
Large-scale Windows 95-based data-acquisition system
using LabVIEW
L. Mandrakea! and W. Gekelman
Department of Physics and Astronomy, LAPD Plasma Laboratory, UCLA, Los Angeles,
California 90095

(FAST-TRACK PAPER: Received 13 May 1997; accepted 17 June 1997)

Hardware and software for a high-speed, pulsed-data-acquisition system are described. Data can be
obtained via any device attachable to a VXI crate, GPIB controller, or directly via serial or parallel
ports. Stepper motors controlled via serial port automate probe movement. LabVIEW and custom
C11 modules are used to handle setup, data gathering and processing, and user interface.
Experimental parameters can be controlled at each point via any GPIB-ready device. ©1997
American Institute of Physics.@S0894-1866~97!02105-6#
ac

pes
p-
rize

in
ns
an

thin
age
at
tak

ta-
ten
ues

X
e

ity,
as
ve
be-
I
es

n-
ee

d-
lti-
et-
ia

-
, a

AQ
ver-
ful,
the
de-

li-
it is
sur-
ery

-
ly

are
re-
ndle
f

ign
ew
; it
ol-
he
on-
of
tire
ing

f a
er
sed,
ail-
to

s
lti-
oftion
INTRODUCTION
The need for large-volume data sets in plasma physics~and
many other areas! has mandated computer-assisted data
quisition for many years.1 Often, this need finds solution
via a digital oscilloscope, and indeed modern oscillosco
offer powerful functions, storage capability, digitization o
tions, and GPIB transport of data. However, to characte
innately three-dimensional structures such as exist
plasma requires thousands of spatial sampling locatio
These data sets are presently of order 1 Gbytes in size
are expected to be two orders of magnitude greater wi
several years. They must be transferred to disk for stor
and analysis; however, GPIB offers low throughput th
causes unacceptable lag in data runs that can already
days to complete.

One solution is to custom-create an entire da
acquisition system from scratch, with manual code writ
to control each device and handle all user-interface iss
In the past, this was the only option available.2 A DAQ
~data-acquisition! system was created by interfacing a VA
3800 to a CAMAC crate with Fortran code and VMS. Th
user interface utilized the VMS screen-management util
which was cumbersome to program, but at the time w
nearly all that existed. This system was in use for over fi
years, but upgrading it became difficult as new devices
came available. Finally, CAMAC has given way to VX
technology, offering bus transfer rates that are 10 tim
faster.

Modern computing technology has provided inexpe
sive PC-based workstations that are capable of the sp
required by DAQ application. This combined with the a
vent of Windows 95/NT has brought about a stable, mu
tasking environment capable of handling the many n
working issues involved in a large-scale DAQ system. V
the commercial package LabVIEW~National Instruments,
http://www.natinst.com!, which offers a powerful and eas
ily customizable user interface and VXI crate technology

a!Corresponding author; 1000 Veterans Avenue, 15-70 Rehabilita
Building 24 Los Angeles, CA 90095; e-mail: mandrake@lords.com
498 COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997
-

.
d

e

.

d

system was achieved that fully replaces our previous D
system and performs an order of magnitude faster. Ne
theless, commercial packages still do not offer power
instant data-acquisition systems. In this article we show
hardware and software considerations involved in the
sign and development of such a system.

I. ORIGINAL EXPERIMENTAL NEEDS

While the DAQ system described herein is equally app
cable to a wide range of scientific measurement uses,
helpful to understand the actual experimental needs
rounding its development. This lab chiefly measures v
high frequency oscillations ofE andB fields within a large
~10-m-long, 50-cm-diam! plasma3 that can exceed the cur
rent sampling technology of around 5 GHz. More slow
changing parameters such as density and temperature
also measured that can oscillate at kilohertz or lower f
quencies. Hence, the DAQ system should be able to ha
multiple timescales~and hence the very different sort o
equipment necessary to measure them!. However, the chief
characteristic of our experimental setup to affect the des
of the DAQ system is that our experiment only lasts a f
milliseconds with structure on the order of nanoseconds
is therefore impossible for any modern sampling techn
ogy to record all of the events in a single experiment. T
experiment is reproduced once per second, allowing c
struction of the time regions of interest through the sum
acquired data. In this way, we may piece together the en
time evolution of the plasma shot-by-shot, as well as us
averaging techniques to improve our received signal.

In this way, the DAQ system is based on the idea o
single experimental trigger firing on the order of once p
second, wherein the data must be offloaded, proces
stored, and the devices armed for the next acquisition. F
ure to meet this criterion will cause shots of the plasma
be ‘‘missed,’’ multiplying data run time. As our data run
tend to consist of up to one million shots, a single mu
plication by a factor of 2 can yield a completion time
two weeks instead of one.
© 1997 AMERICAN INSTITUTE OF PHYSICS 0894-1866/97/11~5!/498/10/$10.00

hin, the
e within the
unction in
Figure 1. Top: A LabVIEW program that strips nonalphanumeric characters from a string. Here, the large grey box represents a For loop. Wit
checkered white box represents a Case statement, showing what will happen on only one of six cases. All the other cases also have wired cod
Case box, but cannot be shown simultaneously due to the ‘‘switching’’ visual nature of case statements in LabVIEW. Bottom: A corresponding f
C11, achieving the same results as the above graphical code (with the exception of further memory handling required later in this code).
al-
an.
ly
the
of

eir
a-
s
ak-

p-
of
n-

ere
e-
of

-

ac-
al
n-

um
gle
of a
ble

i-
m-
-

this
ual
ef-
r-

al
ro-

in

hat
of

ng
ac-
ys-
ore
t
for

gs,
ort
tax
ons
l
at
.

II. OVERVIEW OF LABVIEW AND THE G LANGUAGE

LabVIEW utilizes a language known as G, a gener
purpose programming system much like C or Fortr
However, unlike its predecessors, G is entire
graphical—no text code need ever be entered into
LabVIEW system. Icons representing modular functions
a program are wired together, functioning when all of th
inputs are ‘‘ready.’’ This fundamental difference from tr
ditional ‘‘line counter’’ methods of programming create
an entirely new paradigm with strong strengths and we
nesses.

For development of simple, instrument-controlling a
plications, LabVIEW comes equipped with a library
high-level premade modules that provide existing functio
ality. However, for a system as large as ours, we w
forced to utilize the lower-level basic drivers for each d
vice. This was detrimental to some of the advantages
LabVIEW, for it is clearly optimized for rather simple ap
plications.

A. LabVIEW advantages

User interfaces are often responsible for a significant fr
tion of coding effort in any project. Due to its graphic
nature, creating a user interface in LabVIEW is exceptio
ally easy. Objects for buttons, toggles, graph outputs, n
ber input/output, etc. are already available with a sin
menu selection. In this way, the tremendous overhead
user interface is eliminated via an easily customiza
-

‘‘front panel’’ that all LabVIEW modules possess. Orig
nally designed to simulate actual, physical devices co
monly found in a lab, LabVIEW’s available interface ob
jects offer an acceptable selection for most needs. In
application, the look-and-feel desired was not of an act
oscilloscope or multimeter, however, resulting in some
fort spent overcoming the ‘‘traditional’’ nature of the inte
face objects.

Due to the fact that most variables in a tradition
program are in actuality used as temporary storage for p
cessing and manipulation~and hence, do not contain data
which the user is most likely interested!, reading a text-
based program is often clouded with the need to know w
variables actually matter. Due to the graphical nature
LabVIEW, no temporary variables exist. Wires connecti
one module to another represent the path of data flow;
tual memory allocation is handled transparently by the s
tem. In this way, programmers present and future can m
easily follow the flow of meaningful information withou
referring to variable description comments. See Fig. 1
an example LabVIEW function~or ‘‘diagram’’! and its
C11 equivalent.

Trivial errors such as syntax, accidental misspellin
and variable/function declaration slow the production eff
of even experienced programmers. In LabVIEW, syn
has been replaced with intuitive, graphical representati
that offer most of the flexibility and power of traditiona
languages but with a built-in, context-sensitive editor th
instantly alerts the programmer to an invalid connection
COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997 499

ckered line
nse with
Figure 2. A screen shot of a more advanced LabVIEW program. The series of Case and While boxes can become quite involved (each che
represents a conditional). This is the main controlling program that runs the DAQ system interface. Normally, LabVIEW programs are not this de
conditionals due to proper modular programming. However, main user interfaces can require this complexity.
o-
tha
uffi
ow
his

ion
ous
r-

ent

de
liar
hat
d a

t
on

ut
al
lex
al

s

ent
g

ia-
ised
e-
el-

he

a
rd
the
her
and

in-

://
f
ng
as

st
t of
ws
to

pper
B. LabVIEW disadvantages

Due to the fact that the LabVIEW program exists in a tw
dimensional plane, one can become boxed into a region
has already been surrounded by other diagrams. In s
ciently complex programs, expanding the program to all
space for further modifications can be a tedious task. T
can be mostly alleviated by proper modular construct
and forethought in diagram design, but remains a seri
concern for future versions of LabVIEW and those inte
ested in its use.

Objects on the programming diagram often repres
physical objects on the user interface~for example, a knob
or switch!. There is an inability to cut, paste, and edit co
as smoothly as text programmers are commonly fami
with, causing frustration for those parts of a program t
are very similar. Ease of modification has been increase
the expense of difficulty in duplication.

LabVIEW utilizes ‘‘switchable’’ boxes to represen
decision statements such as Case. These boxes can
show one possible diagrammatic response at a time~either
True or False for a Boolean variable, etc.!. It is then impos-
sible to ever see all of a LabVIEW program at once witho
toggling all such boxes, therefore making a tradition
printout impossible. See Fig. 2 for an example of a comp
LabVIEW program in which only a fraction of the actu
code is visible.

Due to the fact that LabVIEW diagrammatic program
500 COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997
t
-

t

ly

are not text-based, it is often very challenging to docum
code efficiently. LabVIEW does present the ability to ta
an object with text or insert text as an object into the d
gram, but the barrier to code documentation has been ra
sufficiently that code commenting is not possible on a lin
by-line basis. However, modular functions have an exc
lent documentation feature that is intelligently linked to t
on line help, almost making up for this inadequacy.

III. HARDWARE SETUP

In its native implementation, the DAQ system utilized
Pentium 150 with 24 Mbytes of RAM and a 4.2-Gbyte ha
drive for program and data storage. As shown in Fig. 3,
computer is then connected via TCP/IP Ethernet to ot
computers more suited to large-scale data processing
visualization. An Internet connection is mandatory to ma
tain current driver revisions. Commercial software~NFS
Maestro by Hummingbird Communications, http
www.hummingbird.com! allows transparent mounting o
Unix drives across the network from the PC, permitti
data to be stored on the local hard drive or remotely
desired.

Aside from acquiring the data, the DAQ system mu
also control the experiment and move probes in and ou
the device through vacuum seals. The serial port allo
communication with stepper motor controllers connected
the stepper motors responsible for such movement. Ste

d
r
s

.

s
i

s

a
s

d

y
-
c

-

motor controllers may be connected together up to eight pe
serial port and controlled via a simple ASCII-based lan-
guage.

For flexible device control, GPIB@488.1—1987 IEEE
~R1994! Standard Digital Interface for Programmable In-
strumentation~ANSI!# functionality is provided via an in-
ternal controller ~National Instruments, http://
www.natinst.com!. While GPIB is capable of acquiring
data, it is limited by its inherent speed, rendering it too
slow for large volume data sets. Despite the listed spee
potentials of 1 mbytes/s throughput tends to be much lowe
than the above-quoted numbers due to device respon
times and protocol overhead. Still, GPIB is valuable for
controlling wave function generators, timers/delays, and
other low-bandwidth devices as it remains at present com
monly available as an option on most scientific instruments

VXI @1155—1992 IEEE Standard VMEbus Exten-
sions for Instrumentation: VXIbus~ANSI!# is the modern
equivalent of CAMAC. A crate-based technology, VXI de-
vices are large card-based objects that can be inserted into
VXI crate. The crate then talks to the PC via dedicated
cards in both the PC and the VXI crate. The transfer rate
between the computer and controller is around 33 mbytes/
though again the actual transfer rate tends to be dramat
cally slower due to device response times. MostA to D or
D to A devices are available for VXI with many optimiza-
tions for channels, speed, memory, price, etc. For this lab’
application, high-speed digitizers~Tektronix, http://
www.textronix.com! ~8-bit, 5-GHz max! were imple-
mented. Our connector from the create to the PC is via
device by National Instruments despite the fact our crate i
from Tektronix. A number of other manufacturers also pro-
duce VXI modules and crates.

IV. CUSTOMIZABILITY AND REPRODUCIBILITY

For our design, the two main issues were customization an
reproducibility. The first need stems from the fact that we
have a single, large experimental device upon which man
scientists perform unrelated experiments using different in
put and output devices. Users must be able to rapidly sele
between different setups swiftly and easily. The second
need of reproducibility of the DAQ system setup is essen
tial for the averaging techniques we employ.

The solution used was a collection of menus to record
all customizable parameters of the system, from those as

Figure 3. Hardware setup diagram.
r

e

-

a

,
-

t

-

pects irrelevant to data acquisition but mandatory for physi-
cal understanding~operator’s name and experimental pa-
rameters! to critical DAQ parameters~data record size and
sampling rate!. These are written to disk by the setup pro-
gram for permanent storage in a format that is human-
readable. Later, these files can be reloaded and modified by
the user for future experiments or simply examined to re-
mind the user of what parameters were used. In this way,
all aspects of experimental setup are kept entirely separate
from the act of acquisition itself.

Furthermore, the setup files were split into three sepa-
rate types. The first contains user information that is critical
to the understanding of physical phenomenon in the data
but is irrelevant to the data acquisition itself. The second
type of configuration file contains a detailed account of
those input devices connected to the system including VXI
digitizers, GPIB oscilloscopes, or any other source of input
as well as all customizable parameters of said devices~see
Fig. 4 for a sample configuration file!. It also contains in-
formation on which probes are connected to stepping mo-

Figure 4. A sample configuration file. All such files in this system are
ASCII-based and editable. The configuration files double as reference files
for users.
COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997 501

ribes each
Figure 5. A sample command file. Each line represents a single, distinct action to be performed by the DAQ system. The red text to the left desc
line and is not part of the command file itself.
pe

ion

he
tio

are
rg

-
n-

ice
file

ll

s
em

itor
ro-
of
ere
-

n.
e
n-
tors and which are fixed or moved manually. The third ty
of configuration file contains motion information@for ex-
ample, along which axes (X,Y,Z) the probes will move#
and links to a separately provided file that contains posit
information. This fourth file~called a Position file! contains
a complete list of all spatial positions to be visited in t
desired order and angles representing the probe orienta
at that point in space. Together, all four of these files
combined by the setup program to generate a single, la
text file called a Command file using the ACSL~pro-
nounced ‘‘axel,’’ Abbreviated Command Scripting Lan
guage! language, which is merely a set of commands u
derstood by the DAQ system.

The use of the Command file is an architectural cho
with many advantages. As in the example Command
502 COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997
n

e

~Fig. 5!, the header of the file contains information on a
other configuration files used in the generation~and future
execution! of this particular Command file. Following thi
header is an exact listing of every action the DAQ syst
shall perform, in ACSL~as defined above, see Fig. 6! that
can be viewed and edited with a standard text ed
~though it is normally generated by the configuration p
gram!. In this way, the Command file is the central facet
a data-acquisition run. Its name is used as a key for wh
to store the acquired data~to prevent users from acciden
tally overwriting each other’s data!. It contains links to all
information required to perform a reproducible data ru
Finally, it contains a systematic listing of all actions to b
performed. The DAQ system itself is freed from any co
figuration issues entirely, becoming a script executor.
re users.
Figure 6. Current supported commands in the ACSL language. This language can easily be expanded to incorporate new functionality for futu

the
to

ng
th
m-

lts
i-
-
e,
ye
en
an
er-
are

l in
hat
rro
re

tion

es

with
ions
the
, an
ion
sis

ve
r
ire

n/
ven
o
o-

Hz

as
iz-

con-
red.
to

is
t.
s

d
ta

ef-

er

ent
he
by
o
ve
the
by
an

and

es-
our
rag-
t a
trol

m-
em

av-
s-

ord
ext
to
sig-
was
an
ires
er-
the

de-
o a
for

ted.
Further advantage of the Command architecture is
ease in which new commands can be added to ACSL
enhance the ability of the DAQ system while maintaini
old Command file integrity; a program developer wi
some proficiency in LabVIEW could easily add such co
mands. The third configuration step~after specifying user
information and I/O setup! allows the user to type ‘‘Com-
mands at Each Point.’’ If nothing is specified, this defau
to ‘‘Acquire all Channels’’~meaning arm all devices spec
fied and store their data!, the user is free to enter any num
ber of text lines into this area utilizing ACSL. For instanc
the user might want to issue a command to set a dela
pulse generator to a certain time after the main experim
tal trigger, take some shots, then set the generator to
other time delay, and take more shots. This would be p
formed at each spatial location, so long as the hardw
involved is able to receive GPIB input.

Command files also grant the user complete contro
the event of errors, in that they can immediately see w
has been executed and what command caused the e
Therefore, by recording the line in the Command file whe
the Acquisition stopped, they can resume the acquisi
with continuity of their data files.~See Fig. 7 for the cycle
of operation of the DAQ system once configuration fil
have been generated.!

V. SPEED

For example, consider data measured on 10 planes
each plane possessing on the order of 500 spatial posit
Given that moving between spatial locations takes on
order of a second and a 1-Hz experiment-repetition rate
experiment can take a day of continuous data acquisit
In practice, this quantity is increased by the need for as
tance by the experimentalist during the acquisition.

We generally utilize averaging techniques to impro
our signal-to-noise ratio. This effectively multiplies ou
DAQ time by whatever record redundancy factor we des
to use for averaging~often between 10 and 20!. Hence, it is
in our interest to gather such nearly identical positio
parameter shots as swiftly as possible. Unfortunately, e
with efficient programming, LabVIEW was only able t
gather a record once every 1.5 s while controlling all p
tential features simultaneously, failing to match our 1-

Figure 7. Flow of DAQ system after Command file has been genera
d
-
-

r.

.

.
-

rep rate, and therefore costing us twice as much time
should be required. Fortunately, many high-quality digit
ers ~such as our VXI devices! allow on-board averaging
once voltage ranges have been specified, averaging
tinuously at thousands of records per second if so desi
Implementation of this feature allowed us to asymptote
the desired rep rate.

VI. INTERFACING C++ TO LabVIEW/AUTOGAIN

Though the G language comprising LabVIEW~National
Instruments, http://www.natinst.com! is powerful, there are
certain tasks for which it is not well-suited. One of them
the manual writing of data to disk in a precise file forma
LabVIEW comes equipped with the ability to make CIN
~code interface nodes! wherein the user may link compile
C11 code. For rapid reading and writing of binary da
files, these CINs provide the required flexibility. LabVIEW
will create the prototype function headers and linking r
erences, easing the insertion of the required C11 code.
Besides our reading and writing functions, only one oth
module required C11: that of the Autogain feature.

The Autogain feature is necessary due to the inher
accuracy of digitizers. The user will generally not know t
height of incoming signals. If the range is set too small
the DAQ system, the signal will be clipped. If it is to
large, the bit-depth of the digitizer may not properly resol
the waveform of interest. As the probes move through
experimental volume, the signal amplitude can change
orders of magnitude. It is therefore necessary to have
automatic procedure to calculate the maximum signal
center the voltage range upon it.

When hardware averaging is used, a sometim
clipped signal distorts a waveform beyond use. Since
implementation demands use of the rapid hardware ave
ing in the digitizers, we must be absolutely sure tha
signal has been properly bracketed before releasing con
to the hardware procedures.

A. Shot-by-shot analysis method

Previous versions of DAQ systems used in this lab e
ployed a method of handling the clipping/average probl
that demanded program access to each shot during the
eraging process~and is therefore only useful for those sy
tems not intending to use hardware averaging!. Once the
averaging began, if any record became clipped, the rec
was thrown out and the range was increased to ‘‘the n
highest level.’’ This caused the resolution of data
steadily decrease throughout the averaging process if
nals fluctuated enough to become clipped, and the user
guaranteed that no clipped data would be included in
average. However, due to the fact that this process requ
the computer to talk back to the acquiring device and p
form software processing, this scheme never achieved
target 1-Hz rep rate.

B. Careful packing method

The method created for the current DAQ system is
signed for noisy data that will be hardware averaged int
usable signal. It is designed to have as little tolerance
COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997 503

t the first
on of the
Figure 8. DAQ system interface before linking to a Command file. Notice the stepper motor positions currently register UNDEFINED, meaning tha
Establish Origin command will inform the computer where it should assume the motors are. In contrast, the user could enter the current positi
motors, and the DAQ system would then move the motors to the appropriate origin requested by the Command file.
e
ge
le
. If
ore
e to
era
v-
ese
ois

o
con
the

For
r o
ing
en-
sive
sie
-
Q
e
no

d,
re

for-

the
in-
ng

se,
ion
pe-
t
cts

he
al-
ere

ow-
the
dis-
ata

n.
ny
or-
ru-
the
ous
ro-
clipping as possible while still optimizing for speed. Th
first step is to begin at a user-specified maximum volta
range. Next, the function attempts to magnify any visib
signal to occupy 75% of the usable range of the device
at any time the signal’s oscillations cause it to occupy m
than 80% of the record, the function increases the rang
constrain the signal to 75% once again. It then takes sev
extra shots to ‘‘watch’’ the signal and ensure it is not lea
ing the assigned region of bandwidth. The number of th
extra shots is user-determined based on the expected n
ness of their data.

For relatively calm data, the function ‘‘wastes’’ tw
shots, one at the maximum range possible, and the se
to confirm the data has been properly bracketed. This is
minimum overhead possible using this implementation.
noisy data, however, the user should specify a numbe
extra shots of one, two, or even four. If the user is intend
to average over 25 shots, the addition of four shots to
sure no clipping is a reasonable price. Due to the exten
use of comparison statements in this function, it was ea
to implement in C11. It is interesting to note that intro
ducing the Autogain feature requires a slowing of the DA
process~since the feature is required to ‘‘examine’’ th
data beforehand, requiring additional shots that are
stored as data!. However, once the Autogain is finishe
on-board hardware averaging can be used to match any
rate desired. Hence, the Autogain feature allows our per
504 COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997
l

i-

d

f

r

t

p

mance to asymptote towards perfect time efficiency in
limit of large averaging samples, whereas it actually
creases data run time in the limit of small averagi
samples.

VII. USER INTERFACE

An interface must be both intuitive and pleasing to u
allowing the user to focus on the physics of the situat
rather than program configuration and mechanics, es
cially on long data runs. With LabVIEW’s graphical fron
panels, a single-screen control panel from which all aspe
of the DAQ could be managed was created~Fig. 8!.

As the data are gathered, it is important to allow t
user to view what is being acquired. Since screen re
estate is always at a premium, six graphs of the data w
chosen to demonstrate data integrity and correlation. H
ever, the system can function up to 255 channels in
general case. The user can select which channels are
played on the screen at any time before or during a d
run. ~See Fig. 9 for a shot of the DAQ system in operatio!

Operational errors are an inevitable eventuality in a
DAQ application. The system therefore has an err
detection mechanism that monitors all hardware inst
ments for local error conditions, as well as observing
time required to take each data point for any anomal
delays. If a single point acquisition has timed out, the p

ontent is
ing what
ed) scrolls
estination
ions are
Figure 9. DAQ system interface in operation. The data just acquired are shown in the six yellow graphs in the center of the screen, while their c
controlled in the six numeric entries to their lower right. The Command file currently being executed is shown in the lower half of the screen, show
commands are coming, being executed, and already complete. A continual post-log (another words list of actions after they have been perform
in the upper left of the screen. Current line number of the Command file and corresponding shot number is shown to the mid right, while the d
directory of the data and current status of the DAQ system is displayed in the lower right. Finally, the internal and physical stepper motor posit
listed to the left of the data channel controls.
ro-
n-
or

ned
ere
s

any
ct
ose

o

e o
gle
tor

ssis
con
h-

to

aste
ex-
ck-

i-
sed
con-

al-
ets

tor
of

to a
ket
m
cale
d

gram warns the user and interrupts acquisition. The p
gram can be reinitiated by use of a Retry button for co
tentless or quick-fix errors. To ensure that no power loss
other catastrophic failure corrupts the data, files are ope
burst written to disk, and closed immediately so that th
is very little chance of corruption.~The program spend
, 0.1% of its time writing to disk.! If the data themselves
are corrupted, the Command file may be restarted at
point, overwriting the corruption while preserving inta
data. The system also keeps a continuous log file of th
actions which have been completed and the rough time
their completion, to expedite failure tracking.~See Fig. 10
for a sample log file.!

The location of stored data is based upon the nam
the Command file. Each Command file represents a sin
data run, and therefore a unique place on the disk for s
age of the acquired data. Further, each channel is aware~by
user setup! of the kind of physical data being obtained~B
probe,E probe, Langmuir probe, etc.!. The file extension
for the data is chosen based on this physical use, to a
the user in separating out related data. Together, these
ventions make it difficult for one user to overwrite anot
er’s data.
,

f

f

-

t
-

VIII. DATA FILE FORMAT

Due to the large volume of data this system is designed
acquire~each run can be several gigabytes!, the format of
the data was an important design consideration to not w
storage space. However, the format must also allow fl
ible, generalized storage of variable-record size data pa
ets with sufficient information to allow extraction of phys
cally meaningful data. The system utilizes a packet-ba
storage scheme, each packet associated with a header
taining the required information~see Fig. 11!. Information
contained in the header included a shot number, which
lowed the program to keep track of which data pack
came from which experimental trigger~important for over-
writing corrupted data at a later date!, the length of the
packet, the channel of origin of the data, the stepper mo
encoding information, and the position and orientation
the probe.

Two other entries in the packet header correspond
resolution-optimization scheme. The data in each pac
are stored asi16 values. Before storage, the DAQ syste
calculates the offset and gain required to center and s
thedata into the fulli16 range. This gain and offset is store
COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997 505

un-
all
of

to
I
w-
ni-
h-

e,
ly,
.1
w

nc-
to
the
ur
-

rved
ime
ur

t
ern
rd-
t of

hat

ted
t
is
ith
it is

and
ate
or
ct
the

ug-
ith

en-
re
P
of-

er-
time
er,
are

ch
t

ta
e

en
ar
Figure 11. The format used to store a universal data packet header. Ea
packet is completely independent, possessing all information necessary
decompose the data record into usable physical data. Since our da
records tend to be between 1024 and 15,000 characters long, this head
implementation represents between 5% and 0.3% ‘‘wasted’’ space.

Figure 10. Sample Log file, describing those actions which have be
performed and any messages with which they are associated. They
chiefly used as a debugging tool.
506 COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997
in the packet header so that the transform can later be
done to yield the original values. This method assures
data will appear to have 16 bits of resolution regardless
the device of acquisition used.

IX. WARNINGS AND TROUBLE SPOTS

Initially, our system took over a year to complete, due
extreme difficulty obtaining working drivers for the VX
crate devices. We initially began with a Sun station; ho
ever, the Tektronix drivers were unable to even commu
cate at a low level with our devices. After months of tec
nical nonsupport, we decided to move to the PC~where the
drivers are originally developed!. The modern Windows 95
environment was greatly beneficial to development tim
and functional drivers did seem available. Unfortunate
they were 16-bit drivers developed for the old Windows 3
system. They worked partially under Windows 95 for a fe
months, allowing us to lay down the basic design and fu
tionality of the DAQ system; however, when we began
push the abilities of the Tektronix devices, once again
drivers began to fail. Finally, one year after buying o
digitizers, 32-bit Windows 95 drivers for the Tektronix de
vices became available. Since that time, we have obse
no other problems. We estimate that the development t
with working drivers to have taken approximately fo
months.

When purchasing VXI devices for use with LabVIEW
~or other similar system!, make sure that the drivers exis
before purchase, are bug-free, and finally are the mod
32-bit standard. The excellence of a manufacturer’s ha
ware does not imply a one-to-one correspondence to tha
their software.

The DAQ system designer should also be aware t
there is a companion product, LabWindows CVI~National
Instruments, http://www.natinst.com!, which allows the
graphical user interface design of LabVIEW but suppor
by entirely C11 coding in a way reminiscent of Microsof
Visual C11. This powerful fusion of the two techniques
a worthy prospect for investigation, and for systems w
additional complication above the one presented here
very possibly more applicable.

X. SUMMARY

The current PC computer market offers both hardware
software with sufficient power and sophistication to cre
~for the first time! data-acquisition systems appropriate f
the scientific community. This change results in the fa
that the most expensive items of a DAQ system are now
digitizers, not the computer. Herein was listed one s
gested configuration, but uncountable others exist w
some research and effort.

Previously, data-acquisition systems required ext
sive coding effort on a very low level. However, mo
modern products such as LabVIEW, LabWindows CVI, H
VEE, and other graphic-based developing environments
fer an excellent alternative. Today, high-quality user int
faces can be inexpensively assembled, sparing more
and effort for the actual DAQ system decisions. Furth
the advanced acquisition devices currently available

o

r

e

er
ly,
de-

to
e b
ion
s o

e
er-
d in
rn-

ite

e
the

pos
s-

rest
ver-

ch.
nts
ism.

n-
now designed first with PCs in mind and ported to oth
platforms at a later date. This transition to a user-friend
low-cost medium represents a phase transition in DAQ
sign and complexity.

In the end, LabVIEW was chosen in an attempt
reduce production time and ensure ease of maintenanc
future programmers. Despite the graphical complicat
that resulted in such a large-scale program, the strength
LabVIEW were still sufficient to justify its use. Most of th
negative aspects of LabVIEW outlined above can be ov
come given time and practice; however, those intereste
crafting a DAQ system from scratch should heed the wa
ing that the LabVIEW programming environment is qu
different from traditional text-based languages.

However, in the midst of these opportunities, som
serious considerations must be kept in mind. Interfacing
desired hardware to the desired software is in general
sible but has varying degrees of difficulty. Careful discu
y

f

-

sions with engineers at the respective companies of inte
should be had before any purchases are made via o
enthusiastic salespeople.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Resear
The authors would also like to thank National Instrume
for their extensive technical assistance and professional

REFERENCES

1. W.N. Gekelman, Appl. Phys.4, 463 ~1992!.
2. W. Gekelman and L. Xu, Rev. Sci. Instrum.57, 1851

~1986!.
3. W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Le

eman, and J. Maggs, Rev. Sci. Instrum.62, 2875
~1991!.
COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997 507

