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1. INTRODUCTION

1.1 The Large-Signal Stability Problem:
An Example

Before embarking on a large-signal analysis,
it is necessary before to determine whether the
effect of the converter nonlinearity is significant.
Is it possible to design a regulator whose response
to large perturbations deviates substantially from
~he response predicted by the small-signal model?

A regulator which exhibits 'the hypothetical
behavior illustrated in Fig. 1 obviously is
unreliable and unacceptable. The investigation
of the effects of switching regulator nonlinearities
and the exposition of some techniques for the
avoidance of large-signal instabilities are the
subjects of this presentation.

Switching regulators are inherently nonlinear.
As a result, it is very difficult to design a
stable feedback loop using exact methods since the
resulting differential equations cannot generally
be solved. Instead, small-signal methods are
commonly used, where one linearizes the regulator
model about a quiescent operating point. These
models are very useful to the practicing engineer
since he may apply all of the relatively simple
techniques of linear circuit theory such as Bode
plots, root locus, etc. The physical insight
gained then allows the engineer to intelligently
design his feedback loop and to specify important
small-signal specifications such as audio
susceptibility and output impedance.

Unfortunately, because of the small-signal
approximation, these methods do not ensure the
complete large-signal stability of the quiescent
operating point. One might conceive of a regulator
which behaves as illustrated in Fig. 1. For small
perturbations, less than some radius r from the
quiescent operating point, the regulator behaves
as predicted by the small-signal model, and
transients converge as expected. However, for
large perturbations, the nonlinear terms become
significant, and some solutions do not converge
to the desired quiescent point (i.e., some
solutions are unstable). Other large transients
do converge, but with a large, distorted waveform
which may be much larger than predicted by the
small-signal model and hence unacceptable.

F.ig. 1. HtJPothUic.al :tJta j ecto.u.es 06 a -6wUc.hing
~e.gula.to~. InduetoJt c.uJlJLe.nt i L i~
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Fig. 2. Three-state boost regulator example. 

Even worse, is it possible for the response to 
be reasonably stable for small signals but diverge 
for large transients? An example is given in this 
section which demonstrates that the answer to the 
above questions is ye.S; large-signal phenomena 
exist which can seriously degrade the performance 
of a switching regulator, and these phenomena are 
not predicted by small-signal models. 

Consider the boost regulator shown in 
Fig. 2. The dc gain and efficiency curves are 
shown in Fig. 3. This regulator was designed to 
operate at a nominal duty ratio of .6 with an 
efficiency of 70.5%. The state-space-averaged 
small-signal model [l,2,5] is shown in Fig. A. 
To stabilize the system in the presence of the 
right-half-plane zero which appears in the duty-
ratio-to-output transfer function, the inductor 
current is fed back in addition to the output 
voltage. The integral of the output voltage is 
also fed back to improve regulation. For the 
values chosen, the closed-loop small-signal 
response is dominated by two poles with a Q of 
.6; thus, the system appears to be quite stable 
and nearly critically damped. A computer program, 
detailed in Fig. 12 later in this paper, was used 
to investigate the large-signal response of this 
regulator. The computer-predicted response to a 
small step change in inductor current and 
capacitor voltage is diagrammed in Fig. 5. It is 
indeed well-behaved; the waveforms appear linear, 
and a very small amount of overshoot occurs in the 
control (d) waveform. The small-signal model is 
an excellent approximation in this case. 

The response to a step change of 
intermediate proportions is shown in Fig. 6. The 
solid line is the nonlinear response, and the 
dotted line is the response predicted by the 
small-signal model. Although this response is 

ro to 

l b ) 

Fig, 3 . Vc analyst* of the boost example- [a] 
Equilibrium gain M = V c / V g ; ( b ) 

Equilibrium efficiency n . 

l:M(D) 

4> 
e ( s ) d 

(T) j ( s ) d 

d (s) 
f!-.8A 
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r 
f3=300 f3=300 

1 / 8 H 

Fig. 4. Small-signal state-space averaged model 
used to design the feedback loop of the 
three-state boost regulator example. 
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1.2 Outline of Discussion

stable, it is decidedly nonlinear. The peak
inductor current is larger than the amount
predicted by the small-signal model, and the
control (J) waveform overshoots its nominal value
much more than expected. The small-signal
approximation is unjustified in this case.

•
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In this example, the small-signal
approximation is unjustified for moderate or large
perturbations. Hence, even though the small-signal
model predicts that the system response is well
damped, the effect of the nonlinearity can be of
significance, causing larger overshoots than
expected and possibly even instabilities.

The response to a yet larger step change in
inductor current and capacitor voltage is shown
in Fig. 7. The system is unstable in this case!
The voltages and currents in the system become
large, and the control signal saturates at its
maximum value. Obviously, this design is
unreliable.

Next, the saturation of the pulse-width
modulator is accounted for. This phenomenon has
a significant effect on the large-signal response
of the regulator, and hence cannot be ignored.
Models are derived which describe the response of
the regulator in the saturated regions.

From the above example, it is apparent that
small-signal switching regulator models do not
necessarily include all features of importance.
It is of interest, therefore, to model these
additional large-signal effects. In Section 2,
a nonlinear model is derived which predicts the
behavior described in the boost example above.
Two versions of this model are described. First,
a discrete-time model is derived which is
well-suited for computer simulations. Second, a
continuous-time model is found which is sometimes
more convenient for analytical calculations.

Fig. 7. ComputeJt-geneJLated WaVe6oJUn6 06 the
Jte.6 pon6 e to a i.aJr.9e peJttuJr..ba:tion, Vab hed
Une: a6 pJtedided blJ the -6ma1i.-.6-ignai.
model. Solid line: a6 pltecUeted by
the l.aJtge-.6ign.ai. nonli.neaJr. model. The
.61J.6 tem .<A ul16 tab le .
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In Section 3, the implications of these models 
are examined. First, the equilibrium points of 
the system are calculated. The presence of real 
equilibrium points in addition to the desired 
quiescent operating point indicates the existence 
of unstable transient solutions; therefore, these 
additional real equilibrium points must be 
eliminated. Next, the trajectories or transient 
waveforms are calculated. Peak transient current 
and voltage levels may then be determined, and the 
existence or absence of unstable solutions 
verified. 

The entire procedure is summarized in 
Section 4. 

2. LARGE-SIGNAL MODELLING 

In this section, the nonlinear state 
equations which describe switching regulators 
operating in the continuous conduction mode are 
derived, and the regions of their validity are 
identified. Two versions of the model are useful. 
First, a discrete-time model is found which is 
suitable for computer simulation. Second, an 
additional approximation is made which yields a 
continuous-time model; this model is often more 
convenient for analytical calculations. Both 
models incorporate the key "linear-ripple 
approximation" used in previous small-signal 
methods [1,2,3,4,5]. However, no small-signal 
assumption is made; as a result, the method is 
valid for large signals. 

Next, the saturation characteristics of the 
pulse-width modulator are accounted for. The duty 
ratio is always restricted to lie in a range no 
greater than [0,l], and the effect of this 
restriction on the stability of the regulator is so 
profound that no large-signal analysis can ignore 
it. The result of this section is the formulation 
of basic state equations which model the switching 
regulator and which are used in the subsequent 
sections to determine stability regions and peak 
transient component stress levels. 

2.1 Unsaturated Region Model 

The first step is to write the state equations 
of the regulator system during the two switched 
intervals DT S and D

fT g. During each interval, the 
system may be described by a set of linear 
differential equations: 

during interval DT S (transistor ON) 

dx(t) 

K — = A, x(t) + B.u (1) 

during interval D'TS (transistor OFF) 

dx(t) 

K — = A2x(t) + B 2u (2) 

where D = duty ratio, D 1 = 1 - D. 

T g = time of one complete switching period. 

K is a matrix usually containing values of 
inductance and capacitance. 

x is a state vector, usually comprised of 
inductor currents and capacitor voltages. 

u is a vector of independent sources. 

These equations may be solved exactly; 
however, the subsequent analysis is greatly 
simplified if the "linear-ripple approximation" 
[1,2,3,4,5] is made. Specifically, if the natural 
frequencies cô  of the converter power stage are 
all well below the switching frequency, then 
Eqs. (1) and (2) above have approximately linear 
solutions. This is indeed the case in well-
designed converters, in which the switching 
ripple is small. In this case, only the terms to 
order (u)^Ts) need be considered; higher-order terms 
are negligible. 

The result of this approximation is the 
following solutions for x(t) during the two 
switched intervals: 

x(t) = (I + A±t) x(0) + B^t (3) 

during 0 < t < DT 

0 — — s 

x(t) = (I + A 2(t-DT g) x(DTg) + B 2u (t-DTg) (4) 

during DT g <_ t <_ T g 

Combination of Eqs. (3) and (4), and elimination 
of the second-order terms which appear, yields the 
following expression for x(T g): 

x(T ) = [i + T g (DA1+D
,A2)]x(0)+Tg (DB]L+D

fB2)u 

(5) 

Furthermore, after n+1 switching intervals, 

x((n+l)V = - [ I + V D ^ + D ^ ) ] ^ 

+ T s[D nB 1 +D;B 2]u (6) 

This is the basic difference equation which 
describes the response of the system. It contains 
a constant term; hence, the system is not in 
equilibrium at the origin. It is convenient in 
the analysis which follows to redefine the axes 
so that the quiescent operating point of the 
regulator is at the origin. The quiescent operating 
point occurs at: 

x _ ^ = x = D ^ = D = D n (7) —n —0 n+1 n 0 
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Insertion of Eq. (7) into Eq. (6) and solution for 

yields 

^ = - (D^+D^r 1
 (D 0B 1 +D'B 2)u (8) 

The axes may now be shifted by use of the 

substitution below. 

—0 --n n 0 n 
(9) 

+ W W 4 (10) 

Eq. (10) arises from the substitution of 

Eq. (9) into Eq. (6), and is the difference 

equation which describes the regulator while 

operating in the normal, unsaturated mode. No 

small-signal assumption has been made; hence, 

Eq. (10) is valid for large signals. 

The duty ratio is usually a linear function 

of the regulator states. In this case, 

d = 
n 

_T. 
f x ( I D 

where f_ = feedback gain vector. 

As a result of the linear dependence of d 

i(A-L-A2)x term in Eq. (10) is on x , the x _ u v " i -

—n s —n l ^ —n 
quadratic, and the difference equation is 
nonlinear. This nonlinearity can seriously 

degrade the transient response of the regulator, 

possibly causing instabilities. 

The discrete form of Eqs. (10) and (11) makes 

them ideally suited for evaluation by computer. 

It is a simple matter to implement these equations 

on a small desktop computer and obtain the large-

signal transient response of any switching 

regulator operating in the unsaturated region. 

In view of the difficulty of obtaining a closed-

form analytical solution to Eq. (10) under 

transient conditions, this is an attractive 

alternative. The time domain waveforms illustrated 

in this paper were obtained in this manner. 

Although the discrete equations above are 

well-suited for digital computer evaluation, they 

are sometimes inconvenient for analytical 

calculations. It is then preferred to obtain a 

continuous-time model which contains familiar R f s , 

L ?s, C ?s, and nonlinear devices, and hence yields 

physical insight into the design problem. This 

has previously been accomplished for the small-

signal case [l], and the same technique is 

applicable here. In particular, one uses the 

Euler forward-differencing approximation to 

estimate the continuous-time derivative of the 

state vector, as below: 

dx(t) X 

(12) 

dt 

This approximation is valid if all natural 

frequencies of the closed-loop regulator are much 

less than the switching frequency. With this 

approximation, Eq. (10) becomes 

dx(t) 

dt 

= (D QA 1+Dj )A 2)x(t) + [(A 1-A 2)X ( ) + ( B ^ B ^ u J d (t) 

4- d(t) (A x-A 2)x(t) (13) 

with d(t) = - f x(t) 

This is a continuous-time state equation 

which describes the regulator while operating in 

the normal, unsaturated mode. It can be used to 

infer the nature of the response to large 

perturbations and the existence of instabilities. 

Owing to the presence of the d(A-^-A2)x term, this 

state equation contains quadratic nonlinear terms. 

Thus, the equations which describe the 

response of switching regulators during large 

transients have been found for the case where the 

pulse-width modulator is unsaturated and the 

system operates in its usual mode. The linear-

ripple approximation was made; this has the 

desirable effect of simplifying the analysis while 

ignoring the usually negligible effect of the high 

frequency switching ripple. A set of discrete 

state equations with quadratic nonlinearities is 

the result; these equations are well-suited for 

computer evaluation of the large-signal transient 

response. An additional approximation may be made 

which yields a continuous-time version of the state 

equations. This is often desirable for analytical 

design. 

2.2 Saturated Region Models 

So far, it has been assumed that the regulator 

always operates in its usual unsaturated mode. 

No account has yet been made of the inherent limits 

on the duty ratio: the duty ratio must always lie 

within the range [0,l]; often, the limit is even 

more restrictive. Outside the usual operating 

range, the duty ratio remains constant at its 

saturated value, and the regulator behaves as an 

open-loop linear system. This can significantly 

affect the large-signal stability of the regulator; 

in consequence, these additional modes of operation 

cannot be ignored. Some aspects of this effect 

have been previously considered for the buck 

regulator [6,7]; the phenomenon is further 

investigated here. 

As an example, consider the two-state boost 

regulator of Fig. 8. In order to stabilize the 

system in the presence of the right-half plane 

zero which appears in the duty-ratio-to-output 

transfer function, the inductor current is fed 

back in addition to the output voltage. The 

2 4 4 
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Fig. 8. Twos tote boost regulator example. 

expression for the control signal (duty ratio) is 
therefore 

Fig. 9 . 

D=Dmin 

D = D 0 - f x 

D=Dmax 

V 0 

The saturated and unsaturated regions 
of the state plane. IQ and V Q are the 
quiescent Inductor current and 
capaclton voltage. 

D(t) D Q + d(t) 

d(t) - - f l i L - f.v. = f X (14) 

where D^ = quiescent duty ratio 
f̂  = current feedback gain 

f 9 = voltage feedback gain 

If D(t) is limited to the range [ D M I N , ^ max 
the unsaturated region is the section of the phase 
where 

Dmax] t h e n 

The continuous-time state equations are 
again found by use of the forward-differencing 
approximation. The result for the D = D_ 
saturated region is sat 

dx(t) 

dt 

+ CDsatBl + D s a t B 2 ^ 
(17) 

Do"i 
< D (15) 

To the left of this region, the duty ratio is fixed 
and equal to D^ and to the right of this region, 
the duty ratio is fixed and equal to Dmin. 
situation is illustrated in Fig. 9. 

The 

The state equations in the saturated regions 
are easily found. When -^ Tx is greater than 
D m a x - D Q , then D(t) is constant and equal to Dmax* 
Likewise, D(t) is constant and equal to Dmin when 
-f Tx is less than Dm±n - D Q. Substitution of 
D n = D s a t into Eq. (6) yields 

i i 

x - - [i + T (D «_A_+D A0)]x + T [D B-+D Bju 
-n+1 s sat 1 sat 2 -n s sat 1 sat 2 — 

where D = either D or D 

sat max m m 
(16) 

sat 
1 - D 

sat 

This is a system of linear difference equations 
which describe the response of the system in the 
saturated regions. 

This is a system of linear differential 
equations which describes the response in the 
D = D s a t saturated region. Since the systems 
described by Eq. (16) and (17) are linear their 
solutions are exponential in nature. Furthermore, 
they contain exactly one equilibrium point. This 
point occurs at 

*0 ^sat*! + v'sat^'1 * [ Dsat Bl + D s a t B 2 ^ 

(18) 

This equilibrium point may or may not occur within 
the saturated region. 

Thus, three modes of operation have been 
identified. This change of operating mode occurs 
owing to the saturation of the pulse-width 
modulation process. The regions in the state 
plane in which each mode occurs have been found, 
and the relevant state equations have been 
derived. In the next section, this knowledge is 
applied to the study of the large-signal transient 
waveforms and instabilities which are likely to 
occur in switching regulators. 
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3, LARGE-SIGNAL ANALYSIS 

The objective of this section is the 
construction of the system response and the 
identification of sources of potential instability. 
First, the equilibrium points of the system ar-
calculated. It is possible for more than one 
equilibrium point to exist, and this can lead to 
instability under large transient conditions. 
Second, the trajectories of the states of the 
regulator are determined, either by hand or by 
computer. The salient features are identified, 
and it then becomes apparent how to modify the 
system in order to obtain an acceptable response. 
The analysis is demonstrated on the boost 
regulator of Fig. 8. 

3.1 Equilibrium Points 

The equilibrium points of a system are the 
most prominent features of the state-plane 
portrait of a nonlinear system. Calculation of 
the equilibrium points is a useful tool for pin
pointing the source of instabilities and for 
constructing trajectories. 

Two types of equilibrium points can exist for 
a given region of the state plane. The first 
type, known as a "real equilibrium point," is an 
equilibrium point which occurs inside the given 
region. The presence of real equilibrium points 
in addition to the desired quiescent operating 
point guarantees the presence of at least one 
unstable solution. Hence, such points must be 
avoided. The second type is called a "virtual 
equilibrium point" and occurs outside the given 
region. The system is not actually in equilibrium 
at a virtual equilibrium point; nonetheless, these 
points can influence the transient response of 
the regulator. The presence of virtual equilibrium 
points guarantees neither the existence nor the 
absence of unstable transient responses. 

Equilibrium points occur where 

(discrete) X * . = X * 

~TI+1 —n 

dx* 

dt 
= 0 (continuous) 

(19a) 

(19b) 

Since the Euler forward differencing approximation, 
Eq. (12), has been used, Eqs. (19a) and (19b) 
are equivalent. 

Insertion of Eq. (19b) into Eq. (13) yields 

0 = [A + d*B]x* (20) 

where A = + - ( A ^ A ^ X ^ 1 - (B^B^u f T 

A is the small-signal continuous-time closed-loop 
system matrix, and B is a matrix which describes 
the nonlinear term. Equation (20) describes the 
positions of the equilibrium points in the un
saturated region. In addition to the trivial 
solution x* = () (the desired quiescent operating 
point), a number of extra solutions may exist. 
One may easily find these other equilibrium points 
by first solving Eq. (21)for d*, the value of the 
control (d) at x*. 

det [A + d*B] = 0 (21) 

Once the values of d* are known, the solution 
of Eq. (20) for x* is straightforward. One can 
then see how to design the regulator such that 
these additional equilibrium points lie 
sufficiently far outside of the unsaturated region. 
Their influence on the transient response of the 
regulator can then be made small. 

For the boost example of Fig. 8, the 
quantities in Eq. (20) are 

where R., 
*L + V l nl " D 0

 + V 2 

n 2 - D 0
 +
 V 1 R 2 = R (-IQf2) 

IQ = quiescent inductor current 

V Q = quiescent output voltage 

Eq. (21), the expression for the control (d*) at 
the equilibrium points, then becomes 

d*(nL + n 2 ) + ^ + 5 ^ (23) 

This equation is quadratic and has two roots; 
hence, two equilibrium points may exist for the 
unsaturated region in addition to the quiescent 
operating point _x = 0. For the values specified 
in Fig. 8, the two roots are 

B = A x-A 2 

d* = - f V 

the value of x at the desired 
equilibrium point. 

.236, 13.64 (24) 

The equilibrium point at d* - .236 is well within 
the unsaturated region. It causes the large-signal 
transient response to differ significantly from 
that predicted by small-signal models; in fact, 
some solutions are unstable. 

2 4 6 

i* - R x - n x 

x* = A = 

v* n 2 -1/R2 

f_ = B = 

f2 J - 1 0 

(22) 

t 



The positions in the state plane of the
equilibrium points are now found by solution of
Eq. (20). For this example, one obtains

The root d* = 13.64 represents a virtual
equilibrium point. It lies outside the unsaturated
region where Eq. (23) is valid; in consequence,
the system' is not actually in equilibrium at this
point. Nonetheless, it is possible for a virtual
equilibrium point to influence the response of a
nonlinear system. In this case, however, the
distance it lies away from the unsaturated region
is sufficiently large that its effect on the
trajectories is negligible.

v*

(28)

(27)
V 1

V -...L- • --_.._-
sat

,
'2

D l+RL/DsatRsat

V

I
sat

sat
-,--
D R
sat

The equilibrium point for the D = Dmax
saturated region is given by Eq. (18); a similar
expression can be found for the D = Dmin
saturated region. This equation is now solved to
find the positions of the saturated region
equilibrium points. For the boost example, one
obtains

The next step is the investigation of the
equilibrium points of the saturated regions. Since
in these regions the response is linear, exactly
one equilibrium point occurs for each region. If
either of these points is real, then unstable
responses exist. Therefore, the equilibrium
points of both saturated regions must be virtual
in a globally-stable regulator.

(25)

f
l

£2 + R
1
(d*-n1)

For the values specified in Fig. 8, these
expressions yield

i*

The unsaturated region equilibrium points
are summarized in Fig. 10. Two real equilibrium
points exist: in addition to the desired
quiescent operating point at x = 0, an unwanted
real equilibrium point occurs-as shown; hence,
unstable responses are expected to occur. A
virtual equilibrium point also occurs, but has
little effect on the response of the system.

undesirable
real ----\-~ ..

eQuilibrium
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where

One possible design strategy is to limit the
duty ratio to a range sufficiently smaller than
[O,lJ, thereby improving the response by moving the
saturated region equilibrium points well outside
of their respective regions. Hence, it is of
interest to determine the locus of Vs a t and I sa t in
the state plane for various values of Ds a t .
Combination of Eqs. (27) and (28) yields

(26)
13.64

.236-3.7V at d*

-24.2V at d*

"'*2.0A, v

1.9A, ~ *~ *1

~*1

virtual

•~ f-- eQ~ilibrium
pornt

ELg. 10. Summevty 06 the unsatiuuued fte.g-i.on
e.quifJ.bte"<UYn po-i~ 60te the ocos : e.xampie
-i.n Fig. 8. 1Yl addition. to the lL6ua.i
quie-6cent o p e ~ a t i n g p o ~ n t , a neal
equiUbteA.URl po.i nt ex.i.oa at d* = .236.
A (-iYL6-i.gn--i.6-i.c.ant) v-!!L:tual e.quA.tibJUum
point occun-6 at d* = 13.64.

Thus, the locus is an ellipse. Eq. (29) is plotted
in Fig. 11. It can be seen that the D = 0 point
is well outside of the D = Dmin saturated region;
consequently, the choice of Dmin = 0 poses no
apparent problems. However, the D = 1 point lies
inside the D = Dmax saturated region for the case
illustrated. As a result, unstable solutions are
guaranteed to exist for the choice of Dmax = 1 .

One way to avoid obtaining a real equilibrium
point in the D = Dmax saturated region is to choose
Dmax sufficiently less than one, thereby moving
the equilibrium point outside the region. A

second way is to lower the ratio f2/fl (i.e.,
increase the amount of current feedback in relation
to the output voltage feedback). This moves the
D = Dmax saturated region boundary to the left,
past the equilibrium point. Both strategies are
effective in eliminating the presence of unstable
transient solutions.
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3.2 Construction of Trajectories

Knowledge of the existence and positions of
the equilibrium points of the regulator yields a
great deal of insight into the large-signal
operation of the system; however, this knowledge
is not complete. It is also necessary to calculate
peak transient currents and voltages, and to verify
that all possible responses are well-behaved and
stable. Therefore, it is desirable to construct
the system trajectories.

Thus, the positions of the equilibrium points
can be calculated without difficulty. The presence
of real equilibrium points in addition to the
desired quiescent operating point indicates that
the regulator is not globally stable; therefore,
these points must be eliminated. As an example,
the equilibrium points of a two-state boost
regulator were found. In addition to the quiescent
operating point, one real equilibrium point existed
in the unsaturated region and another in the D = 1
saturated region. Hence, this design was not
globally stable. The response could be improved
by moving these equilibrium points well outside of
their respective regions; they would then become
virtual equilibrium points.

D • Ds a t Region

~ + l • [1+Ts(Dsat~ + D'satA2)](~ + ~)

+ Ts[Ds a t Bl + D~at B2] ~ - ~

Ftowc.haJLt 06 the c.omputVt pJr..ogJr..aJn 6o!l.
th« c.ai..cu!.ailOYl 06 tJc.ajec.toJLiu and .time
domain tJr..aYl-6~ent wave6oJr..m-6.

Unsaturated Region

~ + l • [I + Ts(DOA1 + D~A;z)] ~

+ Ts[ (AI-A2) ~ + 0'1 -82 )~] do

+ T
s
d
n(A I-A;z)

~

F ~ 9 . 12.

Figure 12 contains the flowchart of the
program. The initial state ~ of the system is
given as input, and then the computer iteratively
calculates ~ , the values of the state variables
at the switching instants t = nTs' as follows:
at the n-th switching interval, the duty ratio dn
is evaluated from Eq. (11). The region of
operation is determined from Eq. (15). If the
system is in the unsaturated region, then Eq. (10)
is used to find Bn+l- If the system is in one of
the saturated regions, then Eq. (16) is used to
find 2n+l = (~+l - ~), with Dsa t taken to be
either Dmax or Dmi n, depending on the region. The
program then increments n and repeats the procedure.
State-plane trajectories may be obtained, where
the values of two of the states are plotted in a
plane, or time domain waveforms may be found.

on most computers. The state-plane trajectories
illustrated in this paper were plotted by a small
desktop computer programmed in BASIC.
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boundan-i.~ aJr..e ~upeJr..impo~ed. The
Jr.egui..tLtoJr mt.L6t be du-i..gned ~uc.h :that:
both -6atuJr.ated Jr..egion equ-i.UbJtiwn poin:U
afte v-ULtuai .

F~9. 11.

A number of ~ e t h o d s exist for the analytical
construction of trajectories [8,9], such as the
vector-field method or the method of isoclines.
For second-order systems, these methods work well.
However, since the dimension of the state space
is equal to the number of states of the system.
these analytical methods become impractical for
regulators with many states, and it becomes
necessary to resort to computer simulation. The
state equations describing the transient response
of the regulator, Eq. (10), are easily implemented

The computer-drawn state plane trajectories
for the two-state boost regulator example are
shown in Fig. 13. The peak values of inductor
current and output voltage during any given
transient are apparent_ The effect of the
unsaturated region real equilibrium point at
i* = 2.0A, v* = -3.7V can also be seen: some
unstable solutions occur which bend away in the
vicinity of the equilibrium point and head towards
a large negative value of v. This equilibrium
point is a saddle point. As explained in the
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previous section, another real equilibrium point
exists in the D = 1 saturated region. This point
is a stable equilibrium point, and all solutions
which do not converge to the desired quiescent
operating point converge to this additional
equilibrium point.

v

249

This system may be made globally stable by
sufficient increase of the ratio of current feed
back to voltage feedback. The system then has
four virtual equilibrium points in addition to the
real quiescent operating point. The trajectories
are plotted in Fig. 14 for the values f l = 0.8,
f2 = 0.08. It can be ~een th~t all solutions
converge to the point i = O. v = O. and a well
behaved, globally stable response is obtained.

Transient waveforms may also be plotted vs.
time. This was done for the boost with integrator
example in Figs. 5-7. In this way, the actual
response of systems with more than two states may
be predicted, and the existence or absence of
unstable solutions verified.

Thus, the nonlinear models of Section 2 may
be used to investigate the large-signal response
of a switching regulator. Equilibrium points may
be calculated analytically, and positioned
properly to obtain a well-behaved response. The
actual state-plane trajectories or time-domain
waveforms may be calculated easily by a small
desktop computer; this allows the informed design
of the regulator and ensures a globally stable
system.

4. CONCLUSIONS

Because the small-signal switching regulator
models are linear and hence easily applied to most
practical design problems, and because of the
insight they afford into the operation of the
regulator, they are indispensable tools for the
design of a switching regulator. However. because
of the small-signal assumption, these models do
not describe the behavior of the regulator during
large transients. As evinced by the example in
Section 1.1, it is possible for a regulator to be
stable for small perturbations but not for all
large perturbations. A design of this type is
unreliable.

It is of interest, therefore, to formulate
models which are valid for large signals and to
determine the nature of these large-signal
instabilities. It would then be possible to ensure
that the large-signal transient response is well
behaved. A set of large-signal models is describ£d
in Section 2. The key linear-ripple approximation
of the small-signal state-space averaging method
[1,2,4,5] is employed, but no small-signal
assumption is made. The effect of the saturation
of the pulse-width modulator is also included, as
its influence is substantial.

The equilibrium points of a system are
prominent features of its state plane portrait,
and the knowledge of their number and positions
can yield a great deal of insight into the large
signal system behavior. The equilibrium points
of switching regulators are studied in Section
3.1. Analytical expressions are found which may
be used to place the equilibrium points at
suitable locations in the state plane, thereby
improving the large-signal transient response.
This is demonstrated for the example of a two-



stable boost regulator. It is found that this 
regulator has four equilibrium points in addition 
to the quiescent operating point. Only two of 
these points may have a serious detrimental effect 
on the response, however. With proper circuit 
design, this example may be rendered globally 
stable. 

The actual state-plane trajectories or 
time-domain transient response may be found. This 
is easily accomplished by the computer evaluation 
of the models of Section 2. In this way, the 
existence of unstable solutions may be observed, 
and peak values of transient response waveforms 
calculated. 

A number of effects have been neglected 
here. Additional modes of operation may exist, 
such as transient discontinuous conduction mode 
or current limiting modes. Also, more analysis 
is possible, such as the prediction of limit 
cycles and the analytical estimation of stability 
regions. Nonetheless, the most basic aspects of 
the nonlinear phenomena which occur have now been 
described, and the informed large-signal design 
of most switching regulators is now possible. 
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