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Large-Scale Vision-Based Tactile Sensing for Robot
Links: Design, Modeling, and Evaluation

Lac Van Duong and Van Anh Ho , Member, IEEE

Abstract—The sense of touch allows individuals to physically
interact with and better perceive their environment. Touch is even
more crucial for robots, as robots equipped with thorough tactile
sensation can more safely interact with their surroundings, includ-
ing humans. This article describes a recently developed large-scale
tactile sensing system for a robotic link, called TacLINK, which
can be assembled to form a whole-body tactile sensing robot arm.
The proposed system is an elongated structure comprising a rigid
transparent bone covered by continuous artificial soft skin. The soft
skin of TacLINK not only provides tactile force feedback but can
change its form and stiffness by inflation at low pressure. Upon con-
tact with the surrounding environment, TacLINK perceives tactile
information through the three-dimensional (3-D) deformation of its
skin, resulting from the tracking of an array of markers on its inner
wall by a stereo camera located at both ends of the transparent
bone. A finite element model (FEM) was formulated to describe
the relationship between applied forces and the displacements of
markers, allowing detailed tactile information, including contact
geometry and distribution of applied forces, to be derived simulta-
neously, regardless of the number of contacts. TacLINK is scalable
in size, durable in operation, and low in cost, as well as being a
high-performance system, that can be widely exploited in the design
of robotic arms, prosthetic arms, and humanoid robots, etc. This
article presents the design, modeling, calibration, implementation,
and evaluation of the system.

Index Terms—Calibration, finite-element method (FEM), large-
scale tactile sensor, nonrigid registration, soft robotics, stereo
camera, tactile sensing skin, vision-based force sensing.
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I. INTRODUCTION

N
OWADAYS, robots are not all confined within safety

fences inside factories performing highly accurate repeti-

tive operations at high speed. Many are being increasingly used

in activities of humans’ daily lives, such as caretaker, medical,

and therapeutic robots. These robots are therefore expected to

frequently interact with humans, especially via physical contact.

Increased need for safe and intelligent interactions between

humans and robots has led to attempts to equip robots with

whole-body robotic skin that can sense multiple modalities, es-

pecially tactile sensations. Equipping robots with suitable tactile

feedback facilitates their awareness of surroundings through

touch sensations, in the same manner that humans feel and

interact with theirs. This article is motivated by a desire to

develop a whole robot arm with soft and highly deformable

tactile skin that conveys detailed information regarding contact

geometry and force from dynamic interactions between the robot

and its surroundings.

Tactile sensing devices for robotic skin [1], [2] must not only

be sensitive and flexible [3]–[5], but be highly scalable [6], [7]

and stretchable [8], [9], enabling them to be wearable on a wide

and curved surface of a robot’s body, from fingertips to larger

areas, including hands, arms, and chest. Tactile sensors were de-

signed as a matrix of sensing elements (taxels), whose working

principle was based on physical transducing phenomena, from

applied force/pressure to changes in, for example, resistance, ca-

pacitance, inductance, electromagnetic field strength, and light

density [10]. Most of these designs, however, focused only on the

structure and principle, without considering the bulk of wires and

analog-to-digital converters, etc., required for a large number of

taxels. Also, high cost and manufacturing complexity have partly

constrained the number of commercial tactile devices.

To date, few studies have effectively provided a robot with

large areas of tactile sensors. Typical designs involve integrated

electronic skin formed by many spatially distributed modular

sensing points, allowing data to be processed locally, and sent

through a serial bus, thereby reducing the number of wires [21].

For example, a network of rigid hexagonal printed circuit boards

provided a variety of sensory modalities including proximity,

vibration, temperature, and light touch [22] useful in many

control strategies and applications [23], [24]. However, based on

the integration of various sensors, electronic components, and

a local microcontroller, this design was low spatial resolution

and relatively expensive. Moreover, the embedded electronic

sensors inside the robotic skin are considered not durable enough
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for frequent collisions during contact with the surrounding

environment.

Vision-based sensing provides advantages to soft tactile skin,

including high spatial resolution and sensitivity, in that a cam-

era is employed to document deformation of artificial skin for

conversion to tactile information [11], [12]. Such technology can

sense deformation of a large area of soft robotic skin without em-

bedded sensors, markedly reducing wiring, electronics, and risk

of damage. For example, the GelSight sensor can measure the

detailed surface texture of a touched object, where a lookup table

of each sensor that maps observed light intensity of the reflective

surface to geometry gradients was experimentally build [13].

The GelForce sensor comprises two layers of markers on a

transparent elastic body for measuring surface traction fields,

resulting from experimental methods to calibrate the relationship

between applied force and the movements of markers [14]. The

TacTip family can adapt to different 3-D shapes that utilize

change in the positions of markers to perform tactile perception,

manipulation, and exploration [15]. Rather than determine the

actual location and direction of an applied force, TacTip focused

on the statistical ability of the derived data of a dotted pattern

to provide the approximate edge of a contacted surface for

helping robots to localize and follow the contours. Most of the

aforementioned sensors were designed for fingertips or grippers,

their scalability to large and curved areas has not been reported.

Vision-based tactile sensing systems have difficulty in deter-

mining a clear relationship between measured deformation and

distribution of applied contact force. Vision-based force sensing

has been evaluated, including estimations of the external force

that can solve equilibrium equations based on calculation of

elastic membrane tensional force [16], minimize energy using

visually measured contour data of a deformed object [17], and

solve Cauchy’s problem in elasticity estimating forces acting on

a gripper [18]. Other strategies using machine learning have been

investigated [13], [19]. However, the aforementioned studies fo-

cusing on estimating the total force applied could not determine

the location and distribution of applied forces upon multiple

contact points or across a wide surface. Although external

forces on soft robots could be estimated using an open-source

simulation framework with an optical tracking system [20], this

system is not compact, and the technique is complex with several

limitations.

An efficient tactile sensing system should minimize the

amount of wires and electronics and maximize tactile sensing

capability at low cost. To this end, we developed TacLINK, a

large-scale tactile sensing system for a robotic link, with soft

artificial skin using vision-based sensing technology (see Fig. 1).

This article elaborates our preliminary work in a conference pa-

per [25]. Notably, the FEM of the skin was formulated enabling

TacLINK to determine the distribution of applied forces on the

skin surface under the condition of multiple simultaneous con-

tacts. This article describes the entire development of TacLINK,

from system design to modeling and implementation, as well

as experiments evaluating this system. The contributions of this

article include:

1) Development of a low-cost (about US$150) efficient

design for robotic links equipped with large-scale tactile

force sensing skin. The soft tactile skin is durable,

Fig. 1. (Left) Configuration of the robot links (i.e., TacLINK) with large-scale
tactile sensation. (Right) Sketch of a collaborative robot (UR5) equipped with
TacLINK, enabling safe and intelligent interaction through the sense of touch.

comfortable to touch, highly deformable, and inflatable

to change its form and stiffness.

2) Robust algorithms to extract information from images of

3-D deformation of elongated and curved skin based on

the views supplied by a stereo camera.

3) A generalized FE approach to compute contact force that

is powerful in spatial force reconstruction. Results can be

utilized for similar structures.

The open-source TacLINK and a demonstration video can be

found.1

The remainder of this article is organized as follows. Section II

provides an overview of system design. Section III presents a

mathematical model of the proposed stereo camera, followed

by algorithms for stereo implementation and calibration in

Section IV. Section V presents the FEM for the artificial skin

used to analyze and calculate tactile forces in Section VI.

Section VII describes experiments performed to evaluate stereo

vision and tactile force reconstruction. Sections VIII and VIII-B

discuss this article. Section IX concludes this article.

II. SYSTEM DESIGN

A. Structure and Principle

Fig. 1(a) depicts an overall view and the interior structure

of TacLINK. It comprises a transparent acrylic tube that con-

nects its two ends, acting like a bone frame for maintaining its

rigidity. Each end has a connecting part that can accommodate

a fisheye lens CMOS camera (ELP USBFHD01M-L21: reso-

lution 640× 480 pixels, frame rate YUV2 30 fps, field of view

∼ 150◦), and a series of high-intensity LEDs for illumination.

The LED source uses a polarizing filter to produce uniform light

and minimize reflected light. To block direct light from LEDs to

facing camera, a black bloc is set in the middle of the acrylic tube.

TacLINK is covered by soft continuous artificial skin (sensing

area ∼ 49 763mm2) dyed black to completely isolate the inner

1[Online] Available: https://github.com/lacduong/TacLINK

https://github.com/lacduong/TacLINK
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Fig. 2. Casting for skin fabrication. (a) The 3-D printable parts of casting
mold. (b) Filling holes of the inner mold with silicone to cast the markers. (c)
Inside and top view of the actual soft skin body with distributed markers.

space with ambient light. Based on detectability of the cameras,

a total of 240 white markers of diameterDmarker = 2.8mm sit on

the inner wall of artificial skin, which is firmly attached affording

total sealing of the inner space between the tube and skin. An

inlet supplies air to the inner space, and an outlet is connected

to an external pressure sensor. Altering the inner air pressure

(0–1.5 kPa) inflates or deflates the skin to change its stiffness.

Note that if f is the focal length of a camera in pixels, and dmin

is the minimum detectable pixel size of a marker on the image,

the design length of skin should satisfy L < f Dmarker

dmin
.

The sensing principle of TacLINK involves the two coaxial

cameras, one at each end, that form a stereo camera. These

cameras take consecutive pictures of markers on the inner wall

of the skin, enabling the calculation of the 3-D positions of all

markers on the global coordinate system. This approach took

advantage of the FEM of the skin to calculate the distribution of

applied forces based on a structural stiffness matrix and extracted

displacements of the markers. The contact forces can be treated

as the acting concentrated force resulting from the nodal forces

of the FE model.

B. Artificial Skin

TacLINK perceives tactile information through its skin, the

properties of which play an important role in sensing charac-

teristics. In this article, artificial skin of thickness t = 3.5mm

was made of silicone rubber material Ecoflex 00-50 (Smooth-

On Inc., USA) with good elasticity and relatively low mixed

viscosity. The skin was fabricated by a casting method, as

illustrated in Fig. 2. First, parts of the mold were designed by

3-D CAD software (Autodesk Inventor, Autodesk Inc., USA)

and printed using a 3-D printer (M200, Zortrax S.A., Poland).

The top funnel-shaped mold was customized as the pouring

Fig. 3. Configuration of the proposed stereo camera. We imposed that the
WCS XY Z located on the baseline. Its origin coincided with the center of the
first end, andX-axis was parallel to theXc1

- andXc2
-axes of the camera frames

Xc1
Yc1

Zc1
andXc2

Yc2
Zc2

. Note that the image of camera 2 was flipped over
its y2-axis to unify the direction of the coordinates of the two images. Thus, the
image coordinates on the x1, x2- and y1, y2-axes were in the same directions
as the X and Y -axes of WCS, respectively.

cup. To cast the markers, an array of hemispherical holes, of

pitches h = 18mm, γ = 15◦, was printed on the surface of the

inner mold and filled with silicone. Second, the standard Ecoflex

mixture of parts A and B (1 A:1B by volume or weight) was

dyed with Silc pigment before being degassed in a vacuum

chamber. Using a stick, the holes on the surface of the inner

mold were filled manually with white silicone [see Fig. 2(b)].

After the white markers were formed, all parts of the mold were

assembled. The black silicone was poured into the inner space

and allowed to cure at room temperature for about 3 h. Finally,

the skin body was removed manually from the casting mold.

Fig. 2(c) shows a prototype of artificial skin with actual markers

evenly distributed.

III. VISION-BASED MODEL

This section addresses the configuration of the stereo camera,

consisting of two coaxial cameras, used to produce a 3-D ge-

ometrical space. The camera was modeled by a usual pinhole,

with the pixel sensors assumed to be square in shape (i.e., the

focal lengths on the x- and y-axes are similar).

A. Stereo Camera Model

The objective of the vision-based system was to construct the

3-D shape of the soft skin by tracking the position of markers.

Fig. 3(a) illustrates the stereo camera consisting of two coaxial

cameras with its baseline and optical axes along the centerline of

the module. The Z-axis of the world (global) coordinate system

(WCS) XY Z coincided with the baseline, and its origin located
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at the center of the first end (with camera 1). The stereo model

describes the 3-D position of a point P = [X,Y, Z]⊤ ∈ R
3 in

WCS captured by cameras on two image planes with correspond-

ing 2-D points, p = [x1, y1]
⊤ ∈ R

2, and q = [x2, y2]
⊤ ∈ R

2

[see Fig. 3(c)–(d)]. Based on the geometrical relationships, the

projective equation was determined to be
[

x1

y1

]

=
f1

b1 + Z

[

X

Y

]

,

[

x2

y2

]

=
f2

b2 − Z

[

X

Y

]

(1)

with

x1 = u1 − cx1
, y1 = v1 − cy1

(2)

x2 = u2 − cx2
, y2 = v2 − cy2

. (3)

where f1 and f2 correspond to the focal lengths of the two

cameras in pixels; b1 and b2 denote the position of WCS origin in

two camera frames, respectively; c1(cx1
, cy1

) and c2(cx2
, cy2

)
are the pixel locations of the principal points on the two pixel

coordinate systems, {u1, v1} and {u2, v2}, respectively.

In this application, the stereo camera can be fully modeled

by four intrinsic parameters {f1, f2, c1, c2} and two extrinsic

parameters {b1, b2}. The method for self-automatic calibration

is presented in Section IV-D.

The problem was to determine the 3-D location of a point

through information supplied by the two cameras. For con-

venience, Cartesian coordinates were converted to polar and

cylindrical coordinates on the image and world coordinates,

respectively, where R and ϕ represent radial and angular coor-

dinates of WCS [see Fig. 3(b)]. Mathematically, the other form

of (1) can be expressed as

r1 =
f1

b1 + Z
R, r2 =

f2
b2 − Z

R (4)

where r1 and r2 are the radial coordinates, and the angular

coordinates ϕ1 and ϕ2 are two arcs from −π to π, computed

from data supplied by the two cameras as [see Fig. 3(c)–(d)]

r1 =
√

x2
1 + y21 , ϕ1 = arctan 2 (y1, x1) (5)

r2 =
√

x2
2 + y22 , ϕ2 = arctan 2 (y2, x2) . (6)

The solutions of (4) can be derived as follows:

Z =
f1b2r2 − f2b1r1
f1r2 + f2r1

(7)

R = (b1 + b2)
r1r2

f1r2 + f2r1
. (8)

Fig. 3(b)–(d) reveals that the ideal angular coordinates obey

the relationship as ϕ = ϕ1 = ϕ2. In fact, the angular ϕ1 and ϕ2

may differ slightly, due to misalignment of the axes of the two

installed cameras. Because this discrepancy is constant, it can

be corrected by compensation. The angular coordinate could

be approximated as ϕ = 1
2 (ϕ1 + ϕ2). However, because the

angular coordinates discontinue at−π andπ,ϕ can be calculated

using the function

ϕ =

{
1
2 (ϕ1 + ϕ2) |ϕ1 − ϕ2| < π
1
2 (ϕ1 + ϕ2)− πsign(ϕ1 + ϕ2) |ϕ1 − ϕ2| > π

. (9)

After ϕ is obtained, X and Y can be calculated

X = R cos(ϕ) (10)

Y = R sin(ϕ). (11)

It should be noticed that equations (7)–(11) represent the

straightforward solution of the triangulation of the stereo cam-

era. This result enhances the ability of the proposed 3-D vision-

based system to perform in real-time.

B. Uncertainty of 3-D Measurement With Digital Camera

The objective of this section is to analyze the uncertainty

of stereo reconstruction, including the effects of camera pa-

rameters. This can help to optimize the best working space for

design. In particular, the localization error depends on the de-

tectability in both images associated to the projections p(r1, ϕ1)
and q(r2, ϕ2), and is characterized by the sensitivity of imaging

parameters to errors. Let ∆r1 and ∆r2 be the image plane co-

ordinate error variables, independent from each other. Because

the standard deviation of pixel error of a digital camera varies

from 0 to 1 pixels, the normalized error variables of ∆r1 and

∆r2 are uniformly distributed within the interval of erroneously

perturbed [−1/
√
2, 1/

√
2] pixels [26]. For ease of analysis, the

ideal calibrated stereo parameters were assumed to be known

beforehand (see Table I). From (7) and (8), the derivative of the

coordinate Z and the radial coordinate R with respect to r1 and

r2, resulted in the uncertainty of ranges Z and R being

∆Z = f1f2
b1 + b2

(f1r2 + f2r1)2
(r1∆r2 − r2∆r1) (12)

∆R =
b1 + b2

(f1r2 + f2r1)2
(f1r

2
2∆r1 + f2r

2
1∆r2). (13)

Substituting r1 and r2 from (4) into (12) and (13) results in the

expressions of uncertainty as

∆Z =
(b2 − Z)2(b1 + Z)

f2(b1 + b2)R
∆r2 −

(b1 + Z)2(b2 − Z)

f1(b1 + b2)R
∆r1

(14)

∆R =
(b1 + Z)2

f1(b1 + b2)
∆r1 +

(b2 − Z)2

f2(b1 + b2)
∆r2 (15)

where Z ∈ [0 L], R ∈ [Rmin Rmax] are in the working ranges.

According to (14) and (15), the localization errors were

nonlinear in assessing the deviations of normalized pixel mis-

alignments ∆r1 and ∆r2. Fig. 4 shows the highest uncertainties

in ranges of ∆Z and ∆R in the designed working space. The

uncertainty∆Rwas found to depend solely on theZ-coordinate,

with greater certainty in the middle region [Z → 0.5L, see

Fig. 4(b)]. Generally, markers located in the middle tend to be

measured in R with higher accuracy than markers near the two

ends. In contrast, Fig. 4(a) indicates that the range uncertainty

∆Z increases significantly on the middle and reduces on the

positive direction of R. Thus, markers close to the two ends and

away from the centerline can be localized with higher accuracy

of Z. In addition, increasing f1 and f2 can enhance precision

(reduce the variations ∆Z and ∆R) by installing camera with

smaller pixel size, or adjusting the focal length of the lens,

although the latter will reduce the view angle of the lens.
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TABLE I
SELF-CALIBRATION RESULTS OF STEREO CAMERA PARAMETERS (µ± σ)

Fig. 4. Stereo variation simulation results illustrating the highest variations
of error in the working space. (a) Uncertainty of Z coordinate with deviations

∆r1 = −1/
√
2,∆r2 = 1/

√
2. (b) Uncertainty of radial coordinate ∆R with

deviations ∆r1 = 1/
√
2,∆r2 = 1/

√
2. .

IV. STEREO IMPLEMENTATION

This section describes a robust algorithm to implement the

stereo registration that unifies tracking and matching. This is

followed by techniques used to measure the 3-D surface of the

skin under large deformation despite occlusion or limited sight,

providing the precise location of every marker.

A. Configuration

The stereo vision is designed to measure the 3-D positions

of all nodes on the 24× 11 mesh of skin [see Fig. 5(b)]. Let

ℓ ∈ {1, . . ., n1} denotes the path and j ∈ {0, . . ., n2} represents

the cell, corresponding to the grid locations on the ϕ- and Z-

axes, here n1 = 24, n2 = 11. The node (ℓ, j) can be identified

by labeling with an index ℓj defined as [see Fig. 9(a)]

ℓj := n1 × j+ ℓ. (16)

Hence, the nodes belonging to the mesh are represented by the

set N = {ℓj}, |N | = N = 288, and they were numbered from

1 to N . Herein, N was divide into three sets of nodes (i.e.,

N = B1 ∪M∪ B2): The fixed nodes were located on the two

clamped edges B1 = {ℓ0}, |B1| = n1, and B2 = {ℓn2
}, |B2| =

n1 [see Fig. 5(b)]; and the free nodes or markers were tracked

by cameras M = {ℓj}j=1,...,n2−1, |M| = n = 240. Moreover,

the full 3-D coordinates X ∈ R
3N of all N -nodes was defined,

with the subvector Xi = P (i) ∈ R
3 being the 3-D position of

node i ∈ N . Similarly, the sets I1 = {p(i)}, and I2 = {q(i)}
corresponded to the projections of all nodes on stereo images,

here ∀i ∈ N , |I1| = |I2| = N .

B. Nonrigid Registration of Stereo

Because the data obtained from image processing were

the unorganized sets of 2-D points, implementation of stereo

Fig. 5. Scenario for verifying the proposed stereo implementation, in which
the TacLINK was in contact with a long cylindrical surface. (a) Stereo images
with the proposed intuitive path tracking algorithm. (b) Reconstruction from
stereo images of the 3-D deformation of artificial skin.

reconstruction required matching a marker’s projections on the

stereo images. This process is known as image registration. The

earliest approaches were based on frame to frame updating [27],

although this tracking method may fail under conditions of fast

movement, or be affected by noise. Another approach consists

of using the coherent point drift for nonrigid registration [28];

however, this iterative optimization method is rather time con-

suming with large point set. To overcome these drawbacks, in-

spired by guidewire tracking for concentric tubes in fluoroscopic

images [29], this article proposes an active tracking algorithm

for nonrigid point set registration of stereo.

Fig. 5(a) shows distribution of all markers in stereo images,

in which each 2-D path contains ten makers, resulting in 24

paths. In each image, markers appear close to each other when

approaching the center, making it difficult to detect markers

at the far distance. Thus, markers should be traced from the

boundary area of each image to its center, corresponding to a

reduction in possibility of detection. By similarity, each path

can be modeled by a finite set of nodesϑi ∈ R
2, i = 0, 1, . . ., n2,

where ϑ0 and ϑn2
are the fixed nodes as the corresponding to the

start and end points, as illustrated in Fig. 6. Thus, assumed that

under condition of deformation, the path is strongly constrained

along the line ϑ0ϑn2
, such that the constructed path connecting

nodes {ϑi} should be continuous and smooth. This hypothesis

is used through-out the registration algorithm.

The problem of stereo registration can be formulated as

seeking the optimal set of nodes for every path. Note that these
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Fig. 6. Intuitive curve tracking algorithm. Using the proposed objective func-
tion with two known anchor points, ϑ0 and ϑn2

, the tracking process can trace
unknown nodes sequentially ϑ1, ϑ2, . . ., ϑn2−1.

3-D paths through disparate stereo views are projected opposite

on the radial direction of two image planes [see Fig. 5(a)].

That is, when observed from the boundary area to the center of

stereo images, the nodes on the first and second images vary as

p(ℓ0) → p(ℓn2
), and q(ℓn2

) → q(ℓn0
). These curve projections

of an arbitrary path ℓ are very constrained by two fixed nodes

laid on two boundary edges (i.e., ℓ0 ∈ B1 and ℓn2
∈ B2, where

ℓ = 1, . . ., n1 [see Fig. 5(b)].

LetΦ ⊂ R
2 denotes the generalized set of detected markers in

a frame of a camera. If ϑi is being tracked with former tracking

markers as ϑ1, . . ., ϑi−1 (see Fig. 6), then to guarantee the node

ϑi is the node closest to node ϑi−1, the closeness term for every

candidate ϑ̂i ∈ Φ can be calculated as

θiclose(ϑ̂i, ϑi−1) = ‖ϑ̂i − ϑi−1‖ (17)

where ‖.‖ denotes the standard Euclidean distance.

In contrast, when considering the smoothness of the path,

it may be sufficient to characterize the curvature of the arc

ϑi−1ϑ̂iϑn2
at vertex ϑ̂i as

2 sin∠ϑi−1ϑ̂iϑn2

‖ϑi−1ϑn2
‖ . Based on the tri-

angle △ϑi−1ϑ̂iϑn2
with a determined closeness term of dis-

tance ϑi−1ϑ̂i, then the curvature at ϑ̂i would depend only

on the distance of ϑ̂i and the control line ϑi−1ϑn2
(i.e.,

small deformation ∠ϑi−1ϑ̂iϑn2
≈ π, then sin∠ϑi−1ϑ̂iϑn2

∝
d(ϑ̂i, ϑi−1ϑn2

)). Hence, the smoothness term can be formulated

as

θismooth(ϑ̂i, ϑi−1, ϑn2
) = d(ϑ̂i, ϑi−1ϑn2

)

=
‖ϑi−1ϑ̂i × ϑi−1ϑn2

‖
‖ϑi−1ϑn2

‖ .
(18)

This led to a proposed objective function to search ϑi, while

satisfying the criteria of closeness and smoothness. This function

can be expressed as

θiobj(ϑ̂i, ϑi−1, ϑn2
) = (1− λ)θiclose(ϑ̂i, ϑi−1)

+ λθismooth(ϑ̂i, ϑi−1, ϑn2
) (19)

where λ ∈ [0 1] is the weight that determines the relative con-

tribution of the two factors.

In addition, obviously, not all nodes belonging to Φ are

the ideal candidates for tracking ϑi. For example, points ϑ̂i,

which possess the geometric relationship ∡ϑ̂iϑi−1ϑn2
> 90◦ or

∡ϑ̂iϑn2
ϑi−1 > 90◦, are unlikely to be actual marker node ϑi.

Thus, to ensure the reliability of the results, we created a limited

search area (region of interest), constrained by two searching

angles with respect to the control line ϑi−1ϑn2
with upper limits

α and β shown in Fig. 6. For this purpose, only points within

region of interest were considered as candidate nodes. Therefore,

for all points ϑ̂i ∈ Φ, the optimal tracking node ϑi is the node

that minimizes the objective function

ϑi = arg min
ϑ̂i∈Φ

θiobj(ϑ̂i, ϑi−1, ϑn2
) (20)

subject to: ∡ϑ̂iϑi−1ϑn2
< α, ∡ϑ̂iϑn2

ϑi−1 < β. (21)

Note that (21) is also a criterion to determine the breakpoint of

a path tracking once no candidate is within a region of interest.

If Φ1 and Φ2 are the sets of detected markers on stereo images

after image processing at each camera frame, then the tracking

process would start at the boundary area and extend to the center

of the image, generating the organized sets I1 and I2. This

algorithm running in O(n2) time is shown in Algorithm 1.

C. 3-D Reconstruction

This section presents techniques used to calculate the 3-D

position of all markers based on the 2-D projections provided

by the proposed registration algorithm. During physical contact,

uncertainty in detection of markers may be due to a lack of

sight and occlusion. Three scenarios often occur in the detection

of a marker: First, the 3-D coordinates of markers captured on

both cameras’ images can be easily computed using (7)–(11).

Second, for markers missed or not well captured by one camera,

Z(ℓj) = j × h can be estimated as the initial value (which is

sufficient due to the small axial Z-deflection of a cylinder), and

theX- andY -positions can be calculated by either camera in (1).

Third, the coordinates of markers not detected on both images

can be estimated by linear interpolation through its neighbors in

the same path. If j− and j+ are the nearest determined markers

of the missing marker j on path ℓ, where j− < j and j+ > j, then

the linear interpolation can be formulated as

X(ℓj)= wX(ℓj−) + (1− w)X(ℓj+), 0 < j < n2. (22)

where w = (j+ − j)/(j+ − j−) is weight function.

In practice, based on the geometric constraints of 2-D paths

on stereo images and stability, the tracking parameters α and

β equal 2γ = 30◦ (see Fig. 6), and weight λ = 0.5 in (19)

was selected. The proposed stereo implementation worked effi-

ciently, even in case of large deformation (e.g., Fig. 5), with the

evaluation of accuracy verified in Section VII-B. However, the

limitations of this system associated with elongated shape mean

some markers may be occluded or overlap upon external contact,

e.g., multiple contacts on the same path, resulting in a 3-D

reconstruction that may not well represent its actual position.

D. Stereo Self-Calibration

This vision-based sensing system requires predetermination

of the parameters of the stereo camera. Although cameras can be

calibrated with reference planar patterns (e.g., [30]), this method
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Algorithm 1: STEREOREGISTRATION(Φ1,Φ2):

Require: Given the sets of extracted markers Φ1 and Φ2 on

two images after image processing.

1: START Initialize: α, β, ⊲ searching angles

{p(ℓ0), p(ℓn2
)}ℓ=1–n1

, {q(ℓn2
), q(ℓ0)}ℓ=1–n1

⊲

use (1)

2: for ℓ ← 1 to n1 do

3: I1(ℓ0:n2
) ← pTRACK(Φ1, p(ℓ0), p(ℓn2

), α, β)
4: I2(ℓn2:0) ← pTRACK(Φ2, q(ℓn2

), q(ℓ0), α, β)
5: end for

6: return Organized sets I1 and I2
function pTRACK(Φ, ϑ0, ϑn2

, α, β) ⊲ path tracking

1: Initialize: ϑ ← {ϑ0,∅, . . .,∅, ϑn2
} ⊲

|ϑ| = n2 + 1
2: for i ← 1 to n2 − 1 do

3: ϑi ← using (20) and (21)

4: if ϑi = ∅ then break ⊲ breakpoint

5: Update: Φ = Φ \ {ϑi}
6: end for

7: returnOptimal set of nodes {ϑi, i = 0, . . ., n2}
end function

is unsuitable for two facing cameras due to restrictions in pattern

observation. This article utilizes the initial geometrical position

of markers in known positions to determine the stereo parameters

with self-calibration ability to enable automatic calibration. In

this scenario, (R0i, ϕ0i, Z0i), ∀i ∈ M were regarded as a set of

markers at their initial state and (r1i, ϕ1i) and (r2i, ϕ2i) as its

measured projections.

1) Estimation of Camera Parameters: Geometrically, due to

the symmetric distribution of 3-D markers around the Z-axis,

the projections of markers on each image plane should be

symmetric relative to the origin of its coordinates. Therefore,

the principal points c1 and c2 can be simply determined by com-

puting the mean centroids of all markers in pixel coordinates as

cx1
= 1

n

∑

i u1i, cy1
= 1

n

∑

i v1i, and cx2
= 1

n

∑

i u2i, cy2
=

1
n

∑

i v2i, where ∀i ∈ M, n = 240 represents the entire set of

markers. For ease of implementation, after retrieving the prin-

cipal points, a center square of area S × S pixels2 around each

principal point was cropped to yield a uniform image size before

image processing, here S = 400 pixels. The principal points

were redefined as (S2 ,
S
2 ), and the calibration objective was to

determine the primary stereo parameters C = [f1, f2, b1, b2]
⊤.

From the projective relationship (4), the stereo parameters can

be determined by minimizing the cost function

min
C

∑

i∈M
(‖R0if1 − r1ib1 − r1iZ0i‖2

+ ‖R0if2 − r2ib2 + r2iZ0i‖2). (23)

Note that (23) requires at least two reference points to derive

four unknown parametersC. This minimization problem, a linear

least-squares minC ‖AC − b‖2, can be solved with MATLAB’s

built-in mldivide function, i.e., C = mldivide(A, b).
2) Correction of Lens Distortion: When using wide angle

lenses, it is necessary to consider the lens distortion of camera.

Fig. 7. Calibration results for each iteration: RMSE of coordinates for esti-
mating stereo parameters and lens distortion.

In this camera configuration, we only assessed the term for radial

distortion. If r̆1 and r̆2 are the actual observed coordinates, and

r1 and r2 are the ideal radial image coordinates according to the

pinhole model described in (4) and (23), then the radial division

distortion model [31] can be written as

r1 =
r̆1

1 + k11r̆21 + k21r̆41
(24)

r2 =
r̆2

1 + k12r̆22 + k22r̆42
(25)

where {k11, k21} and {k12, k22} are the coefficients of the radial

distortion of the two camera lenses, respectively.

To determine the distorted coefficients, the preliminary pa-

rameters C in (23) were estimated by ignoring distortion. Then,

the ideal image coordinates r1 and r2 were determined using

the equations in (4). Thus, from (24) and (25), the coefficients

L = [k11, k21, k12, k22]
⊤ can be estimated by minimizing the

cost function as

min
L

∑

i∈M
(‖r1ir̆21ik11 + r1ir̆

4
1ik21 + (r1i − r̆1i)‖2

+ ‖r2ir̆22ik12 + r2ir̆
4
2ik22 + (r2i − r̆2i)‖2). (26)

Once L is obtained, the parameters C can be recomputed by

recalling (23), with this procedure repeated until reaching con-

vergence. The root-mean-square error (RMSE) of coordinates

was used to assess the calibration process, as shown in Fig. 7.

This figure shows rapids convergence of calibrated coordinates

RMSE within fewer than four iterations and a significant reduc-

tion in erroneous results.

The calibration process was performed a total of 20 times,

yielding the camera parameters and distortion coefficients

shown in Table I. These results were used to verify some pa-

rameters of the stereo camera configuration. For example, the

length of artificial skin after calibration can be calculated as

L = b2 − b1 ≈ 200.0mm (see Fig. 3), while the designed value

is 198.0 mm (see Fig. 1), i.e., the absolute was 2.0 mm, or

1.01%. With calibrated parameters, Fig. 8 illustrates the initial

geometric 3-D paths of markers and their measured locations.

The average RMSE of the calibrated coordinates R, Z and 3-D

were 0.58, 0.55, and 0.80 mm, respectively.

By referring to the pattern of markers, we could determine the

intrinsic and extrinsic parameters of the stereo camera and lens
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Fig. 8. Illustration of the initial 3-D position of markers (roundly marked)
using the calibrated parameters.

distortion. Note that although light traveling through the acrylic

tube would be refracted (incident and refracted rays are shifted),

the system’s calibration used refracted images, resulting in the

parameters of lens distortion covered this effect.

V. FE MODEL OF ARTIFICIAL SKIN

This section introduces the FEM of the skin to establish the

relationship between nodal displacements of the markers and

external forces. For ease of modeling, the skin was assumed

to be linearly elastic. The skin was modeled by the flat shell

elements combining membrane and bending behaviors based

on Reissner–Mindlin theory [32]. Only the static model was

considered, ignoring the gravitational effect on the skin, as we

hypothesized that the effect of gravity on the skin was much

smaller than the effects of the range of measured forces.

A. Meshing and Geometry of the Element

Owing to its 3-D symmetric shape, the skin can be equally

discretized into a mesh ofNe = 264 elements [see Fig. 9(a)]. The

rectangular domain Ω of a shell element is estimated as 2a = h
and 2b = 2R0 sin(γ/2) [see Fig. 9(c)]. To build the elemental

and global vectors and matrices, it was necessary to define mesh

topology providing a crucial nodal connectivity of elements.

By positioning an element, e ∈ {1, . . ., Ne} by the node associ-

ated with the left bottom corner [see Fig. 9(b)]. The element

at (ℓ, j) is numbered e = ℓj (16) and formed by four nodes

distributed counter-clockwise, 1̂(ℓ, j+ 1), 2̂(ℓ, j), 3̂(ℓ+ 1, j),
and 4̂(ℓ+ 1, j+ 1), where j = 0, . . ., n2, ℓ = 1, . . ., n1 − 1; if

Fig. 9. 3-D FE model for artificial skin. (a) FE mesh of Ne = 264 elements
and N = 288 nodes. (b) Mesh topology. (c) Geometry of a rectangular flat shell
element.

ℓ = n1, then nodes 3 and 4 are 3̂(1, j) and 4̂(1, j+ 1), respec-

tively. Fig. 9(a) shows the FE mesh of the skin with node and

element numbering.

For ease of computation, the displacement field of each el-

ement should be described in its local domain. In this article,

besides the global coordinate system, the four-node shell ele-

ment was formulated in the local coordinates {x̂, ŷ, ẑ}, and the

natural coordinates {ξ, η} shown in Fig. 9(c). If the x̂-axis is

defined as the opposite of the Z-axis, and the edge 2–3 defines

the ŷ-direction, then the ẑ-axis is obtained by the cross product

of x̂- and ŷ-axes. Each shell element node has five-degrees of

freedom (5-DOF), i.e., in-plane displacements ux̂, uŷ , lateral

displacement uẑ , and rotations θx̂ and θŷ of ẑ-axis in the planes

x̂ẑ and ŷẑ, respectively [32].

B. FE Equations and Simulation

The state equation of an element in static equilibrium can be

determined from its local domain [see Fig. 9(c)] by applying the

principle of virtual work (PVW) as (see Table II and Appendix

for a detailed explanation and derivation of variables)
∫

Ω

δǫ̂⊤σ̂ dΩ

︸ ︷︷ ︸

Internal virtual strain energy

=

∫

Ω

δû⊤
ŝ dΩ + δd̂⊤

f̂
ext

︸ ︷︷ ︸

External virtual work

. (27)

The element equation in equilibrium can be expressed as

k̂d̂ = f̂pressured + f̂
ext. (28)

The element equation (28) represents the relationship between

nodal displacements d̂, the distributed force f̂pressured due to inner
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TABLE II
NOMENCLATURE FOR SECTIONS V AND VI

Overscript ˆ indicates variables expressed in the local coordinates x̂, ŷ, and ẑ.

All quantities are presented in SI units.

air pressure P (44), and the external concentrated force f̂
ext.

These elements locate on different local orientations, thus, to

build the global equation, the element equation (28) must be

expressed in the global coordinates as

kd = fpressured + f
ext. (29)

where details of its derivation can be found in Appendix.

Finally, the system equation of the FE model is established by

assembling together all (29) of elements e = 1, 2, . . ., Ne based

on the connected nodes in the meshing topology as

KD = Fpressured + F
ext. (30)

Besides, as the skin of the TacLINK is clamped at both

ends, with the DOF of all nodes set at zero, then the boundary

conditions of the FE equation (30) are expressed as

Di = 0, ∀i ∈ B1 ∪ B2. (31)

To verify the ability of the FE model to describe the physical

characteristics of the skin, the model was built numerically

and implemented in MATLAB. Young’s modulus E of silicone

material was calibrated to be 0.1 MPa (see Section VII-C) and

Poison’s ratio ν was set as 0.5. TacLINK was successfully sim-

ulated under multiple contacts at different locations with varied

pressure. The displacement vector D in (30) was found to be

solvable with the boundary conditions (31), as indicated in [33].

Fig. 10 shows results of subjecting the TacLINK to a normal

force 0.2 N at node #127(7,5) [see Fig. 10(a)], and with the ap-

plication of additional inner pressure of 0.5 kPa [see Fig. 10(b)].

These findings indicate that the FE model can provide a realistic

response of the skin, including 3-D deformation, stress–strain,

and reaction force at fixed ends. Based on this model, we can

evaluate the overall stiffness of the skin to optimize the design

and choose suitable skin material for particular applications.

Fig. 10. FE model simulation results for soft artificial skin. (a) Skin deforma-
tion by a normal force 0.2 N at node #127(7,5). (b) Response of skin to additional
inner air pressure P = 0.5 kPa.

VI. FE MODEL-BASED TACTILE FORCE SENSING

Tactile force F
tac can be defined as the external force F

ext

acting on the skin surface, excluding the distributed forces

generated by inner pressure Fpressured. Based on (30), we could

derive a straightforward relationship as

F
tac = KDmeasured − Fpressured. (32)

The scope of this article considers only the measured translations

(uX , uY , uZ) with forces (FX , FY , FZ), ignoring the DOF of

nodal rotations and moments. Thus, the measured nodal dis-

placement vector Dmeasured can be computed from the output

vector X of the stereo camera as

Dmeasured,i := [ ∆X
⊤
i 0 0 0

︸ ︷︷ ︸

rotations

]⊤ , ∀i ∈ N . (33)

where ∆X = X− x, and x is the coordinates vector of nodes

in the undeformed state of artificial skin.

The computed tactile force vector Ftac is based on sampling

a large number of points, i.e., N = 288 nodes with 3×N
force components. In practice, errors during 3-D reconstruc-

tion induce errors in force calculations. Based on cylindrically

shaped skin, we simulated evaluation of this effect in the tan-

gential, axial, and radial directions. For ease of analysis, we

assumed that δerr mm was the absolute error in every direc-

tion. Node #127 (see Fig. 10) was chosen and constrained

in the tangential (X-axis), radial (Y -axis), and axial (Z-axis)

deflections as D127 = [δerr, δerr, δerr, 0, 0, 0]
⊤. Solving with (30)

and (31), we calculated the reaction force at node #127 as

F
ext
127 = [0.08δerr, 0.02δerr, 0.30δerr, 0, 0, 0]

⊤. These findings in-

dicated that spatial errors result in much higher errors of force in

the tangential (∼ 4 times) and axial (∼ 15 times) directions than

in the radial direction. Under conditions of normal contact with



DUONG AND HO: LARGE-SCALE VISION-BASED TACTILE SENSING FOR ROBOT LINKS 399

Fig. 11. Experimental platform with all related equipment for measurement.
A robot arm was equipped to push the elastic skin through a probe attached to
the end-effector through a three-axes force sensor.

the cylindrical skin surface, the radial displacements should be

greater than displacements in other directions. Thus, to ensure

the reliability of each nodal force, only the radial component

was considered as

FR = FX cosϕ+ FY sinϕ. (34)

Also, for practical reasons, we only considered the computed

force FR above a certain threshold, i.e., fthresh = 0.02δerr N.

Finally, the tactile forces were regarded as the concentrated

forces acting at free nodes F
tac
i , ∀i ∈ M, and as the reaction

forces acting at two edges Ftac
i , ∀i ∈ B1 ∪ B2.

VII. EXPERIMENTAL VALIDATION

A. Experimental Platform

The experimental platform set up to calibrate and evaluate

the operation of the TacLINK is shown in Fig. 11. Within the

platform, TacLINK is fixed in a rigid vertical position. The

inner pressure was adjusted using a pneumatic throttle valve,

and measured with a pressure sensor (MPXV7007, NXP Inc.,

USA) through a 16-b ADC data acquisition board (USB-231,

Measurement Computing Corp., USA), with a measurement res-

olution of pressure of 0.85 Pa. To provide precise displacement

of external contact with the skin, we set up a 6-DOF robotic arm

(VP-6242, Denso Robotics, Japan), which can precisely displace

with high repeatability of ±0.02 mm. A probe was attached to

the center of the robot’s end-effector through a three-axes force

sensor (USL06-H5-50 N, Tec Gihan, Japan). The robot moved

the probe in plane OY Z and pushed it horizontally against the

skin at different nodes on the seventh path (ℓ = 7). To accurately

push the entire cross-sectional area of the marker, we utilized a

cylindrical probe as a standard screw M3 with a larger diameter

Dprobe = 5.5 mm.

The experiment was run on a desktop PC with an i7-7700

processor at 3.60 GHz and 8 GB of RAM. The system performed

in real-time at about 13 Hz, with time to capture stereo pictures

∼ 0.003 s, image-processing ∼ 0.025 s, stereo registration ∼
0.037 s, and both 3-D shape and force reconstruction completed

within 0.0002 s, with MATLAB code.

Fig. 12. Measured displacements of ten nodes on a path were compared with
true deflections created by robot motion.

B. Assessment of the Accuracy of 3-D Reconstruction

The performance of stereo-based 3-D reconstruction was ver-

ified by evaluating the measurement error of radial displacement

of free nodes on a path. Radial direction was found to play the

most important role (see Section VI), and it was challenging

to determine the true value of Z-deflection. Specifically, the

robot arm was controlled, allowing the probe to create radial

displacements ∆R of −5 and −10 mm every ten nodes on the

seventh path (see Fig. 11). Ten trials were performed at an inner

air pressure of zero. Fig. 12 shows the measured radial deflec-

tions of ten cells j = 1, 2, . . ., 10 compared with baseline robot

motion ∆R. Because of geometric constraints on the skin, two

nodes located near two ends j = 1, 10 could only be displaced

by−5mm. The experiment results of this testing showed that the

absolute errors were below 0.7 mm, corresponding to a full-scale

error∼ 5%FS (with FS 15 mm). This error may also derive from

several parts of the system (e.g., poor fabrication and installation

tolerances with soft materials). These findings indicate that the

proposed vision system is both efficient (see Fig. 5) and accurate

in estimating deformation of the 3-D skin.

C. Young’s Modulus Calibration

The elastic Young’s modulus E of the skin material was

estimated from a compression test performed under quasi-static

conditions. Air was provided at different levels of pressure

P ∈ P = {0.5, 1.0, 1.5} kPa for a total of 30 trials. During

inflation, a program automatically recorded data at these pres-

sures, enabling estimation of parameter E by minimizing the

difference between experimentally determined deformation and

deformation predicted by the linear FE model as

min
E

(
∑

P∈P
‖Dmeasured −

E∗

E
DFEM*‖2

)

(35)

s.t. E = E∗
∑

P∈P ‖DFEM*‖2
∑

P∈P Dmeasured ·DFEM*

(36)

where Dmeasured and DFEM* are the nodal displacement vectors

obtained from experimental data and the FE model (with as-

signed Young’s modulus E∗ = 1 MPa), respectively.

Because the sum of the squares errors in (35) is a quadratic

function of 1
E

, E can be easily derived as in (36). Based on
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Fig. 13. Comparison of experimental data (solids) and calibrated FE model
(lines) of skin curvature in response to applied inner pressures of 0.5,1, and
1.5 kPa, estimating Young’s modulus of the silicone material (Ecoflex 00-50).

the symmetric shape of the FE model under pressure (i.e.,

similar curvature of every path), the experimentally determined

displacement of all paths was averaged to calculate (36) on a

path. Fig. 13 shows the experimental displacements for 10 nodes

on a path along the skin, together with the theoretical curvature

(lines) of the FE model in response to varying levels of inner

pressure. The experimental data fit those of the FE model well

with an estimated E value of 0.1 MPa and an average RMSE for

nodal displacements of 0.38 mm.

D. Evaluation of FE Model-Based Tactile Force Sensing

1) Single-Point Contact: The FEM of the skin (30) enables

TacLINK to estimate the external acting force distribution on

the whole skin body (32) (i.e., Ftac
i , ∀i ∈ M). This experiment

evaluated the tactile force-sensing ability and assessed the char-

acteristics of TacLINK when interacting at a single point under

varying inner air pressures. The robot arm was manipulated

so that the probe pushing the skin at node #127 along the

Y-axis (see Fig. 11) created two desired radial displacements

∆R ∈ {−5,−10} mm in different conditions of inner air pres-

sure P ∈ {0, 0.5, 1.0, 1.5} kPa for ten trials. Note that although

the ideal probe should be narrow enough to represent a point

load, a small probe may cause undesired deformation in the

thickness direction at the contact point. To mitigate these issues,

a cylindrical probe of diameter Dprobe = 5.5 mm was employed.

The tactile force of TacLINK was also simulated by setting

an additional boundary condition for (30) on the Y -axis as

D127,Y = ∆R. Fig. 14 shows the comparison between the probe

force and the tactile forces at node #127 obtained from TacLINK

(Ftac
127) and simulation (Fext

127) at each level of deflection ∆R and

inner air pressure P.

In the absence of inner pressure (0 kPa), the resultant forces

matched well at every deflection. However, when pressure was

applied, the nodal tactile force of TacLINK increased linearly

but was significantly lower than the probe force. This difference

may be due to the probe not being small enough to represent an

ideal point load contact scenario in simulation (see Fig. 14). The

inner air pressure acting on the inner side of the skin gave rise to

tension stresses [circumferentialσŷ and longitudinalσx̂ stresses,

see Fig. 9(c)] in its wall, resulting in a highly increased probe

Fig. 14. Probe forces applied yielding radial deflections ∆R at node #127
compared with the nodal tactile forces at node #127 obtained from TacLINK
and simulation under different inner air pressures.

Fig. 15. Experimental results of tactile force reconstruction on the three-
dimensional body of the skin surface. (a) Test with single-point (node) contact
at node #127. (b) Performance with multiple large-area contacts.

force to move the probe with contact area Sprobe =
π
4D

2
probe =

23.8 mm2 that caused greater deformed contact area surrounding

the assigned node. The mesh size (2a = 18mm, 2b = 9.5mm)

was not dense enough to describe actual deformation in the

contact area caused by the probe. The computed tactile force

distribution of TacLINK representing the probe force would also

be distributed on the adjacent nodes, and the largest nodal tactile

force should be at node #127 shown in Fig. 15(a). Consequently,

single point force contact scenario using a probe attached in a

loadcell is rather challenging (i.e., create an ideal point load

and perceive the entire applied force by a nodal tactile force),

because the probe has a finite area and the skin is soft, etc. The

obtained results indicate that TacLINK is capable of determining

the distribution of applied forces.
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Varying the probe forces revealed actual reaction of artificial

skin, e.g., the maximum probe forces per unit area (≡ Fprobe

Sprobe
) at

0 and 1.5 kPa were 0.84 and 5.6 N/cm2, respectively. As the

inner pressure increased, so did the slope of probe force, thus

by controlling the inner pressure we could alter remarkably the

nominal stiffness of the skin and change the interactive interface

of TacLINK.

2) Multiple Large-Areas Contact: Because the aim of

TacLINK is to sense contacts with humans, we performed an

experiment in which a human used two fingers to randomly touch

different areas of the artificial skin. Fig. 15(b) shows the robust

reconstruction of both 3-D deformation and external acting

forces in large and multicontact regions. Tactile forces were

distributed only in contact regions; but were absent from other

regions, even those that showed deformation. Generally, under

conditions of physical interaction in any position, TacLINK

registers detailed 3-D deformation of the skin surface caused

by external forces, the location and intensity of which are deter-

mined by tactile force distribution. It is noteworthy that previous

vision-based tactile force techniques with markers, such as

machine learning [13], and experimental calibration [14], [16],

could estimate the total force applied not determine the dis-

tribution of applied forces in scenarios such as under large

area or multiple point contacts. Also, tactile skin designs with

discrete sensing elements [21], [22] cannot detect touch in areas

not occupied by such elements, however, using the FEM to

reconstruct forces over a continuous area, the proposed sensing

system can simultaneously perceive tactile forces throughout the

skin surface (see supplementary video).

VIII. DISCUSSION

A. Limitations

Using only two coaxial cameras on a simple structure, the

proposed system using FEM can efficiently construct the distri-

bution of forces acting on the elongated surface of soft artificial

skin. However, during tracking the skin surface, presence of

reflected bright regions or occlusion due to multiple contacts on

the same path, may impede image processing and affect the per-

formance of the visual-based system. Since FEM was originally

formulated based on the PVW in elasticity (27), the performance

of force computation highly depends on the element model

(strains ǫ̂ and stresses σ̂) and mesh size (2a, 2b) representing the

strain energy of actual skin deformation (especially in contact

regions). Thus, in this article, force reconstruction might not

well represent force intensity, especially over large contact areas

with inner air pressure applied. Further design improvements

and investigations are needed to overcome these limitations.

B. Technical Issues

The structural rigidity of TacLINK is ensured by a hollow tube

with transparent acrylic materials. Although its working load

limit can be reduced compared with metals, we can determine

suitable dimensions of the tube for specific applications. If Md

is the working load design moment (combined bending and

torsion), and [σ] represents permissible stress, then the strength

condition to choose inner d and outer D diameters of the tube

can be expressed as [34]

W =
π

32

D4 − d4

D
≥ Md

[σ]
, with [σ] =

σu

k
(37)

where W,σu, and k correspond to section modulus of the tube,

ultimate strength of materials, and safety factor, respectively.

In this article, with the parameters D = 30mm, d = 24mm,

σu = 87MPa, and k = 1.5, the working load of TacLINK is

Md ≤ 90N ·m.

For commercialization, the hardware of TacLINK should be

compact and capable of high speed operation, such as field-

programmable gate array, its firmware or software is responsible

for processing all tasks regenerating tactile data in real-time

and transmitting via a serial bus system, on which a network

of TacLINK can share to communicate with user applications.

Also, in practice, although running system cables discreetly

may be required, a connecting cable can be embedded inside

TacLINK.

IX. CONCLUSION

This article described the developed TacLINK for robotic

links with large-scale tactile skin. In this article, we showed

its feasibility of design and robustness in tactile reconstruction.

The system was low cost, affording simple scalable structure,

and real-time performance. Especially, TacLINK was not only

equipped with sensing ability but can react changing its form and

stiffness during interaction with surroundings. Deployment of

TacLINK with highly deformable skin and tactile force feedback

will enable robots to interact safely and intelligently.

The proposed vision-based force sensing technique can be

utilized on shell structures with different shapes, where a set of

cameras can be installed to track the displacement and FEM pro-

vides the structural stiffness matrix, that enables implementation

of this technique on other parts of robots, such as fingers, legs,

chests, and heads, and even in robotic prosthetics for humans,

paving the way for development of large-scale tactile sensing

devices. Future work will develop the control strategies deploy-

ing tactile feedback in various interaction tasks, such as safety

control, dexterous manipulation, human–robot interaction, and

interpreting tactile feelings.

APPENDIX

FE EQUATIONS

A four-node rectangular shell was adopted to discretize the

artificial skin. The displacement field within an element can be

interpolated by: (hereafter, subscripts i, j = 1, 2, 3, 4 denote the

local nodal indices)

û =
[

ux̂ uŷ uẑ θx̂ θŷ

]⊤
=

4∑

i=1

Nid̂i (38)

where Ni = diag(Ni, Ni, Ni, Ni, Ni) is a matrix of shape

functionsNi =
1
4 (1 + ξiξ)(1 + ηiη), with ξ, η ∈ [−1 1], ξ1,4 =
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−1, ξ2,3 = 1, η1,2 = −1, η3,4 = 1 [see Fig. 9(c)]. As the rect-

angular element x̂ = aξ and ŷ = bη, the Cartesian deriva-

tives of the shape function are: ∂Ni/∂x̂ = 1
4aξi(1 + ηiη), and

∂Ni/∂ŷ = 1
4bηi(1 + ξiξ). The essential strains ǫ̂ and stresses σ̂

of flat shell [32] can be derived from displacement field (38) are

shown as follows:

ǫ̂ =

⎡

⎢
⎣

ǫ̂m

ǫ̂b

ǫ̂s

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ǫx̂

ǫŷ

γx̂ŷ

κx̂

κŷ

κx̂ŷ

γx̂ẑ

γŷẑ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ux̂

∂x̂
∂uŷ

∂ŷ
∂ux̂

∂ŷ
+

∂uŷ

∂x̂

∂θx̂
∂x̂
∂θŷ
∂ŷ

∂θx̂
∂ŷ

+
∂θŷ
∂x̂

∂uẑ

∂x̂
− θx̂

∂uẑ

∂ŷ
− θŷ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
4∑

i=1

Bid̂i (39)

σ̂ = Cǫ̂ (40)

where the subscripts m, b, and s are the relevant membrane,

bending and transverse shear vectors/matrices, respectively. The

strain matrices Bi are

Bi =

⎡

⎢
⎣

Bmi

Bbi

Bsi

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂Ni

∂x̂
0 0 0 0

0 ∂Ni

∂ŷ
0 0 0

∂Ni

∂ŷ
∂Ni

∂x̂
0 0 0

0 0 0 ∂Ni

∂x̂
0

0 0 0 0 ∂Ni

∂ŷ

0 0 0 ∂Ni

∂ŷ
∂Ni

∂x̂

0 0 ∂Ni

∂x̂
−Ni 0

0 0 ∂Ni

∂ŷ
0 −Ni

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (41)

The constitutive matrices of isotropic materials are

C =

⎡

⎢
⎣

Cm 0 0

0 Cb 0

0 0 Cs

⎤

⎥
⎦ , Cs =

κEt

2(1 + ν)

[

1 0

0 1

]

Cm =
Et

1− ν2

⎡

⎢
⎣

1 ν 0

ν 1 0

0 0 1−ν
2

⎤

⎥
⎦ , Cb =

t2

12
Cm (42)

where E, ν, and t are Young’s modulus, Poisson’s ratio, and

shell thickness, respectively. For isotropic materials, the shear

correction factor κ equals 5/6. Substituting (38)–(40) into (27)

results in (28) (see [32]). The submatrices k̂ij ∈ R
5×5 of the

local stiffness matrix k̂ linking nodes i and j have the form

k̂ij =

∫

Ω

B
⊤
i CBj dΩ = ab

∫ 1

−1

∫ 1

−1

B
⊤
i CBj dξ dη. (43)

Equation (43) can be approximated by numerical integration as

indicated in [33]. The distributed force f̂pressured,i acts on node i
of element due to the surface load ŝ is

f̂pressured,i =

∫

Ω

Niŝ dΩ =
[

0 0 abP 0 0
]⊤

. (44)

The relationship between displacements in the local and global

coordinates is described by the transformation matrix L
(e)
i as

d̂
(e)
i = L

(e)
i d

(e)
i , d

(e)
i = [L

(e)
i ]⊤d̂(e)

i . (45)

Also, the stiffness matrix and force vector can be written as

k
(e)
ij = [L

(e)
i ]⊤k̂(e)

ij L
(e)
j , f

(e)
i = [L

(e)
i ]⊤f̂ (e)i . (46)

As the flat element, the transformation matrices L
(e)
i of the

element e are identical for 4-nodes, formulated as

L
(e)
i (φ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 −1 0 0 0

−sφ cφ 0 0 0 0

cφ sφ 0 0 0 0

0 0 0 sφ −cφ 0

0 0 0 0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (47)

where sφ and cφ denote sinφ and cosφ, respectively, with angle

φ of an element e at path ℓ is φ = (ℓ− 1
2 )γ, see Fig. 9(c).
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