section 2). J denotes the total number of iterations and

w
(j)
i represents the weight vector for class i, at iteration j.

Input: Unlabeled images x
D and videos x

V , number of

subclasses K.

Output: Learned weight vector w
(J)
y ∀y ∈ {1 . . .K}.

Initialization: Initialize image labels ŷD using k-means.

Refine image labels ŷD and learn w
(0) using Equation 1.

for: j = 1 . . . J , do

ŷVi = argmaxy(w
(j−1)
y · xV

i )∀i

ŷDi = argmaxy(w
(j−1)
y · xD

i )∀i
Learn w

(j) using (xV , ŷV ) and (xD, ŷD)
end for

ered latent (Section 2.2). Our overall approach is listed in

Algorithm 1, and is illustrated in Figure 2.

2.1. Identifying Canonical Viewpoints

In order to discover the canonical viewpoints, we want to

identify visually similar images in a corpus of web images.

Furthermore, we want to reliably identify these viewpoints

in a previously unseen set of video frames. We therefore

have two main challenges:

• Clustering images into canonical viewpoints, and

• Learning a discriminative classifier for each viewpoint.

To achieve both these objectives, we iterate between them

based on the following optimization problem:

min
w,ξ≥0,ŷ

1

2

K∑

k=1

||wk||
2 + C

N∑

i=1

ξi (1)

s.t. wŷi
· xi−wŷ · xi ≥ ∆(ŷi, ŷ)− ξi, ∀ŷ ∈ {1 . . .K}

where ∆(ŷi, ŷ) = 1 if ŷi 6= ŷ and 0 otherwise, ξ is the

slack variable and C is a hyperparameter. Equation 1 is a

variant of a multi-class SVM [6] where the class labels of

the examples are unknown. Specifically, given N images,

we want to find K clusters and further learn K decision

boundaries, one for each cluster. We represent the features

of image i by xi ∈ R
n where n is the dimensionality of the

feature space, and their unknown labels by ŷi ∈ {1 . . .K}.

Objective function optimization: Note that the objective

function in Equation 1 is non-convex as the labels ŷ are un-

known. However, when ŷ are known, the problem reduces

to a multi-class SVM, which is convex. We therefore use an

iterative procedure where we first learn the cluster labels,

and then keeping these labels fixed, learn the SVM param-

eters. This process is repeated over multiple iterations.

We initialize the cluster labels using k-means clustering

and update them at each iteration as: ŷi = argmaxy(wy ·
xi). While this optimization procedure does not guarantee

a global optima, it does guarantee a local optima, since each

iteration always reduces the objective function (for analyti-

cal proof, please see the supplementary material).

Implementation details: We use K = 100 subclasses with

the hyperparameter C = 30 and perform 10 iterations of

the algorithm. Furthermore, we add a class K + 1 that con-

tains only negative examples1 to identify frames that do not

contain the object of interest.

2.2. Using Unlabeled Videos for Training

In this section, we assume that we have a classifier for one

canonical viewpoint and we want to identify additional ex-

amples from the videos from the same viewpoint. We break

the videos into frames and treat all the frames as indepen-

dent examples. We denote the features and labels of the M
training video examples as x

V
i and ŷVi ∈ {−1, 1} respec-

tively, and similarly for the N training images, as x
D
i and

yDi ∈ {−1, 1}. Note that in this case we have already dis-

covered and assigned the labels yD for the images, and our

goal is to learn the latent labels for the video examples, ŷV .

Again, we use an SVM framework, and define our objective

function as:

min
w,ξ≥0,ρ≥0,ŷV

1

2
||w||2 + C1

N∑

i=1

ξi + C2

M∑

i=1

ρi (2)

s.t. yDi w · xD
i ≥ 1− ξi, i = 1 . . . N

ŷVi w · xV
i ≥ 1− ρi, i = 1 . . .M

where ξ and ρ are slack variables, and C1 and C2 are hyper-

parameters. In this case, we define two hyperparameters so

we can control the relative importance of image and video

examples. The optimization procedure for this objective

function is very similar to the one described in Section 2.1.

In our experiments, we set C2 = C1/10 to give more impor-

tance to images as they are considered to be more reliable

prior information, as compared to video frames.

2.3. Overall Algorithm

The overall algorithm consists of combining the methods

from Section 2.1 and Section 2.2. We do this by first learn-

ing the image subclasses using the iterative optimization

method described in Section 2.1. We then assign each

frame from all videos to a subclass using the equation

ŷVi = argmaxy(wy · xV
i ) where the weights learned from

the images are used for the video frame subclass assign-

ment. We repeat the optimization from Section 2.1 with

both video frames and images for a few iterations.

Given a test video, we assign its frames to the different

subclasses using their learned classifiers, and compute the

average decision score of the positive examples from each

subclass. We use this score to rank the subclasses in terms

1Details about negative examples are given in Section 4.2.1.



of which ones are most pertinent to the test video. To gen-

erate the output summary with k representative frames, we

select the k frames from the test video, each of which is

closest to the centroid of any one of the top k ranked sub-

classes. We find that it is better to select the example closest

to the subclass centroid compared to the highest scoring ex-

ample, as that may not be representative of the subclass.

3. Large-scale Annotation and Evaluation

In this section, we describe the process of obtaining an-

notations through crowdsourcing on Amazon Mechanical

Turk (AMT), and how these annotations can be used for

automatic evaluation using the notion of average precision.

Overall, the process consists of obtaining multiple sum-

maries of a single video via AMT, and later comparing those

summaries against the ones obtained by applying different

algorithms. This results in precision-recall curves, which

can be used to compare algorithms against one another.

3.1. Obtaining Annotation using Mechanical Turk

Summarizing a video is a subjective task, and summaries

produced by different people are often different, even when

done by experts. Thus, it is beneficial to obtain multiple

summaries of a single video as ground truth to evaluate the

performance of different algorithms. This method has been

shown to be promising when using expert annotators, but it

is not easily scalable. One way to overcome this barrier is

to use AMT. As the workers are typically not highly-skilled

and we cannot explain the task in person to ensure it is well

understood, we have to design a system to identify workers

capable of performing this task.

Similar to the work in [1], we first extract keyframes us-

ing [10], which are shown to the workers on AMT (called

turkers) for selection. A turker must select at least 3 and at

most 25 frames that he believes adequately summarize the

content of the frames shown. While instructions are pro-

vided for this task, we found that it is important to have a

test to ensure that they are well understood.2 Further, to en-

sure that instructions are being followed, we randomly sam-

ple 5% of the images from the video and include duplicates

with slight perturbations (crop and rescale). A worker that

selects both the original and the perturbed frame is blocked,

and all his previous annotations are dropped. On average,

it cost about $0.20 per summary per video, and we obtain a

total of 10 summaries per video, for a total of 155 videos.

3.2. Evaluation using Average Precision

Since the number of frames to use for a summary is applica-

tion dependent, we propose to evaluate a variable number of

frames from a ranked list (similar to [14]). For a particular

2The set of instructions, and a sample test is provided in the supple-

mentary document.
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Figure 3: Sample query images and their respective matches when

using SIFTFlow to compute d. As shown, SIFTFlow is quite ro-

bust to small changes in viewpoint resulting in semantically mean-

ingful matches. We threshold d such that frames with larger dis-

tances are set to have d = 1.

video, given a summary H1, . . . , Hn by a turker, we want

to evaluate the average precision of a rank-ordered sum-

mary S1, . . . , Sn proposed by an algorithm, where S1 is the

highest-scoring frame. Assume that we require a ranked list

of size n from the algorithm for a reference summary of size

n. Thus, we can iteratively evaluate the precision and recall

of using 1 frame ({S1}), 2 frames ({S1, S2}) and so on to

plot a precision recall curve. Below we describe how we

find the precision and recall for k frames ({S1, . . . , Sk}).

Precision refers to the fraction of retrieved instances that

are relevant while recall refers to the fraction of relevant

instances that are retrieved. Thus, to compute precision, we

want to find how well all the retrieved frames match with

the reference frames, while to compute recall we want to

find how many, and how accurately, are the reference frames

returned in the retrieval result. In order to do this, we first

need to define the notion of “how well does a frame match

with another frame”. This distance is denoted as d.

Defining frame distance: Given two frames, F1 and F2,

we compute the SIFTFlow [20] between them and find the

warped image for one of the two frames Fw
1 . We define d

to be the sum-squared pixel-wise distance between Fw
1 and

F2 i.e., d = |Fw
1 −F2|

2/P where P is the number of pixels

such that 0 ≤ d ≤ 1. Figure 3 shows some query images

and their respective matches using SIFTFlow to compute

d. As shown, SIFTFlow is quite robust to small changes in

viewpoint, and is quite consistent in assigning distance val-

ues to images in accordance to their variations. For frames

with d greater than a threshold, we set it equal to 1.

Bipartite frame matching: Based on the above distance

metric, we construct a distance pair-wise matrix, D ∈ R
nxk,

between all of the retrieved and reference frames. We want

to find a matching between the two sets of frames such that

there is one reference frame corresponding to each retrieved

frame. This corresponds to finding a bipartite matching

between the two sets of frames as illustrated in Figure 4.

We apply the Hungarian algorithm [11] to D to find the
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Figure 4: Bipartite matching to assign frames between a video

summary given by an AMT worker, and a summarization algo-

rithm. Edges from node b in the top partite to all nodes in the

bottom partite are drawn in solid. Also shown are the SIFTFlow

[20] fields found while transforming frame b to all frames in the

AMT-summary. The transformed frames are shown in the bottom

row. Edge weights (e.g., wb
1) are equal to the average pixel-wise

distance of the transformed image and the original image.

lowest cost bipartite matching between the frames. Us-

ing the resulting frame correspondence, we compute the

precision as
∑k

i=1(1 − di)/k where di are the distances

of the best matches, and similarly recall is computed as∑n

i=1(1−di)/n. We find the area under the precision-recall

curve to obtain the average precision.

4. Experiments

4.1. Dataset

For this work, we focus on the “Cars and Trucks” class

of objects, since it is one of the most popular categories

where users upload both images and videos to ecommerce

websites. In order to collect our image corpus, we crawled

several popular ecommerce websites and downloaded about

300, 000 images of cars and trucks that users had uploaded

to their listings. To collect video data, we searched for all

the user listings with a “youtube.com” URL in their prod-

uct description. For each of these 180 listings, we down-

loaded their corresponding videos from youtube.com. We

randomly selected 25 videos for training, and the rest (155)

for evaluation. We ensured that images from listings con-

taining test videos were not included in our training data.

4.2. Setup and Baselines

4.2.1 Setup

We used our downloaded vehicle image corpus as the

positive set, and images from the PASCAL VOC 2007

dataset [8] that do not contain cars or trucks as the negative

set. For the 25 training videos, we extracted 2 uniformly

spaced frames per second. The images and video frames

were resized to have a maximum dimension of 500 pixels

(preserving aspect ratio). We extracted SURF [4] descrip-

tors in a dense grid with grid spacing of 6 and learn a code-

book of size 256 using k-means clustering. The descriptors

are assigned to the codebook using Locality-Constrained

Linear Coding [31] and combined in a 2-level spatial pyra-

mid representation [16] resulting in a feature dimension of

1, 280. We used LIBLINEAR [9] to train the subclass mod-

els of Equation 1.

4.2.2 Baselines

For comparison, we use four baseline algorithms that do

not require training summaries: random sampling, uniform

sampling, k-means and spectral clustering. Assume that n
frames are returned by the algorithm. Random sampling is

the simplest baseline where we randomly select n frames

from the video. In uniform sampling we split the video into

n + 1 equal segments where the last frame from the first n
segments is selected. In k-means and spectral clustering, we

create n clusters and select the image closest to each clus-

ter centroid. We report the average of 20 runs for random

sampling, k-means clustering and spectral clustering.

4.3. Automatic Evaluation

We performed automatic evaluation using the method de-

scribed in Section 3. Apart from the baseline methods de-

scribed in Section 4.2 and our method, we also compute

the average precision (AP) when reference summaries from

the AMT workers are used for evaluation. This provides a

pseudo-upper bound for this task, and thus we also report

normalized AP scores by rescaling the AP of AMT workers

to 100%. The results are reported in Table 1.

We observe that our algorithm significantly outperforms

all baseline methods to achieve a normalized AP of 59.5%.

For the baselines, k-means and spectral clustering outper-

form uniform and random sampling. Figure 5 shows the

summaries produced by different methods for three exam-

ple videos to give the reader a visual sense of the summaries

produced by different algorithms. Note that our algorithm

produces summaries most similar to the ones generated by

human annotators. Figure 6 shows the improvement of our

method over the baseline (k-means) for individual videos.

We observe that our method consistently improves the re-

sult across a large proportion of the videos.

4.4. Human Evaluation

With 15 human judges, we performed human evaluation of

the retrieved summaries from different algorithms to verify

the results obtained from the automatic evaluation. Each

expert was shown a set of 25 randomly sampled videos



Method
Baselines Our method

AMT
Uniform Random k-means Spectral Init Img only Img + Vid

AP 0.0719 0.0705±0.004 0.0764±0.003 0.0742±0.003 0.08557 0.0897 0.0934 0.1571

APi/APAMT 45.8% 44.9%±2.4 48.6%±1.9 47.3%±1.9 54.5% 57.1% 59.5% 100%

Table 1: Automatic Evaluation: Average precision (AP) results. The second row rescales the AP of AMT to 100% for comparison, since

that is a pseudo upper-bound on the results.
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Figure 5: Visual comparison of results from various methods (i.e., uniform, k-means, ours and AMT), showing different number of frames

for 3 different videos to give a sense of the visual quality of summaries obtained using the different summarization algorithms. The

corresponding videos are included in the supplementary material.

from our “Cars and Trucks” dataset. They watched the

video at 3x speed and were then shown 4 sets of summaries

constructed using different methods: uniform sampling, k-

means clustering, our proposed algorithm (Section 2), and a

reference summary from AMT. They were asked to rate the

overall quality of each summary by assigning a rating from

1 to 10. The results are summarized in Table 2.

Similar to the result of automatic evaluation, our algo-

rithm significantly outperforms other methods (uniform, k-

means). Furthermore, we note that the relative rank of the

different algorithms is largely preserved in the human eval-

uation as compared to the automatic evaluation (Table 1).

In addition, we found a Spearman’s rank correlation coef-

ficient of 0.70 between the scores assigned to each video

by human evaluators and our automatic method. This sug-

gests the efficacy of our method for performing evaluations

automatically. Finally, the high performance of AMT sum-

maries in both human and automatic evaluation illustrates

that our method to obtain summaries using crowdsourcing

is effective, allowing us to evaluate video summarization

results in a large-scale setting, while keeping costs low.
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Figure 6: Improvement of our algorithm over baseline (k-means)

for individual videos sorted by the amount of improvement. We

observe that there is consistent improvement across a large pro-

portion of the videos as compared to the baseline.

4.5. Discussion & Analysis

Based on our experiments and results, we now discuss some

of the insights from our work. Our main intuition is that

people tend to take pictures of objects from select view-

points in order to capture them in a maximally informa-

tive way. We therefore hypothesized that images of objects

could be used to create summaries of user-generated videos



Method Uniform K-means Ours AMT

Avg. Score 3.89 3.59 4.58 6.58

Table 2: Human Evaluation– 15 human judges evaluated the

summaries from different algorithms on a scale of 1 to 10 to ver-

ify the results of our automatic evaluation scheme. Our algorithm

significantly outperforms other automatic methods.
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Figure 7: Examples of learned canonical viewpoints. These are

the highest scoring images in each cluster arranged in a descending

order from left to right.

capturing those objects. As shown in Table 1, the results of

our experiments confirm our hypothesis, where the average

precision we obtain while using web-image prior to summa-

rize videos is significantly better (54.5%) than all the base-

line methods that do not incorporate this prior information

(46.7% on average).

We also posit that since user-generated videos have a lot

of variation in the viewpoints from which they capture an

object, frames from these videos could be used in addition

to the image based prior information to further improve the

summarization performance. This hypothesis is confirmed

by the results in Table 1, where using video frames and im-

ages together performs better (59.5%) than using images

only (57.1%). This is because combining images and video

frames results in viewpoint clusters that are largely coherent

(see Figure 7 for example clusters). This in turn enables our

learned models to do accurate frame retrieval during testing.

The competence of our framework is also corroborated

by the human evaluation (Table 2), where all 15 judges con-

sistently ranked our proposed algorithm next to the AMT

summaries. This indicates that using image based priors

for summarizing user-generated videos captures what hu-

mans consider good summaries. Furthermore, based on the

feedback from the judges we learned that users generally

position their cameras at the start and end of recording the

videos such that the first and last frames of the videos are

usually more informative than a randomly selected frame.

Adding this information in our summarization algorithm is

likely to improve our overall performance.

Testing framework limitations: We also applied our algo-

rithm on a more challenging dataset to explore the limita-

tions of our framework. Specifically, we collected 20 user-
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Figure 8: Examples of learned canonical viewpoints in the cooking

dataset (Section 4.5). These are the highest scoring images in each

cluster arranged in a descending order from left to right.

generated cooking videos from Youtube and downloaded

close to 10, 000 images from Flickr for similar queries, all

of which related to the activity of making a salad. The clus-

tering result of our algorithm is shown in Figure 8.

While generally the clusters look reasonable, the over-

all consistency of the clusters and the number of consis-

tent clusters is smaller than the “Cars and Trucks” dataset.

This is because the images in our second dataset have more

noise, such as focusing mostly on the cook instead of the

food items. Moreover, the large variety and inconsistency

in appearance of the food items is hard to capture given the

limitations of the state-of-the-art visual features. For these

reasons, we found the returned summaries of our algorithm

and uniform sampling to be largely similar. Furthermore,

there are challenges of domain adaptation [33] when train-

ing on images in one setting, and testing the learned mod-

els on videos in a different setting. While our current ap-

proach has been designed to be unsupervised, it could be

made more robust to noise by using more informative vi-

sual features, and could benefit from some supervision of

training images for more challenging datasets.

5. Related Work

Video summarization has been looked at from multiple per-

spectives [28]. While the representation used for the sum-

mary might be key-frames [34] [12], image montages [3],

or short glimpses [26] [25], the goal of video summariza-

tion is nevertheless to produce a compact visual summary

that encapsulates the most informative parts of a video.

Most of the previous summarization techniques are de-

signed for well-produced videos, and rely on low-level ap-

pearance and motion cues [22] [15]. However, they usually

do not perform well for user-generated videos, given their

generally poor quality and sparse content.

To address these challenges, there have been some recent

approaches that take into account interesting objects [17],

events [32], user preferences [2], and attention models [21]

to summarize videos. Our current work is another step

in this general direction of content-aware summarization,

where unlike previous approaches, we use web-images as a

prior to facilitate summarization of user-generated videos.



The lack of an agreed upon notion of the “optimal” sum-

mary of a video can make summary evaluation a key chal-

lenge for video summarization. Similar challenges exist in

other domains, such as machine translation [24] and text

summarization [19], where previous methods have tried to

combine several human-generated candidate summaries to

infer a final answer which in expectation is better than any

of the individual candidate results. Following this approach,

there has been previous work in the field of video summa-

rization that also attempts to aggregate multiple summaries

of a video to infer a final answer [18] [29] [7]. However

they have mostly focused on small to medium scale prob-

lems, using expert annotators to label data.

More recently, there has been an interest in the prob-

lem of evaluating video summarization results at a large

scale [2] [23]. However, these approaches use multi-

ple expert summaries which is an expensive and time-

consuming exercise. To this end, methods that rely on

crowd-sourcing [27] have mostly focused on the problem

of object annotation with either sparse [35] or dense la-

beling [30]. In this work however, we show how to use a

crowd-sourcing model to get multiple summarization labels

specifically for user-generated videos.

6. Conclusion & Future Work

In this work, we focused on automatically summarizing

user-generated videos. We demonstrated that web images

could be used as a prior to summarize videos that capture

objects similar to those present in the image corpus. We

also focused on the related problem of large-scale automatic

evaluation of summarization algorithms. We proposed an

evaluation framework that uses multiple summaries ob-

tained by crowd-sourcing, and compared the performance

of our framework to that of multiple expert users.

Our main intuition regarding people taking pictures of

objects to capture them in an informative way is applica-

ble to videos of events and activities as well. Going for-

ward, we would like to apply our approach on videos of

wedding receptions, birthday parties and graduation cere-

monies. Moreover, we would like to test if by using this

image-based prior, we could identify important viewpoints

of an object or event that might have been missed.
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