Large Solutions for Harmonic Maps in Two Dimensions^

Haim Brezis ${ }^{1}$ and Jean-Michel Coron ${ }^{2}$

1 Département de Mathématiques, Université Paris VI, 4, Place Jussieu, F-75230 Paris Cedex 05, France
2 Département de Mathématiques, Ecole Polytechnique, F-91128 Palaiseau Cedex, France

Abstract

We seek critical points of the functional $E(u)=\int_{\Omega}|\nabla u|^{2}$, where Ω is the unit disk in \mathbb{R}^{2} and $u: \Omega \rightarrow S^{2}$ satisfies the boundary condition $u=\gamma$ on $\partial \Omega$. We prove that if γ is not a constant, then E has a local minimum which is different from the absolute minimum. We discuss in more details the case where $\gamma(x, y)=\left(R x, R y, \sqrt{1-R^{2}}\right)$ and $R<1$.

Introduction

Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2} ; x^{2}+y^{2}<1\right\}$ and $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{2} ; x^{2}+y^{2}+z^{2}=1\right\}$. Let $\gamma: \partial \Omega \rightarrow S^{2}$ be given and assume that γ is the restriction to $\partial \Omega$ of some function in $H^{1}\left(\Omega ; S^{2}\right)^{1}$. We set

$$
E(u)=\int_{\Omega}|\nabla u|^{2} \quad \text { for } \quad u \in H^{1}\left(\Omega ; \mathbb{R}^{3}\right)
$$

and

$$
\mathscr{E}=\left\{u \in H^{1}\left(\Omega ; S^{2}\right) ; u=\gamma \quad \text { on } \quad \partial \Omega\right\} .
$$

We seek critical points of E on \mathscr{E}. It is obvious that there exists some $\underline{u} \in \mathscr{E}$ such that

$$
E(\underline{u})=\operatorname{Inf}_{\mathscr{E}} E .
$$

Our first result is the following:
Theorem 1. If γ is not a constant, there exists a critical point of E on \mathscr{E} which is different from \underline{u}.

[^0]In order to prove Theorem 1, we introduce

$$
Q(u)=\frac{1}{4 \pi} \int_{\Omega} u \cdot u_{x} \wedge u_{y}
$$

for $u \in L^{\infty}\left(\Omega ; \mathbb{R}^{3}\right)$ with $u_{x}, u_{y} \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right)$ and we observe (see Lemma 1) that

$$
Q\left(u_{1}\right)-Q\left(u_{2}\right) \in \mathbb{Z} \quad \forall u_{1}, u_{2} \in \mathscr{E} .
$$

For every $k \in \mathbb{Z}$ we define the class $\mathscr{E}_{k}=\{u \in \mathscr{E} ; Q(u)-Q(\underline{u})=k\}$. Each class \mathscr{E}_{k} is (non-empty) closed and open in \mathscr{E} for the topology induced by the norm of $H^{1}\left(\Omega ; \mathbb{R}^{3}\right)$.

In order to find other critical points of E on \mathscr{E} it is tempting to consider

$$
\operatorname{Inf}_{\mathscr{E}_{k}} E \text { for } k \neq 0
$$

When trying to prove that $\operatorname{Inf} E$ is achieved one encounters a major difficulty due to the fact that \mathscr{E}_{k} is not closed under weak H^{1} convergence. Nevertheless we shall prove that at least one of the two infima $\operatorname{Inf}_{\mathscr{E}_{1}} E$ or $\operatorname{Inf}_{\mathscr{E}_{-1}} E$ is achieved. The argument involves some ideas used by the authors in [2]; related difficulties also occur in [1, 3, $7,8,11]$. Notice that the assumption " γ is not a constant" in Theorem 1 is essential. Indeed when $\gamma=C$ is a constant, Lemaire [6] has proved that $u \equiv C$ is the only critical point of E on \mathscr{E}.

For simplicity we consider only maps with values into S^{2}. The same result holds if S^{2} is replaced by a Riemannian surface homeomorphic to S^{2} (see Remark 2).

The paper is organized as follows: In Sect. 1 we present some technical lemmas. In Sect. 2 we prove Theorem 1. In Sect. 3 we discuss a simple example, namely

$$
\gamma(x, y)=\left(\begin{array}{c}
R x \\
R y \\
\sqrt{1-R^{2}}
\end{array}\right) \text { with } R<1
$$

We prove (see Theorem 2) that $\operatorname{Inf} E$ is not achieved, except when $k=0$ and
$k=-1$. We have collected in the Appendix various useful facts and in particular an important density result due to R. Schoen and K. Uhlenbeck [10].

After our work was completed we learned that J. Jost [5] has obtained independently a result similar to our Theorem 1.

1. Some Technical Lemmas

We start with
Lemma 1. Assume $u_{1}, u_{2} \in \mathscr{E}$. then $Q\left(u_{1}\right)-Q\left(u_{2}\right) \in \mathbb{Z}$.
Proof. We consider $w: \mathbb{R}^{2} \rightarrow S^{2}$ defined as follows:

$$
\left\{\begin{array}{l}
w(x, y)=u_{1}(x, y) \quad \text { if } \quad x^{2}+y^{2}<1 \\
w(x, y)=u_{2}\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right) \quad \text { if } \quad x^{2}+y^{2}>1
\end{array}\right.
$$

It is easy to check that $w \in L^{\infty}\left(\mathbb{R}^{2} ; S^{2}\right), w_{x}, w_{y} \in L^{2}\left(\mathbb{R}^{2} ; \mathbb{R}^{3}\right)$ and

$$
\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} w \cdot w_{x} \wedge w_{y}=Q\left(u_{1}\right)-Q\left(u_{2}\right)
$$

On the other hand if $\phi \in C^{\infty}\left(\mathbb{R}^{2} ; S^{2}\right)$ and ϕ is constant far out then

$$
\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} \phi \cdot \phi_{x} \wedge \phi_{y} \in \mathbb{Z}
$$

In fact this integer is the degree of the map $\phi^{\circ} \pi: S^{2} \rightarrow S^{2}$, where $\pi: S^{2} \rightarrow \mathbb{R}^{2}$ is a stereographic projection (see for example the analytic expression of the degree given in [9]). It follows by density (see Lemma A.1) that

$$
\begin{equation*}
\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} \phi \cdot \phi_{x} \wedge \phi_{y} \in \mathbb{Z} \quad \forall \phi \in L^{\infty}\left(\mathbb{R}^{2}, S^{2}\right) \text { with } \phi_{x}, \phi_{y} \in L^{2}\left(\mathbb{R}^{2}, \mathbb{R}^{3}\right), \tag{1}
\end{equation*}
$$

and thus we obtain the conclusion of Lemma 1.
Our next lemma plays a crucial role in the proof of Theorem 1 . We assume now that γ is not a constant and we fix some $\underline{u} \in \mathscr{E}$ such that $E(\underline{u})=\operatorname{Inf}_{\mathscr{E}} E$.

Lemma 2. There is some $v \in \mathscr{E}$ such that

$$
\begin{equation*}
|Q(v)-Q(\underline{u})|=1 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
E(v)<E(\underline{u})+8 \pi . \tag{3}
\end{equation*}
$$

Proof. By Morrey's regularity theory we know that $\underline{u} \in C^{\infty}\left(\Omega ; \mathbb{R}^{3}\right)$. Since γ is not a constant it follows that $\nabla u\left(x_{0}, y_{0}\right) \neq 0$ for some point $\left(x_{0}, y_{0}\right) \in \Omega$. Rotating coordinates in the (x, y) plane we may always assume that

$$
\underline{u}_{x}\left(x_{0}, y_{0}\right) \cdot \underline{u}_{y}\left(x_{0}, y_{0}\right)=0
$$

[Indeed, if we set

$$
x^{\prime}=(\cos \theta) x+(\sin \theta) y, \quad y^{\prime}=(-\sin \theta) x+(\cos \theta) y
$$

we find

$$
\left.u_{x^{\prime}} \cdot u_{y^{\prime}}=-\left(\left|u_{x}\right|^{2}-\left|u_{y}\right|^{2}\right) \sin \theta \cos \theta+u_{x} u_{y}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right] .
$$

In addition we have

$$
\underline{u} \cdot \underline{u}_{x}=\underline{u}^{u} \cdot \underline{u}_{y}=0 \quad \text { on } \quad \Omega,
$$

since $|\underline{u}|^{2}=1$ on Ω.
Therefore we may choose an orthonormal basis (i,j,k) in \mathbb{R}^{3} such that (in the basis (i, $\mathbf{j}, \mathbf{k})$)

$$
\underline{u}\left(x_{0}, y_{0}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad \underline{u}_{x}\left(x_{0}, y_{0}\right)=\left(\begin{array}{l}
a \\
0 \\
0
\end{array}\right), \quad \underline{u}_{y}\left(x_{0}, y_{0}\right)=\left(\begin{array}{l}
0 \\
b \\
0
\end{array}\right)
$$

with $a \geqq 0, b \geqq 0$ and $a+b \neq 0$. (Notice that the basis $(\mathbf{i}, \mathbf{j}, \mathbf{k})$ could possibly have
a different orientation than the canonical basis of \mathbb{R}^{3} which was used to define Q.) Let $\varepsilon>0$ be small enough. We define a function $u^{\varepsilon}: \Omega \rightarrow \mathbb{R}^{3}$ in the following way:

Let $\left.r=\left[x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right]^{1 / 2}$ and θ such that $x-x_{0}=r \cos \theta, y-y_{0}=r \sin \theta$. We set ${ }^{(1)}$
a) If $r>2 \varepsilon$,

$$
u^{\varepsilon}(x, y)=\underline{u}(x, y) .
$$

b) If $r<\varepsilon$, we set (in the basis (i, \mathbf{j}, \mathbf{k}))

$$
u^{\varepsilon}(x, y)=\frac{2 \lambda}{\lambda^{2}+r^{2}}\left(\begin{array}{c}
x-x_{0} \\
y-y_{0} \\
-\lambda
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

where $\lambda=c \varepsilon^{2}$ and c is a constant to be fixed later.
c) If $\varepsilon \leqq r \leqq 2 \varepsilon$ we set (in the basis (i, j, k))

$$
u^{\varepsilon}(x, y)=\left(\begin{array}{c}
A_{1} r+B_{1} \\
A_{2} r+B_{2} \\
\sqrt{1-\left(A_{1} r+B_{1}\right)^{2}-\left(A_{2} r+B_{2}\right)^{2}}
\end{array}\right)
$$

where $A_{1}, A_{2}, B_{1}, B_{2}$ depend only on θ, ε are determined in such a way as to make u^{ε} continuous on Ω; more precisely

$$
\left\{\begin{array}{l}
2 \varepsilon A_{i}+B_{i}=\underline{u}^{i}\left(x_{0}+2 \varepsilon \cos \theta, y_{0}+2 \varepsilon \sin \theta\right) \quad i=1,2 \\
\varepsilon A_{1}+B_{1}=\frac{2 \lambda \varepsilon}{\lambda^{2}+\varepsilon^{2}} \cos \theta \\
\varepsilon A_{2}+B_{2}=\frac{2 \lambda \varepsilon}{\lambda^{2}+\varepsilon^{2}} \sin \theta
\end{array}\right.
$$

Clearly we have, as $\varepsilon \rightarrow 0$,

$$
\begin{equation*}
\int_{[r>2 \varepsilon]}\left|\nabla u^{\varepsilon}\right|^{2}=\int_{[r>2 \varepsilon]}|\nabla \underline{u}|^{2}=\int_{\Omega}|\nabla \underline{u}|^{2}-4 \pi\left(a^{2}+b^{2}\right) \varepsilon^{2}+o\left(\varepsilon^{2}\right) . \tag{4}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\int_{[\varepsilon<r<2 \varepsilon]}\left|\nabla u^{\varepsilon}\right|^{2}=4 \pi \varepsilon^{2}\left[a^{2}+b^{2}-2 c^{2}+\left(a^{2}+b^{2}+8 c^{2}-4 a c-4 b c\right) \log 2\right]+o\left(\varepsilon^{2}\right), \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{[r<\varepsilon]}\left|\nabla u^{\varepsilon}\right|^{2}=8 \pi-8 \pi \varepsilon^{2} c^{2}+o\left(\varepsilon^{2}\right) . \tag{6}
\end{equation*}
$$

We postpone for a moment the verification of (5) and (6). Combining (4), (5), and (6) we find

$$
\int_{\Omega}\left|\nabla u^{\varepsilon}\right|^{2}=\int_{\Omega}|\nabla u|^{2}+8 \pi-4 \pi \varepsilon^{2}\left[4 c^{2}-\left(8 c^{2}+a^{2}+b^{2}-4 a c-4 b c\right) \log 2\right]+o\left(\varepsilon^{2}\right) .
$$

We choose c in such a way that

$$
4 c^{2}-\left(8 c^{2}+a^{2}+b^{2}-4 a c-4 b c\right) \log 2>0
$$

1 A related construction appears in [12]
for example $c=\operatorname{Max}\{a / 2, b / 2\}$). Therefore $v=u^{\varepsilon}$ satisfies (3) provided ε is small enough.

Verification of (5). We have

$$
\begin{aligned}
& A_{1}=2(a-c) \cos \theta+o(1) \\
& B_{1}=2 \varepsilon(2 c-a) \cos \theta+o(\varepsilon), \\
& A_{2}=2(b-c) \sin \theta+o(1) \\
& B_{2}=2 \varepsilon(2 c-b) \sin \theta+o(\varepsilon),
\end{aligned}
$$

and similar expressions for the θ derivatives. Thus we obtain (5) since

$$
\int_{[\varepsilon<r<2 \varepsilon]}\left|\nabla u^{\varepsilon}\right|^{2}=\int_{[\varepsilon<r<2 \varepsilon]} \sum_{i=1}^{2}\left[\left|A_{i}\right|^{2}+\left(A_{i \theta}+\frac{B_{i \theta}}{r}\right)^{2}\right] r d r d \theta .
$$

Verification of (6). We have $\left|\nabla u^{\varepsilon}\right|^{2}=8 \lambda^{2} /\left(\lambda^{2}+r^{2}\right)^{2}$ and therefore

$$
\int_{[r<\varepsilon]}\left|\nabla u^{\varepsilon}\right|^{2}=16 \pi \lambda^{2} \int_{0}^{\varepsilon} \frac{r d r}{\left(\lambda^{2}+r^{2}\right)^{2}},
$$

which leads to (6).
We turn now to property (2). We claim that

$$
\begin{equation*}
Q\left(u^{\varepsilon}\right)=Q(\underline{u})-1+0\left(\varepsilon^{2}\right) . \quad \text { if } \quad \mathbf{i} \cdot \mathbf{j} \wedge \mathbf{k}=+1 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
Q\left(u^{\varepsilon}\right)=Q(\underline{u})+1+0\left(\varepsilon^{2}\right) \quad \text { if } \quad \mathbf{i} \cdot \mathbf{j} \wedge \mathbf{k}=-1 \tag{7'}
\end{equation*}
$$

We shall verify only (7) (the proof of $\left(7^{\prime}\right)$ is identical). We write

$$
\begin{aligned}
Q\left(u^{\varepsilon}\right) & =\frac{1}{4 \pi} \int_{\Omega} u^{\varepsilon} \cdot u_{x}^{\varepsilon} \wedge u_{y}^{\varepsilon}=\frac{1}{4 \pi} \int_{[r>2 \varepsilon]}+\frac{1}{4 \pi} \int_{[\varepsilon<r<2 \varepsilon]}+\frac{1}{4 \pi} \int_{[r<\varepsilon]} \\
& \equiv I+I I+I I I .
\end{aligned}
$$

We have

$$
\begin{equation*}
I=Q(\underline{u})+0\left(\varepsilon^{2}\right), \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
|I I| \leqq \frac{1}{8 \pi} \int_{[\varepsilon<r<2 \varepsilon]}\left|\nabla u^{\varepsilon}\right|^{2}=0\left(\varepsilon^{2}\right) \quad \text { by } \quad(5) \tag{9}
\end{equation*}
$$

In order to evaluate $I I I$ we note that in the region $[r<\varepsilon]$ we have

$$
u^{\varepsilon} \cdot u_{x}^{\varepsilon} \wedge u_{y}^{\varepsilon}=-\frac{8 \lambda^{4}}{\left(\lambda^{2}+r^{2}\right)^{3}}+\mathbf{k} \cdot u_{x}^{\varepsilon} \wedge u_{y}^{\varepsilon}
$$

and thus by (5),

$$
\begin{equation*}
I I I=-4 \int_{0}^{\varepsilon} \frac{\lambda^{4} r d r}{\left(\lambda^{2}+r^{2}\right)^{3}}+0\left(\varepsilon^{2}\right)=-1+0\left(\varepsilon^{2}\right) \tag{10}
\end{equation*}
$$

Combining (8), (9), and (10) we obtain (7).

Remark. 1. The conclusion of Lemma 2 asserts that there is some $v \in \mathscr{E}$ such that $Q(v)-Q(\underline{u})= \pm 1$, and $E(v)<E(\underline{u})+8 \pi$.
In general one can not find two v 's $v_{1}, v_{2} \in \mathscr{E}$ such that

$$
\left\{\begin{array}{l}
Q\left(v_{1}\right)-Q(\underline{u})=+1 \tag{11}\\
Q\left(v_{2}\right)-Q(\underline{u})=-1 \\
E\left(v_{i}\right)<E(\underline{u})+8 \pi, \quad i=1,2
\end{array}\right.
$$

When (11) happens to be true one can prove that both $\operatorname{Inf}_{\mathscr{E}_{+1}} E$ and $\operatorname{Inf}_{\mathscr{E}_{-1}} E$ are achieved (see the proof of Theorem 1). [However there are simple examples where only one of these two infima is achieved (see Sect. 3).] Notice that (11) holds in the following cases:
a) There is some point $\left(x_{0}, y_{0}\right) \in \Omega$ such that

$$
\begin{gathered}
\nabla \underline{u} \neq 0 \quad \text { at } \quad\left(x_{0}, y_{0}\right), \\
\underline{u} \cdot \underline{u}_{x} \wedge \underline{u}_{y}=0 \quad \text { at } \quad\left(x_{0}, y_{0}\right) .
\end{gathered}
$$

b) There are two points $\left(x_{0}, y_{0}\right) \in \Omega,\left(x_{1}, y_{1}\right) \in \Omega$ such that

$$
\begin{array}{lll}
\underline{u} \cdot \underline{u}_{x} \wedge \underline{u}_{y}>0 & \text { at } & \left(x_{0}, y_{0}\right) \\
\underline{u} \cdot \underline{u}_{x} \wedge \underline{u}_{y}<0 & \text { at } & \left(x_{1}, y_{1}\right) .
\end{array}
$$

[This is a direct consequence of the argument we have used in the proof of Lemma 2.]

2. Proof of Theorem 1.

Let $v \in \mathscr{E}$ be given by Lemma 2. We shall establish that if $v \in \mathscr{E}_{1}$ (respectively $v \in \mathscr{E}_{-1}$) then $\operatorname{Inf}_{\mathscr{E}_{1}} E$ (respectively $\operatorname{Inf} E$) is achieved. We consider just the case where $v \in \mathscr{E}_{1}$ (the other case is similar). Let $\left(u^{n}\right)$ be a minimizing sequence, i.e. $u^{n} \in \mathscr{E}_{1}$ and $E\left(u^{n}\right)=\operatorname{Inf}_{\mathscr{E}_{1}} E$ $+o(1)($ as $n \rightarrow \infty)$. We may extract a subsequence still denoted by u^{n} such that $u^{n} \rightarrow \bar{u}$ weakly in $H^{1}\left(\Omega ; \mathbb{R}^{3}\right)$. Clearly $\bar{u} \in \mathscr{E}$ and $E(\bar{u}) \leqq \operatorname{Inf}_{\mathscr{E}_{1}} E$. It remains to prove that $\bar{u} \in \mathscr{E}_{1}$. Suppose by contradiction that $\bar{u} \notin \mathscr{E}_{1}$. It follows that

$$
\begin{equation*}
\left|Q\left(u^{n}\right)-Q(\bar{u})\right| \geqq 1 . \tag{12}
\end{equation*}
$$

Assume for example that

$$
\begin{equation*}
Q\left(u^{n}\right) \geqq Q(\bar{u})+1 . \tag{13}
\end{equation*}
$$

Set

$$
\begin{equation*}
F(v)=E(v)-8 \pi Q(v)=\int_{\Omega}|\nabla v|^{2}-2 \int_{\Omega} v \cdot\left(v_{x} \wedge v_{y}\right) . \tag{14}
\end{equation*}
$$

Using the same argument as in [2] (see the proof of Lemma 1) one obtains

$$
\begin{equation*}
F(\bar{u}) \leqq \liminf F\left(u^{n}\right) . \tag{15}
\end{equation*}
$$

Combining (13), (14) and (15) we find

$$
E(\bar{u})-8 \pi Q(\bar{u}) \leqq \lim \inf \left\{E\left(u^{n}\right)-8 \pi Q(\bar{u})-8 \pi\right\} .
$$

Hence

$$
\begin{equation*}
E(\bar{u}) \leqq \operatorname{Inf}_{\mathscr{E}_{1}} E-8 \pi . \tag{16}
\end{equation*}
$$

On the other hand, by Lemma 2, there is some $v \in \mathscr{E}_{1}$ such that

$$
E(v)<E(\underline{u})+8 \pi,
$$

a contradiction with (16).
Remark. 2. The conclusion of Theorem 1 still holds if we replace S^{2} by a Riemannian surface M homeomorphic to S^{2}. Using a conformal diffeomorphism between M and S^{2}, this amounts to establish Theorem 1 for $E^{\prime}(u)=\int_{\Omega} g(u)|\nabla u|^{2}$ instead of E, where $g \in C^{1}\left(S^{2} ;(0, \infty)\right)$ and $u: \Omega \rightarrow S^{2}$. We replace Q by

$$
Q^{\prime}(u)=\frac{1}{\Sigma} \int_{\Omega} g(u) u \cdot u_{x} \wedge u_{y}
$$

where $\Sigma=\int_{S^{2}} g d \sigma$ and $u: \Omega \rightarrow S^{2}$. Instead of Lemma 1 and 2 we have now, with nearly the same proofs:

Lemma 1'. Assume $u_{1}, u_{2} \in \mathscr{E}$, then $Q^{\prime}\left(u_{1}\right)-Q^{\prime}\left(u_{2}\right) \in \mathbb{Z}$.
Let $u^{\prime} \in \mathscr{E}$ be such that $E^{\prime}\left(u^{\prime}\right)=\operatorname{Inf}_{\mathscr{E}} E^{\prime}$.
Lemma 2^{\prime}. There is some $v \in \mathscr{E}$ such that $\left|Q^{\prime}(v)-Q^{\prime}\left(u^{\prime}\right)\right|=1$ and $E^{\prime}(v)<E^{\prime}\left(u^{\prime}\right)+2^{\varepsilon}$. Then we proceed as in the proof of Theorem 1.

3. A Simple Example

We consider now the case where $\gamma(x, y)=\left(R x, R y, \sqrt{1-R^{2}}\right)$ for $(x, y) \in \partial \Omega$ with $0<R<1$. In that case we shall give a complete description of the solution of the problems $\operatorname{Inf} E$ and $\operatorname{Inf} E$. For this purpose, we set

$$
\begin{aligned}
& \lambda=\frac{1}{R}+\sqrt{\frac{1}{R^{2}}-1}, \quad \mu=\frac{1}{R}-\sqrt{\frac{1}{R^{2}}-1} \\
& \underline{u}(x, y)=\frac{2 \lambda}{\lambda^{2}+r^{2}}\left(\begin{array}{l}
x \\
y \\
\lambda
\end{array}\right)+\left(\begin{array}{r}
0 \\
0 \\
-1
\end{array}\right), \quad \bar{u}(x, y)=\frac{2 \mu}{\mu^{2}+r^{2}}\left(\begin{array}{r}
x \\
y \\
-\mu
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),
\end{aligned}
$$

with $(x, y) \in \Omega$ and $r^{2}=x^{2}+y^{2}$.
Theorem 2. We have
(A) $\underline{u} \in \mathscr{E}$ and $E(\underline{u})=\operatorname{Inf}_{\mathscr{E}} E$;
moreover \underline{u} is the unique element which minimizes E on \mathscr{E}.
(B) $\bar{u} \in \mathscr{E}_{-1}$ and $E(\bar{u})=\operatorname{Inf}_{\mathscr{E}-1} E$;
moreover \bar{u} is the unique element which minimizes E on \mathscr{E}_{-1}.
(C) $\operatorname{Inf}_{\mathscr{E}_{k}} E$ is not achieved if $k \notin\{0,-1\}$.

Proof. Part A. Let $\tilde{u} \in \mathscr{E}$ be such that

$$
\begin{equation*}
E(\tilde{u}) \leqq E(v) \quad \forall v \in \mathscr{E} . \tag{17}
\end{equation*}
$$

First we claim that

$$
\begin{equation*}
Q(\tilde{u})=Q(\underline{u}) \tag{18}
\end{equation*}
$$

Assume by contradiction that $|Q(\tilde{u})-Q(\underline{u})| \geqq 1$ (see Lemma 1). We introduce $w: \mathbb{R}^{2} \rightarrow S^{2}$ defined as follows:

$$
\left\{\begin{array}{l}
w(x y)=\tilde{u}(x, y) \quad \text { for } r<1 \\
w(x, y)=\underline{u}\left(\frac{x}{r^{2}}, \frac{y}{r^{2}}\right) \quad \text { for } r>1
\end{array}\right.
$$

so that $w \in L^{\infty}\left(\mathbb{R}^{2}, S^{2}\right)$ and $w_{x}, w_{y} \in L^{2}\left(\mathbb{R}^{2} ; \mathbb{R}^{3}\right)$. By the proof of Lemma 1 we have

$$
\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} w \cdot w_{x} \wedge w_{y}=Q(\tilde{u})-Q(\underline{u})
$$

and thus

$$
\frac{1}{4 \pi}\left|\int_{\mathbb{R}^{2}} w \cdot w_{x} \wedge w_{y}\right| \geqq 1
$$

Therefore we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}|\nabla w|^{2} \geqq 8 \pi . \tag{19}
\end{equation*}
$$

Obviously we have

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}|\nabla w|^{2}=E(\tilde{u})+E(\underline{u}), \tag{20}
\end{equation*}
$$

and a direct computation shows that

$$
\begin{equation*}
E(\underline{u})=4 \pi\left(1-\sqrt{1-R^{2}}\right) . \tag{21}
\end{equation*}
$$

Combining (19), (20) and (21) we obtain

$$
E(\tilde{u}) \geqq 4 \pi\left(1+\sqrt{1-R^{2}}\right)>E(\underline{u})
$$

-a contradiction with (17). Hence we have proved (18).
Next we consider the function $\bar{w}: \mathbb{R}^{2} \rightarrow S^{2}$ defined as follows:

$$
\left\{\begin{array}{l}
\bar{w}(x, y)=\tilde{u}(x, y) \quad \text { for } r<1 \\
\bar{w}(x, y)=\bar{u}\left(\frac{x}{r^{2}}, \frac{y}{r^{2}}\right) \quad \text { for } r>1
\end{array}\right.
$$

We have

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}|\nabla \bar{w}|^{2}=E(\hat{u})^{\prime}+E(\bar{u}) \leqq E(\underline{u})^{\prime}+E(\bar{u}), \tag{22}
\end{equation*}
$$

and a direct computation shows that

$$
\begin{equation*}
E(\bar{u})=4 \pi\left(1+\sqrt{1-R^{2}}\right) . \tag{23}
\end{equation*}
$$

Combining (21), (22), and (23) we see that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}|\nabla \bar{w}|^{2} \leqq 8 \pi . \tag{24}
\end{equation*}
$$

Moreover, we have (using (18)),

$$
\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} \bar{w} \cdot \bar{w}_{x} \wedge \bar{w}_{y}=Q(\tilde{u})-Q(\bar{u})=Q(\underline{u})-Q(\bar{u})=1
$$

(the last equality follows from a direct computation). Thus, $\int_{\mathbb{R}^{2}}|\nabla \bar{w}|^{2} \geqq 8 \pi$ and in fact (by (24)), $\int_{\mathbb{R}^{2}}|\nabla \bar{w}|^{2}=8 \pi$. The conclusion of Lemma A. 2 asserts that \bar{w} is analytic on \mathbb{R}^{2}. Finally we consider $\overline{\bar{w}}: \mathbb{R}^{2} \rightarrow S^{2}$ defined as follows:

$$
\left\{\begin{array}{l}
\overline{\bar{w}}(x, y)=\underline{u}(x, y) \text { for } r<1 \\
\overline{\bar{w}}(x, y)=\bar{u}\left(\frac{x}{r^{2}}, \frac{y}{r^{2}}\right) \text { for } r>1 .
\end{array}\right.
$$

It is readily seen (by direct inspection) that \bar{w} is analytic in \mathbb{R}^{2}. On the other hand we have $\overline{\bar{w}}=\bar{w}$ for $r>1$, and therefore $\overline{\bar{w}}=\bar{w}$, i.e. $\underline{u}=\tilde{u}$.

Part B. Let $v \in \mathscr{E}_{-1}$; we shall first check that

$$
\begin{equation*}
E(\bar{u}) \leqq E(v) . \tag{25}
\end{equation*}
$$

Let $w: \mathbb{R}^{2} \rightarrow S^{2}$ be defined as follows:

$$
\left\{\begin{array}{l}
w(x, y)=v(x, y) \text { for } r<1 \\
w(x, y)=\underline{u}\left(\frac{x}{r^{2}}, \frac{y}{r^{2}}\right) \text { for } r>1
\end{array}\right.
$$

We have

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}|\nabla w|^{2}=E(v)+E(\underline{u}), \tag{26}
\end{equation*}
$$

and moreover

$$
\begin{equation*}
\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} w \cdot w_{x} \wedge w_{y}=Q(v)-Q(\underline{u})=-1 \tag{27}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\int|\nabla w|^{2} \geqq 8 \pi \tag{28}
\end{equation*}
$$

Combining (26), (28), (21), and (23) we obtain (25).
Finally we assume in addition that

$$
\begin{equation*}
E(v)=E(\bar{u}) \quad \text { with } v \in \mathscr{E}_{-1} . \tag{29}
\end{equation*}
$$

We deduce from (26), (29), (21), and (23) that

$$
\int_{\mathbb{R}^{2}}|\nabla w|^{2}=8 \pi .
$$

Again, by Lemma A.2, w is analytic on \mathbb{R}^{2} and we conclude as in Part A that $v=\bar{u}$.

Part C. We assume for example that $k>0$ (the argument is similar for $k \leqq-2$). Suppose, by contradiction, that there is some $v \in \mathscr{E}_{k}$ such that

$$
\begin{equation*}
E(v)=\operatorname{Inf}_{\mathscr{E}_{k}} E \tag{30}
\end{equation*}
$$

It is a well known fact that

$$
\begin{equation*}
\operatorname{Inf}_{\mathcal{E}_{k}} E \leqq E(\underline{u})+8 k \pi . \tag{31}
\end{equation*}
$$

[The technique is similar to the one used in the proof of Lemma 2, except that it is much simpler since we don't require a strict inequality. Given $\varepsilon>0$, one considers, for example, $v^{\varepsilon}: \Omega \rightarrow S^{2}$ such that
a) If $r>2 \varepsilon, v^{\varepsilon}(x, y)=\underline{u}(x, y)$.
b) If $r<\varepsilon$ we set

$$
v^{\varepsilon}(x, y)=\frac{2 \varepsilon^{k+1}}{\varepsilon^{2 k+2}+r^{2 k}}\left(\begin{array}{c}
r^{k} \cos k \theta \\
-r^{k} \sin k \theta \\
-\varepsilon^{k+1}
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

c) If $\varepsilon<r<2 \varepsilon$ we proceed as in the proof of Lemma 2.

One checks that $v^{\varepsilon} \in \mathscr{E}_{k}$ and $E\left(v^{\varepsilon}\right)=E(\underline{u})+8 k \pi+o(1)$.]
Finally we consider the function $w: \mathbb{R}^{2} \rightarrow S^{2}$ defined as follows:

$$
\begin{cases}w(x, y)=v(x, y) & \text { for } r<1 \\ w(x, y)=\bar{u}\left(\frac{x}{r^{2}}, \frac{y}{r^{2}}\right) & \text { for } r>1\end{cases}
$$

so that

$$
\begin{equation*}
\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} w \cdot w_{x} \wedge w_{y}=Q(v)-Q(\bar{u})=k+1 \tag{32}
\end{equation*}
$$

We deduce from (30) and (31) that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}|\nabla w|^{2}=E(v)+E(\bar{u}) \leqq E(\underline{u})+E(\bar{u})+8 k \pi=8(k+1) \pi . \tag{33}
\end{equation*}
$$

Once more it follows from Lemma A. 2 that w is analytic and thus (as in Part A), $v=\underline{u}$-a contradiction since $v \in \mathscr{E}_{k}(k \neq 0)$.

Appendix

We start with a useful density result due to Schoen-Uhlenbeck [10]. For the convenience of the reader we sketch its proof.

Lemma A.1. Given $u \in L^{\infty}\left(\mathbb{R}^{2} ; S^{2}\right)$ with $\nabla u \in L^{2}\left(\mathbb{R}^{2} ; \mathbb{R}^{6}\right)$ there exists a sequence $\left(u_{n}\right)$ such that

$$
\left\{\begin{array}{l}
u_{n} \in C^{\infty}\left(\mathbb{R}^{2} ; S^{2}\right), \\
\text { each } u_{n} \text { is constant far out, } \\
u_{n} \rightarrow u \text { a.e., } \\
\nabla u_{n} \rightarrow \nabla u \text { in } L^{2}\left(\mathbb{R}^{2} ; \mathbb{R}^{6}\right) .
\end{array}\right.
$$

Proof. We denote by $\pi: S^{2} \rightarrow \mathbb{R}^{2}$ the stereographic projection which maps the south pole into 0 . We set $v(p)=u(\pi(p))$ for $p \in S^{2}$. It is well known that $v \in H^{1}\left(S^{2} ; S^{2}\right)$. Let $v_{n}(p)$ denote the average of v over $B_{1 / n}(p)=\left\{q \in S^{2} ;|q-p|<1 / n\right\}$ and thus we have

$$
v_{n} \in C\left(S^{2} ; \mathbb{R}^{2}\right) \cap H^{1}\left(S^{2} ; \mathbb{R}^{2}\right),
$$

and $v_{n} \rightarrow v$ in $H^{1}\left(S^{2} ; \mathbb{R}^{3}\right)$. Note that v_{n} does not take its values into S^{2}. However Poincare's inequality shows that

$$
\int_{B_{1 / n}(p)}\left|v(q)-v_{n}(p)\right| d q \leqq \frac{C}{n^{2}}\left(\int_{B_{1 / n}(p)}|\nabla v|^{2}\right)^{1 / 2}
$$

and therefore

$$
\operatorname{dist}\left(v_{n}(p), S^{2}\right) \underset{n \rightarrow \infty}{\rightarrow} 0 \text { uniformly in } p \in S^{2} .
$$

By a small modification of v_{n} we may as well assume that

$$
\left\{\begin{array}{l}
v_{n} \in C^{\infty}\left(S^{2} ; \mathbb{R}^{2}\right), \\
\text { each } v_{n} \text { is constant near the north pole, } \\
v_{n} \rightarrow v \text { in } H^{1}\left(S^{2} ; \mathbb{R}^{3}\right), \\
\operatorname{dist}\left(v_{n}(p), S^{2}\right) \rightarrow 0 \text { uniformly in } p \in S^{2} .
\end{array}\right.
$$

Projecting $v_{n}(p)$ on S^{2} we may further assume that $v_{n}(p) \in S^{2} \forall n, \forall p \in S^{2}$. The sequence $u_{n}(x, y)=v_{n}\left(\pi^{-1}(x, y)\right)$ satisfies all the required properties.

In our next lemma we extend to Sobolev classes a property which is well known for smooth maps.

Lemma A.2. We have

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}|\nabla \phi|^{2} \geqq 2\left|\int_{\mathbb{R}^{2}} \phi \cdot \phi_{x} \wedge \phi_{y}\right| \forall \phi \in L^{\infty}\left(\mathbb{R}^{2} ; S^{2}\right) \quad \text { with } \phi_{x}, \phi_{y} \in L^{2}\left(\mathbb{R}^{2} ; \mathbb{R}^{3}\right) \tag{*}
\end{equation*}
$$

and if equality holds in $\left({ }^{*}\right)$, then ϕ is analytic.
Proof. Inequality (*) is trivial since $|\phi|=1$. Suppose now that we have some $\phi \in L^{\infty}\left(\mathbb{R}^{2} ; S^{2}\right)$ with $\phi_{x}, \phi_{y} \in L^{2}\left(\mathbb{R}^{2} ; \mathbb{R}^{3}\right)$, and such that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}|\nabla \phi|^{2}=2 \int_{\mathbb{R}^{2}} \phi \cdot \phi_{x} \wedge \phi_{y} . \tag{A.1}
\end{equation*}
$$

We shall prove that $\phi \in C^{\infty}\left(\mathbb{R}^{2} ; S^{2}\right)$. This will imply that ϕ is analytic. Indeed if equality in (A.1) holds then ϕ is a harmonic map and thus ϕ is analytic.

We now prove that ϕ is C^{∞} for example near 0 . We fix $\rho>0$ such that

$$
\begin{equation*}
\int_{D}|\nabla \phi|^{2} \leqq 2 \pi \tag{A.2}
\end{equation*}
$$

where $D=\left\{(x, y) \in \mathbb{R}^{2} ; x^{2}+y^{2}<\rho^{2}\right\}$ and we let $\gamma=\left.\phi\right|_{\partial D}$. We claim that

$$
\begin{equation*}
\int_{D}|\nabla \phi|^{2} \leqq \int_{D}|\nabla \psi|^{2}, \forall \psi \in H^{1}\left(D ; S^{2}\right), \psi=\gamma \quad \text { on } \partial D \tag{A.3}
\end{equation*}
$$

—which in turn implies that $\phi \in C^{\infty}\left(D ; S^{2}\right)$ by Morrey's regularity theory.
In order to establish (A.3) we assume by contradiction that there is some $\psi \in H^{1}\left(D ; S^{2}\right)$ with $\psi=\gamma$ on ∂D and

$$
\begin{equation*}
\int_{D}|\nabla \psi|^{2}<\int_{D}|\nabla \phi|^{2} \tag{A.4}
\end{equation*}
$$

We have

$$
\begin{equation*}
\int_{D} \psi \cdot \psi_{x} \wedge \psi_{y} \neq \int_{D} \phi \cdot \phi_{x} \wedge \phi_{y} \tag{A.5}
\end{equation*}
$$

Indeed if we had

$$
\begin{equation*}
\int_{D} \psi \cdot \psi_{x} \wedge \psi_{y}=\int_{D} \phi \cdot \phi_{x} \wedge \phi_{y} \tag{A.5'}
\end{equation*}
$$

we could introduce the map $\tilde{\phi}: \mathbb{R}^{2} \rightarrow S^{2}$ defined as follows:

$$
\begin{cases}\tilde{\phi}=\psi & \text { on } D \\ \tilde{\phi}=\phi & \text { on } \mathbb{R}^{2} \backslash \mathrm{D}\end{cases}
$$

and we would find

$$
\int_{\mathbb{R}^{2}} \tilde{\phi} \cdot \tilde{\phi}_{x} \wedge \tilde{\phi}_{y}=\int_{\mathbb{R}^{2}} \phi \cdot \phi_{x} \wedge \phi_{y},
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{2}}|\nabla \phi|^{2}=\int_{D}|\nabla \psi|^{2}+\int_{\mathbb{R}^{2} \mid D}|\nabla \phi|^{2}<\int_{\mathbb{R}^{2}}|\nabla \phi|^{2} \quad \text { (by (A.4)). } \tag{A.6}
\end{equation*}
$$

Applying $\left({ }^{*}\right)$ to $\bar{\phi}$ and combining the resulting inequality with (A.1) and (A.6) we would obtain a contradiction. Thus we have established (A.5).

Finally we consider the map $h: \mathbb{R}^{2} \rightarrow S^{2}$ defined as follows:

$$
\left\{\begin{array}{l}
h=\psi \text { in } D \\
h(x, y)=\phi\left(\frac{\rho^{2} x}{x^{2}+y^{2}}, \frac{\rho^{2} y}{x^{2}+y^{2}}\right) \text { for }(x, y) \in \mathbb{R}^{2} \backslash D
\end{array}\right.
$$

so that $h \in L^{\infty}\left(\mathbb{R}^{2} ; S^{2}\right), h_{x}, h_{y} \in L^{2}\left(\mathbb{R}^{2} ; \mathbb{R}^{3}\right)$ and

$$
\int_{\mathbb{R}^{2}} h \cdot h_{x} \wedge h_{y}=\int_{D} \psi \cdot \psi_{x} \wedge \psi_{y}-\int_{D} \phi \cdot \phi_{x} \wedge \phi_{y}
$$

We deduce from (A.5) that

$$
\left|\int_{\mathbb{R}^{2}} h \cdot h_{x} \wedge h_{y}\right| \geqq 4 \pi
$$

and thus $\int_{\mathbb{R}^{2}}|\nabla h|^{2} \geqq 8 \pi$. But

$$
\int_{\mathbb{R}^{2}}|\nabla h|^{2}=\int_{D}|\nabla \psi|^{2}+\int_{D}|\nabla \phi|^{2} \leqq 2 \int_{D}|\nabla \phi|^{2}
$$

(by (A.4)). Hence $\int_{D}|\nabla \phi|^{2} \geqq 4 \pi$-a contradiction with (A.2).

Acknowledgements. We thank S. Hildebrandt for drawing our attention to this problem which is raised in [4]. This paper was written while both authors were visiting Princeton University. We thank E. Lieb, the Mathematics Department and the Physics Department for their invitation and kind hospitality.

References

1. Aubin, Th.: Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55, 269-296 (1976)
2. Brezis, H., Coron, J. M.: Multiple solutions of H-systems and Rellich's conjecture. Commun. Pure Appl. Math. (to appear)
3. Brezis, H. Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. (to appear)
4. Giaquinta, M., Hildebrandt, S.: A priori estimates for harmonic mappings. J. Reine Angew. Math. 336, 124-164 (1982)
5. Jost, J.: The Dirichlet problem for harmonic maps from a surface with boundary onto a 2 -sphere with nonconstant boundary values. Invent. Math. (to appear)
6. Lemaire, L.: Applications harmoniques de surfaces riemanniennes. J. Diff. Geom. 13, 51-78 (1978)
7. Lieb, E.:Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math. (to appear)
8. Lions, P. L.: The concentration-compactness principle in the Calculus of Variations; The limit case. (to appear)
9. Nirenberg, L.: Topics in nonlinear functional analysis, New York University Lecture Notes 19731974
10. Schoen, R., Uhlenbeck, K.: Boundary regularity and miscellaneous results on harmonic maps. J. Diff. Geom. (to appear)
11. Taubes, C.: The existence of a non-minimal solution to the $\mathrm{SU}(2)$ Yang-Mills-Higgs equations on \mathbb{R}^{3}. Commun. Math. Phys. 86, 257-298, 299-320 (1982)
12. Wente, H.: The Dirichlet problem with a volume constraint, Manuscripta Math. 11, 141-157 (1974)

Communicated by A. Jaffe
Received April 11, 1983, in revised form June 20, 1983

[^0]: * Work partially supported by US National Science Foundation grant PHY-8116101-A01

 1 We use the standard notation for Sobolev spaces:
 $H^{1}\left(\Omega ; \mathbb{R}^{3}\right)=\left\{u \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right) ; \quad u_{x}, u_{y} \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right)\right\}$ and
 $H^{1}\left(\Omega ; S^{2}\right)=\left\{u \in H^{1}\left(\Omega ; \mathbb{R}^{3}\right) ; u(x, y) \in S^{2}\right.$ a.e. on $\left.\Omega\right\}$

