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Large spin splitting in the conduction band of transition metal dichalcogenide monolayers
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We study the conduction band spin splitting that arises in transition metal dichalcogenide (TMD) semiconductor

monolayers such as MoS2, MoSe2, WS2, and WSe2 due to the combination of spin-orbit coupling and lack of

inversion symmetry. Two types of calculation are done. First, density functional theory (DFT) calculations

based on plane waves that yield large splittings, between 3 and 30 meV. Second, we derive a tight-binding

model that permits to address the atomic origin of the splitting. The basis set of the model is provided by the

maximally localized Wannier orbitals, obtained from the DFT calculation, and formed by 11 atomiclike orbitals

corresponding to d and p orbitals of the transition metal (W, Mo) and chalcogenide (S, Se) atoms respectively.

In the resulting Hamiltonian, we can independently change the atomic spin-orbit coupling constant of the two

atomic species at the unit cell, which permits to analyze their contribution to the spin splitting at the high

symmetry points. We find that—in contrast to the valence band—both atoms give comparable contributions to

the conduction band splittings. Given that these materials are most often n-doped, our findings are important for

developments in TMD spintronics.

DOI: 10.1103/PhysRevB.88.245436 PACS number(s): 73.22.−f

I. INTRODUCTION

Spin-orbit and exchange are the two dominant spin-
dependent interactions in solids. Whereas the exchange
splitting is only present in magnetic materials, spin-orbit
coupling (SOC) is ubiquitous. The proposal of various physical
effects driven by spin-orbit interactions, such as the spin
Hall effect, both extrinsic1 and intrinsic,2,3 as well as the
quantum spin Hall phase,4,5 together with their experimental
confirmation,6,7 is opening new venues, enlarging the set of
materials that could give rise to practical spintronic devices.
The effects of spin-orbit interaction are particularly noticeable
in materials without inversion symmetry,8 because they present
spin splitting of the bands and the anomalous velocity is
nonzero.

From this perspective, the new generation9–12 of semi-
conducting two-dimensional (2D) crystals, such as transition
metal dichalgonides (TMD) monolayers (ML), is particularly
appealing. The spin-orbit interaction of the constituent atoms
is large and those 2D crystals have no inversion symmetry.
The resulting spin splitting of the bands gives rise to the so-
called spin-valley coupling,13 which has been experimentally
confirmed.11,14–18 This effect is conspicuously apparent in
the valence band (VB) of these materials showing the SOC
splittings ranging between 150 meV (MoS2) up to to 400 meV
(WSe2). The effect of SOC in the conduction band (CB), in
contrast, have been overlooked except for a few instances.19–22

However, given that very often 2D TMD can be n-doped and
the conduction-band spin splitting is definitely nonzero, it is
of the largest interest to study this effect.

The origin of the large spin-orbit splitting of the VB is well
understood: at the K points, the valence-band Bloch states
wave are mostly made of the metal d orbitals with ℓ = 2,mℓ =

2τ , where τ = ±1 labels the valley index.23 Therefore the
mℓSz component of SOC naturally gives a valley dependent
splitting of the bands. In contrast, the dominant contribution
of the CB lowest energy state comes from the ℓ = 2, mℓ = 0
orbitals, which cancels the spin-orbit splitting, calculated at
first in perturbation theory. Thus the conduction band spin

splitting was neglected in the influential seminal work of Xiao
et al.,13 proposing a k·p model, and most of the papers that
followed. Only very recently, attention is being paid to the
conduction-band splitting,19,24 using an extension of the k·p
original model,13 showing that interband coupling to remote
bands results in a finite CB splitting. However, the use of Bloch
states inherent in this method obscures the atomic origin of the
spin splitting, which remains to be determined and is the main
focus of the present work.

In order to address the relative contributions to the CB
splitting of the two chemical species in the unit cell, it would
be convenient to describe the electronic structure of MoS2

and related 2D crystals in terms of localized atomic orbitals.
However, most of the existing density functional theory
(DFT)25 calculations of the spin-orbit properties of these
materials use plane waves as a basis set.19,20,23,26–29 In order to
bridge the gap between plane wave and atomistic descriptions,
we make use of the tight-binding (TB) Hamiltonian with a
minimal basis set formed by the maximally localized Wannier
functions (MLWFs).30 This approach keeps a precision of the
plane-wave calculations,31,32 and at the same time allows a
description of the spin-orbit coupling using the intra-atomic
terms λL̂ · Ŝ. Similar approach (we call it TB + SOC) was used
to study the Bi2Te3, Bi2Se3, Sb2Te3 topological insulators,33

and its important advantage is that the atomic SOC of the
transition metal (TM) and chalcogenide (CH) atoms, can
be varied as the λTM and λCH parameters, which permits
to trace the origin of the spin splitting of the different
bands. The study of spin-orbit coupling physics in other two
dimensional crystals, such as graphene, using the atomic λL̂ · Ŝ
Hamiltonian has revealed very fruitful in the past.34–40

The rest of this paper is organized as follows. In Sec. II,
we present the DFT methodology and the electronic structure
of the four two dimensional crystals studied here, MoS2,
WS2, MoSe2, and WSe2. In Sec. III, we describe the way of
obtaining the MLWF basis and the resulting TB Hamiltonian.
In Sec. IV, we include SOC to the TB Hamiltonian as a sum of
atomic terms which depend on the λTM and λCH parameters,
and we determine values of these parameters. In Sec. V, we
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take advantage of the model of Sec. IV to discuss the relative
contribution to the spin-orbit splitting of the conduction band
of the two chemical species of the unit cell. In Sec. VI, we
discuss the limitations of the model and we present our main
conclusions.

II. ELECTRONIC STRUCTURE USING DFT

We now review the electronic properties of the MoS2,
MoSe2, WS2, and WSe2 MLs calculated with DFT in the
plane wave basis as implemented in the VASP package.41 We
take an energy cutoff Ecut = 400 eV. We use the projector-
augmented waves (PAW)42,43 method with the 4p, 5s, 4d

valence states of the TM atom, and the 3s, 3p valence states
of the CH atoms. The Perdew-Burke-Ernzerhof’s44 version
of generalized gradient approximation is used to describe the
exchange correlation density functional. We use the supercell
of the 1×1 periodicity and a vacuum not thinner than 17 Å.
The Brillouin zone (BZ) is sampled with the Ŵ-centered
(9 × 9 × 1) Monkhorst-Pack’s45 mesh of k points. We carry
out two kinds of calculations. One with SOC included and
the second one without SOC. From now on, we refer to
them as to the DFT and DFT + SOC, respectively. In the
DFT + SOC calculations, we use noncollinear version46 of
the PAW method and SOC is described using the spherical
part of the Kohn-Sham potential inside the PAW spheres.47

We briefly summarize the main features of the MoS2 ML
energy bands, as given by DFT and DFT + SOC [see Figs. 1(a)
and 1(b), respectively]. The results for the MoSe2, WS2 and
WSe2 MLs are very similar, and agree with the previous
calculations.20–23,27 The band gap of these semiconducting
MLs is direct, with the minimum of the CB and the top of the
VB located at the K and K ′ points of the BZ. All the bands
at the K points are spin split, but only in some instances,
the splitting is so large that is appreciated by inspection in
Fig. 1(b).

Analysis of the wave functions reveals that it is possible
to assign a spin projection along the normal to the plane
to the different Bloch states in the neighbourhood of the K

point. Taking advantage of this, in the following, we define the

FIG. 1. (Color online) Electrons energy band structures of the

MoS2 ML calculated with the DFT and TB methods: (a) bands

calculated without SOC and (b) bands calculated with SOC.

TABLE I. The spin-orbit splittings �n (n labels bands, see Fig. 1)

at the K point calculated for the considered TMD MLs with the

DFT + SOC, TB + SOC, or perturbation theory (PT) methods.

�n (meV)

Method n MoS2 WS2 MoSe2 WSe2

DFT + SOC C −3 27 −21 38

V 147 433 186 463

V1 24 70 27 88

V2 −50 −55 −188 −232

TB + SOC C −4 17 −28 −3

V 147 433 186 463

V1 24 66 29 64

V2 −50 −55 −188 −232

PT C −1 13 −11 7

splitting of a energy band n with momentum k as

�n(k) ≡ ǫn↑(k) − ǫn↓(k). (1)

With this convention, the splitting can be either positive
or negative. Time-reversal symmetry warrants that �n(k) =

−�n(−k), which implies that spin splittings have opposite
signs in K and K ′ valleys.13 The spin splittings of the relevant
bands at the K point are listed in Table I. The spin-orbit
splitting at the top of the VB, range between 147 meV for
MoS2 and 463 meV for WSe2. The same splittings for the CB
vary from −3 meV for MoS2 to 38 meV for WSe2. They are
smaller than those of the VB, but definitely large enough as
to be observed. It is worth noticing that only in the case of
the conduction band, the sign of � is not the same for all the
compounds, for reasons explained below.

We now discuss the population analysis of the DFT Bloch
states. This sheds some light on the origin of their spin
splittings. Both VB and CB are predominantly made of the
TM atom d (ℓ = 2) orbitals and a smaller but not negligible
contribution coming from the p (ℓ = 1, mℓ = ±1) orbitals of
the chalcogen atoms. The main difference between VB and
CB bands lies in the mℓ number of d orbitals, which is equal
±2 in the VB and 0 in the CB. This picture is in agreement
with earlier work.13,19–23 In the discussion below we shall also
make use the fact that the Bloch state labeled as V2 at the K

point is made exclusively of the chalcogen p orbitals (ℓ = 1,
mℓ = +1), without mixing to the metal d orbitals.

III. MAXIMALLY LOCALIZED WANNIER

FUNCTIONS BASIS

The Wannier functions48 (WF) permit to define a localized
basis set by performing a unitary transformation over a set of
Bloch states that diagonalize the DFT Hamiltonian. Although
there is not a unique way of doing such a wannierization,
we adopt the method criteria of maximal localization30 and
we use the WANNIER9049 code to find the basis of MLWFs.
This approach has already been used for MoS2 and related
transition metal dichalcogenides before,50 obtaining results in
line with those discussed here. In our case, the set is formed
by the group of 11 bands distributed around the band gap, as
shown in Fig. 1(a).

245436-2
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FIG. 2. (Color online) The MLWF basis used to express TB

Hamiltonian (2) of the MoS2 ML: (a) Side view of the monolayer,

(b) and (c) contour-surface plot of the three p orbitals of sulfur and the

five d orbitals of molybdenum. Figure prepared with XCRYSDEN.51

The first step of the procedure consist of the projection of
the Bloch states |ψk,n〉 over certain a set of localized functions,
which in this case, are taken as the p and d atomic orbitals
of the chalcogenide and metallic atom, respectively, motivated
by the population analysis discussed above. Importantly, in
the case of 2D TMDC, the MLWF are centered around the
atoms, their localization radius is smaller than the interatomic
distance and, in the neighborhood of the atoms, they have
the symmetry of the real spherical harmonics. A numerical
measure of the localization is given by the localization
functional30 	. In our case, after 100 iterative steps, we obtain a
total spread 18.23/20.85/20.28/23.25 Å2, summing over the 11
Wannier orbitals, for MoS2/MoSe2/WS2/WSe2, which yields
an average size per Wannier orbital of 1.29/ 1.38/1.36/1.45 Å.

The isosurfaces of the MLWF obtained for MoS2 are
presented in Fig. 2. Their real spherical harmonic symmetry
is apparent. In the following, we label the MLWF as |RO〉,
where R defines a unit cell inside the crystal and O refers to
one the 11 atomiclike MLWF inside the unit cell. We refer to
them using their real spherical harmonic symmetry, as shown
in Fig. 2. However, the shape (not shown) of the tails of the
MLWF is different from that of the core. Therefore MLWFs are
not identical to atomic orbitals for which the angular symmetry
is independent of the distance to the nuclei.

A. Wannier Hamiltonian

The wannierization procedure yields the basis of 11
atomiclike orbitals |RO〉, and—more importantly—a faithful

representation of the DFT Hamiltonian in that basis. Thus,
for a given pair of the atomiclike MLWF orbitals O and O ′,
located in unit cells R and R′, we obtain the representation of
the DFT Hamiltonian 〈RO|Ĥ |R′O ′〉. Taking advantage of the
Bloch theorem, the Hamiltonian for the entire crystal can be
block diagonalized in the usual way, resulting in the following
wave-vector-dependent Hamiltonian matrix:

HOO ′ (k) =
∑

R

eik·R〈0O|ĤDFT|RO ′〉, (2)

where the sum runs over all the unit cells of the crystal, labeled
with R. In practice, the localized nature of the MLWFs permits
to truncate the sum down to a few neighbors. In the following,
we shall denote by Ĥ0(k) the Hamiltonian operator associated
to the matrix of Eq. (2). Importantly, the dimension of the
matrix (2) is as small as the size of the MLWF basis (11 in
the present case), which makes the numeric diagonalization
computationally inexpensive. The resulting energy bands
are—not surprisingly (given their formal equivalence)—very
similar to those obtained from DFT as shown in Fig. 1(a).
Minor differences (not appreciated at the energy scale used in
the figure) arise from the truncation in the number of bands,
i.e., due to interband coupling to remote high- and low-energy
bands that have been excluded in the Wannier Hamiltonian but
are present in the DFT calculation.

The eigenstates of Hamiltonian (2) are a linear combina-
tion of the MLWFs which—as discussed above—have real
spherical harmonic symmetry close to the atom cores. In order
to understand the spin splittings, it is convenient to define
a new basis of orbitals localized around atom A, denoted by
|Aℓ

mℓ
〉, which has the symmetry of the eigenstates of the atomic

angular momentum operator. In other words, we move from a
real basis to the usual spherical harmonics with well defined
mℓ. In the rest of this paper, we use the following notation
to relate the nth band Bloch state at the K point with the
atomically localized orbitals |Aℓ

mℓ
〉:

|ψK,n〉 = αn

∣

∣TMℓ=2
mℓ

〉

+ βn

(∣

∣CH1ℓ=1
mℓ

〉

+ sn

∣

∣CH2ℓ=1
mℓ

〉)

, (3)

where αn and βn are coefficients, and sn = ±1 (+1 for the
bands C, V, V1 and −1 for C1 and V2).

Importantly, since the MLWFs do not rigorously have
spherical harmonic symmetry, the |Aℓ

mℓ
〉 are not rigorously

eigenstates of the atomic angular momentum operator. How-
ever, in the rest of this work, we adopt the approximation that
the |Aℓ

mℓ
〉 are indeed eigenstates of the atomic orbital angular

momentum operator. The validity of this approach is justified
by the fairly good agreement with the DFT results, discussed
below.

In Table II, we show |αn|
2 and |βn|

2. It is apparent that the
CB and VB are mostly made of the transition metal d orbitals,
with mℓ equal 0 and 2, respectively. The small variations of
the coefficient squares α2 and β2 along the different materials
inform of their similar electronic structure. It must be noticed
that the contributions of the orbitals localized on the CH
atoms, given by 2β2

n , are larger than 10%, and thereby they
can account for a fraction of the spin splitting, as it actually
happens. Inspection of the wave functions also reveals their
odd/even character with respect to reflection across the z = 0
plane. Specifically, the wave functions of bands C and V are
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TABLE II. Table of projections of Bloch states at K over the |Aℓ
mℓ

〉

basis [see Eq. (3)]. The leftmost columns denote the mℓ relevant for

each band. Since there are two equivalent chalcogen atoms per unit

cell, the normalization criterion is |αn|
2 + 2|βn|

2 = 1.

mℓ MoS2 WS2 MoSe2 WSe2

n |TM〉 |CH〉 α2
n β2

n α2
n β2

n α2
n β2

n α2
n β2

n

C1 −1 +1 0.63 0.19 0.63 0.19 0.65 0.18 0.65 0.18

C 0 −1 0.86 0.07 0.90 0.05 0.86 0.07 0.89 0.05

V +2 +1 0.80 0.10 0.79 0.11 0.82 0.09 0.79 0.10

V1 +1 0 0.28 0.36 0.25 0.38 0.34 0.33 0.30 0.35

V2 · · · −1 · · · 0.5 · · · 0.5 · · · 0.5 · · · 0.5

even and those of bands C1, V1, and V2 are odd, in agreement
with previous results.19

IV. ATOMIC SOC

The Wannier Hamiltonian just described is derived from a
DFT calculation where SOC has been deliberately excluded.
We now proceed to add the atomic spin-orbit coupling into the
TB Hamiltonian

V̂SOC =
∑

A

λAL̂A · Ŝ, (4)

where λA is a scalar that measure the strength of the atomic
SOC, L̂A is the angular momentum operator acting on an atom
A, and Ŝ are the spin 1/2 Pauli matrices operators. As discussed
after Eq. (3), we assume that

〈

Aℓ
mℓ

∣

∣L̂±

A

∣

∣Aℓ
m′

ℓ

〉

=

√

ℓ(ℓ + 1) − mℓ(m′
ℓ ± 1)δmℓ,m

′
ℓ+1,

(5)
〈

Aℓ
mℓ

∣

∣L̂z

A

∣

∣Aℓ
m′

ℓ

〉

= mℓδmℓ,m
′
ℓ
.

The addition of V̂SOC to Ĥ0(k)—the TB operator computed
without SOC—leads to the following TB Hamiltonian:

Ĥ(k) = Ĥ0(k) + V̂SOC, (6)

which is the main result of this work. The presence of V̂SOC

in Eq. (6) causes spin splittings �n, which depend on two
parameters λCH and λTM.

We are now in position of achieving two goals. First, we
can verify the validity of our approach fitting the λ parameters
that give a best agreement between the bands of Hamiltonian
(6) and those obtained with the DFT + SOC method, paying
special attention to the spin splittings �n close to the K point.
Second, we can determine the contribution each atom to the
spin-orbit splitting a various bands, with an attention to the
conduction band.

A. Perturbative estimate of λ

It is very instructive to obtain formal expressions for the �n

splittings treating V̂SOC to first order in perturbation theory. A
comparison of these expressions with the values calculated
using DFT + SOC method yields a first estimate for λCH and
λTM. Choosing ẑ as the spin quantization axis, the shift of the

TABLE III. The atomic SOC parameters λTM and λCH of the

considered TMD MLs. Comparison of the values estimated with

perturbation theory (PT) with the values calculated by fitting the �V

and �V2 splittings to the values obtained from DFT + SOC method

(see Table I).

λTM (meV) λCH (meV)

PT TB + SOC PT TB + SOC

MoS2 87 86 50 52

WS2 274 271 55 57

MoSe2 94 89 188 256

WSe2 261 251 232 439

levels with spin σ , to first order in perturbation theory, reads

δǫnσ (k) =
σ

2
〈ψnk|

∑

A

λ
A
L̂z

A
|ψnk〉. (7)

Since there are two unknowns, we implement this procedure
with two bands, |ψ

V2,K
〉 and |ψ

V,K
〉 at the K point. In the case

of V2 the contribution from the TM is strictly null, so that
first-order perturbation theory yields

�
V2

= 〈ψ
V2,K

|
∑

A

λ
A
L̂z

A
|ψ

V2,K
〉 = −λ

CH
, (8)

which permits to relate directly the splitting of the V2 band at
the K point with the chalcogenide spin-orbit coupling. In the
case of the VB, the first-order perturbation theory yields

�
V

= 2α2
C
λ

TM
+ 2β2

C
λ

CH
. (9)

Combining these two equations, we obtain an estimate for λTM

and λCH, shown in the PT columns of Table III, together with
the estimates using a nonperturbative fitting described below.

The first point to notice is that across different materials
(except in the case of Se) the values of λ undergo variations
smaller than 10%. This is in line with the general notion that
for a given atom, spin-orbit coupling does not vary much from
compound to compound. These small variations are a first
indication of the validity of our methodology. The second point
is that these values are in line with those reported for neutral
S/Se atoms (50/220 meV)52 as well as for Mo (78 meV).53

In order to understand why λSe > λMo in spite of the fact that
ZSe < ZMo, we recall that orbitals with larger n and/or larger ℓ

have a smaller overlap with the electric field of the nucleus and,
thereby, reduced spin-orbit coupling. This concept is illustrated
by the hydrogen model,53 in which λ ∝ (Z4)/[n3ℓ(ℓ + 1)(ℓ +

1/2)], leading to λSe ≫ λMo.
Moreover, it must be kept in mind that the localization

of Wannier and atomic orbitals can be different. Thereby, a
scaling of the λ for the Wannier orbitals, compared to the
atomic orbitals, is expected. Our calculations indicate that this
is not a large effect, endorsing the notion that the MLWF used
in our calculation are similar to the atomic orbitals.

B. Determination of λ with Wannier Hamiltonian

We now discuss a second and more accurate way to
determine the λTM and λCH parameters. For a given value

245436-4
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FIG. 3. (Color online) Comparison of spin-orbit splitting of the

conduction band around the K point calculated with the TB + SOC

and DFT + SOC methods.

of λTM and λCH, numerical diagonalization of the Hamiltonian
in Eq. (6) yields a set of spin-split bands.

As in the perturbative case, we determine λ’s by fitting the
spin splitting at the K point of both valence and V2 bands
to those obtained in the DFT + SOC calculations. The values
of λTM and λCH parameters estimated this way are listed in
the TB + SOC columns of Table III. They are close to the PT
values except the λSe in the WSe2 ML. Possible explanations
for this are detailed below.

In Fig. 1, we show a comparison of the DFT + SOC bands
(left panel) and with the just described TB + SOC method
(right panel). It should be noted that, fixing the splitting of two
bands at the K point, yields a fairly good agreement for all the
bands on the entire Brillouin zone, giving additional support
to the methodology.

A more quantitative comparison between the TB + SOC
and the DFT + SOC calculations is shown in Table I where
we compare the spin splitting of several bands at the K point
obtained with the two methods. Of course, by construction
of the method, the agreement for the VB and V2 is perfect.
In addition, it is apparent that the TB + SOC provides a
fairly good quantitative agreement for the spin splitting of
the conduction and V1 bands, except for WSe2. In Fig. 3,
we compare �C(k) for DFT + SOC and TB + SOC along the
Ŵ − K − M high symmetry points. It is apparent that the
TB method captures the nontrivial momentum dependence
featured by the DFT + SOC, although there is a systematic
off-set which is also larger for WSe2.

V. CONDUCTION BAND SPIN-ORBIT SPLITTING

We are now in a position to discuss the mechanism for the
conduction band splitting in the TMD monolayers. Inspection
of the mℓ values in Table II reveals that �C should vanish
to first order in λTM, and have a small linear contribution in
λCH. To check this out, we plot in Fig. 4 the �C(K) splitting,
keeping one of the λ values as given in table III (TB + SOC
values), and varying the other. The �C(λCH) dependence (for
λTM = const) is a straight line with negative slope. This can

FIG. 4. (Color online) Spin-orbit splitting of the conduction band

at the K point calculate for the considered TMD MLs as a function of

λTM (a) and λCH (b) parameters. The corresponding λCH (a) and λTM

(b) parameters are fixed to the values estimated with the TB + SOC

method (see Table I). Bold dots mark the λTM and λCH parameters

calculated with the same method.

be understood within first-order perturbation theory, which
yields the following expression for the chalcogen atom SOC
contribution to the splitting:

δǫ
(1)

C↑
(K) − δǫ

(1)

C↓
(K) = 〈ψ

K,C
|λ

CH
L̂z

CH
|ψ

K,C
〉 = −λ

CH
β2

C
, (10)

where the negative sign comes from the fact that, at the K point,
the CB Bloch state overlaps with the mℓ = −1 chalcogenide
atomiclike state (see Table II). With this equation, the negative
slopes ∂�C/∂λCH in Fig. 4(b) became clear. They are con-
trolled by βC (see Table II) and are the same for the tungsten
based WS2 and WSe2 compounds as well as molybdenum
based MoS2 and MoSe2 compounds.

In contrast, the �C(λTM) dependence (for λ
CH

= const)
is not linear—reflecting the inter band character of this
contribution—and has a positive sign. Of course, opposite
signs and trends are found at the K ′ point, on account of
time reversal symmetry. The well defined sign of the interband
contribution to the CB spin splitting is understood as follows.
First, we use second-order perturbation theory, that yields
positive (negative) shifts via interband coupling to states
below (above) in energy. Second, given the fact that at the
K point the Bloch states overlap with states with a well
defined handedness, together with the angular momentum
conservation, result in a spin-selective interband coupling.
Thus the TM SOC can connect the CB state (mℓ = −1) with
spin ↑ only to the states with the opposite values of mℓ (+1)
and spin (↓), which happen to be available at the band V1,
providing a positive contribution of the shift given by

δǫ
(2)

C↑
(K) =

1

4

λ2
TM

|〈ψ
C,K

|L̂−|ψ
V1,K

〉〈↑|Ŝ+|↓〉|2

ǫ
C
(K) − ǫ

V1
(K)

, (11)

whereas the coupling of the CB to V1 give a null shift of

δǫ
(2)
C↓(K). In contrast, the CB state with spin ↓, can only connect

to states with mℓ = −1,↑, which happen to be available at the
C1 state, giving a negative shift to the ↓ level and thereby
another positive contribution to the splitting:

δǫ
(2)

C↓
(K) =

1

4

λ2
TM

|〈ψ
C,K

|L̂+|ψ
C1,K

〉〈↓|Ŝ−|↑〉|2

ǫ
C
(K) − ǫ

C1
(K)

. (12)

We now define δC,V1 ≡ ǫC(K) − ǫV1(K) and δC,C1 ≡

ǫC(K) − ǫC1(K). Combining Eqs. (10)–(12) with Eq. (3),
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using |〈↑|Ŝ+|↓〉|2 = 1 and |〈ψC,K |L̂−|ψn,K〉|2 = 2α2
Cα2

n, with
n = C1,V1, we can write the following perturbative expression
for the CB spin splitting at the K valley:

�C(K) = −λ
CH

β2
C

+
(λ

TM
α

C
)2

2

(

α2
V1

δ
C,V1

−
α2

C1

δ
C,C1

)

. (13)

However, since δC,V1 > 0 eV and δC,C1 < 0 eV, the two
terms proportional to λ2

TM are positive. The values of �C(K)
calculated with Eq. (13) for the four TMD MLs are listed
in Table I (see row PT). It is apparent that the perturbative
calculation captures the trend of the nonperturbative results
calculation result and provides a qualitative insight of the
contribution of each atom to the conduction band splitting.

In summary, the CB splitting has two contributions with
opposite signs. For the K valley, the chalcogen SOC gives a
negative contribution and the transition metal a positive one.
This explains the material dependent sign. Thus WS2 combines
the largest positive with the smallest negative contribution,
resulting in a clearly positive splitting. On the opposite side,
MoSe2 combines the smaller TM SOC and the largest CH
SOC, resulting in the largest negative contribution. In MoS2,
the two competing contributions are the smallest (comparing
to the other considered MLs) and go a long way to cancel each
other: sulfur alone would give � ≃ −3 meV, whereas Mo
alone would give � ≃ +2 meV. It must be noted that previous
work by Liu et al.54 has a similar discussion using perturbation
theory but considering only contributions from the transition
metal atoms and dropping those coming from the chalcogens.
As a result, their perturbative estimates for the conduction
band spin splittings come out always with the same sign for all
materials, in contrast with DFT. This points out the relevance
of the chalcogen spin-orbit coupling, specifically for the MoS2

and MoSe2, for which the relative contribution coming from
the chalcogen is larger.

VI. DISCUSSION AND CONCLUSIONS

We now discuss some of the limitations of our model. First,
it is apparent that the agreement between the TB + SOC model
and the DFT + SOC results is not good in the case WSe2. This
is reflected in the discrepancy of the CB spin splitting shown in
Table I and in the large variations of the value of λSe determined
using perturbation theory and the nonpeturbative method (see
Table III). This is due in part to the truncation in the number
of bands in the TB method. Interband contributions to bands
omitted in the TB model contribute to the spin-orbit splitting,
and this effect is of course larger for WSe2 for which both λ’s
are largest.

A second contribution to this discrepancy might arise
from the fact that the MLWF are not exactly the same than

atomic orbitals. However, the differences are large only in
the interstitial region and should weakly affect the spin-orbit
physics. In contrast, the loss of atomic symmetry in the
interstitial region clearly explains why our attempts, not
discussed above, to parametrize the Wannier-TB Hamiltonian
with a Slater Koster55 parameters have failed. Therefore the
method discussed in this paper needs to be modified in order to
map the DFT calculation into a TB model parametrized with a
few Slater Koster parameters, in the line of recent work.54,56,57

A third missing ingredient in the TB + SOC, compared to
the DFT + SOC, are interatomic terms, as opposed to the
intra-atomic contributions described in Eq. (4).

In summary, DFT calculations show that semiconducting
two dimensional transition metal dichalcogenides have spin-
orbit splittings at the conduction band that—although smaller
than those at the valence band—are definitely large enough
to be relevant experimentally.58 In order to understand the
chemical origin of the splitting, we have derived a tight-binding
Hamiltonian (6) using the maximally localized Wannier func-
tions as a basis. Taking advantage of their atomiclike character,
it is possible to add the atomic spin-orbit coupling operators
to the tight-binding model, using the atomic λ as adjustable
parameters. We have found that this method describes very
well the bands in the energy range from −8 to 3 eV around
the Fermi level. The tight-binding model permits to determine
that both types of atoms, metal and chalcogen, contribute to
the conduction band spin splitting with opposite signs. This
naturally explains why conduction band spin-orbit splittings
of the WS2 and MoSe2 present opposite signs.

Our findings have implications on a wide array of
spin related physical phenomena that are being explored
in two dimensional transition metal dichalcogenides and
their nanostructures,59 including the conduction band Landau
Levels,60 spin relaxation,61 exciton spin selection rules,62

RKKY coupling,63 as well as the spin and valley Hall
effects.13,50,64

Note added. Recently, related work has been posted, see
Ref. 65.
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65A. Kormányos, V. Zólyomi, N. D. Drummond, and G. Burkard,

arXiv:1310.7720.

245436-7

http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1038/nature04937
http://dx.doi.org/10.1038/nature04937
http://dx.doi.org/10.1038/nature04937
http://dx.doi.org/10.1038/nature04937
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1038/nnano.2012.193
http://dx.doi.org/10.1038/nnano.2012.193
http://dx.doi.org/10.1038/nnano.2012.193
http://dx.doi.org/10.1038/nnano.2012.193
http://dx.doi.org/10.1038/nchem.1589
http://dx.doi.org/10.1038/nchem.1589
http://dx.doi.org/10.1038/nchem.1589
http://dx.doi.org/10.1038/nchem.1589
http://dx.doi.org/10.1021/cr300263a
http://dx.doi.org/10.1021/cr300263a
http://dx.doi.org/10.1021/cr300263a
http://dx.doi.org/10.1021/cr300263a
http://dx.doi.org/10.1038/nature12385
http://dx.doi.org/10.1038/nature12385
http://dx.doi.org/10.1038/nature12385
http://dx.doi.org/10.1038/nature12385
http://dx.doi.org/10.1103/PhysRevLett.108.196802
http://dx.doi.org/10.1103/PhysRevLett.108.196802
http://dx.doi.org/10.1103/PhysRevLett.108.196802
http://dx.doi.org/10.1103/PhysRevLett.108.196802
http://dx.doi.org/10.1038/ncomms1882
http://dx.doi.org/10.1038/ncomms1882
http://dx.doi.org/10.1038/ncomms1882
http://dx.doi.org/10.1038/ncomms1882
http://dx.doi.org/10.1038/nnano.2012.95
http://dx.doi.org/10.1038/nnano.2012.95
http://dx.doi.org/10.1038/nnano.2012.95
http://dx.doi.org/10.1038/nnano.2012.95
http://dx.doi.org/10.1038/nnano.2012.96
http://dx.doi.org/10.1038/nnano.2012.96
http://dx.doi.org/10.1038/nnano.2012.96
http://dx.doi.org/10.1038/nnano.2012.96
http://dx.doi.org/10.1103/PhysRevB.86.081301
http://dx.doi.org/10.1103/PhysRevB.86.081301
http://dx.doi.org/10.1103/PhysRevB.86.081301
http://dx.doi.org/10.1103/PhysRevB.86.081301
http://dx.doi.org/10.1038/srep01608
http://dx.doi.org/10.1038/srep01608
http://dx.doi.org/10.1038/srep01608
http://dx.doi.org/10.1038/srep01608
http://dx.doi.org/10.1103/PhysRevB.88.045416
http://dx.doi.org/10.1103/PhysRevB.88.045416
http://dx.doi.org/10.1103/PhysRevB.88.045416
http://dx.doi.org/10.1103/PhysRevB.88.045416
http://dx.doi.org/10.1103/PhysRevB.87.075451
http://dx.doi.org/10.1103/PhysRevB.87.075451
http://dx.doi.org/10.1103/PhysRevB.87.075451
http://dx.doi.org/10.1103/PhysRevB.87.075451
http://dx.doi.org/10.1103/PhysRevB.85.205302
http://dx.doi.org/10.1103/PhysRevB.85.205302
http://dx.doi.org/10.1103/PhysRevB.85.205302
http://dx.doi.org/10.1103/PhysRevB.85.205302
http://dx.doi.org/10.1016/j.ssc.2012.02.005
http://dx.doi.org/10.1016/j.ssc.2012.02.005
http://dx.doi.org/10.1016/j.ssc.2012.02.005
http://dx.doi.org/10.1016/j.ssc.2012.02.005
http://dx.doi.org/10.1103/PhysRevB.84.153402
http://dx.doi.org/10.1103/PhysRevB.84.153402
http://dx.doi.org/10.1103/PhysRevB.84.153402
http://dx.doi.org/10.1103/PhysRevB.84.153402
http://dx.doi.org/10.1103/PhysRevB.87.245421
http://dx.doi.org/10.1103/PhysRevB.87.245421
http://dx.doi.org/10.1103/PhysRevB.87.245421
http://dx.doi.org/10.1103/PhysRevB.87.245421
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevB.84.205325
http://dx.doi.org/10.1103/PhysRevB.84.205325
http://dx.doi.org/10.1103/PhysRevB.84.205325
http://dx.doi.org/10.1103/PhysRevB.84.205325
http://dx.doi.org/10.1103/PhysRevB.86.115409
http://dx.doi.org/10.1103/PhysRevB.86.115409
http://dx.doi.org/10.1103/PhysRevB.86.115409
http://dx.doi.org/10.1103/PhysRevB.86.115409
http://dx.doi.org/10.1126/science.1235547
http://dx.doi.org/10.1126/science.1235547
http://dx.doi.org/10.1126/science.1235547
http://dx.doi.org/10.1126/science.1235547
http://dx.doi.org/10.1103/PhysRevB.88.045412
http://dx.doi.org/10.1103/PhysRevB.88.045412
http://dx.doi.org/10.1103/PhysRevB.88.045412
http://dx.doi.org/10.1103/PhysRevB.88.045412
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/RevModPhys.84.1419
http://dx.doi.org/10.1103/PhysRevB.87.155304
http://dx.doi.org/10.1103/PhysRevB.87.155304
http://dx.doi.org/10.1103/PhysRevB.87.155304
http://dx.doi.org/10.1103/PhysRevB.87.155304
http://dx.doi.org/10.1103/PhysRevB.87.245114
http://dx.doi.org/10.1103/PhysRevB.87.245114
http://dx.doi.org/10.1103/PhysRevB.87.245114
http://dx.doi.org/10.1103/PhysRevB.87.245114
http://dx.doi.org/10.1088/1367-2630/12/6/065013
http://dx.doi.org/10.1088/1367-2630/12/6/065013
http://dx.doi.org/10.1088/1367-2630/12/6/065013
http://dx.doi.org/10.1088/1367-2630/12/6/065013
http://dx.doi.org/10.1103/PhysRevB.74.165310
http://dx.doi.org/10.1103/PhysRevB.74.165310
http://dx.doi.org/10.1103/PhysRevB.74.165310
http://dx.doi.org/10.1103/PhysRevB.74.165310
http://dx.doi.org/10.1103/PhysRevB.74.155426
http://dx.doi.org/10.1103/PhysRevB.74.155426
http://dx.doi.org/10.1103/PhysRevB.74.155426
http://dx.doi.org/10.1103/PhysRevB.74.155426
http://dx.doi.org/10.1103/PhysRevLett.103.146801
http://dx.doi.org/10.1103/PhysRevLett.103.146801
http://dx.doi.org/10.1103/PhysRevLett.103.146801
http://dx.doi.org/10.1103/PhysRevLett.103.146801
http://dx.doi.org/10.1103/PhysRevLett.103.026804
http://dx.doi.org/10.1103/PhysRevLett.103.026804
http://dx.doi.org/10.1103/PhysRevLett.103.026804
http://dx.doi.org/10.1103/PhysRevLett.103.026804
http://dx.doi.org/10.1103/PhysRevB.82.245412
http://dx.doi.org/10.1103/PhysRevB.82.245412
http://dx.doi.org/10.1103/PhysRevB.82.245412
http://dx.doi.org/10.1103/PhysRevB.82.245412
http://dx.doi.org/10.1103/PhysRevB.83.115436
http://dx.doi.org/10.1103/PhysRevB.83.115436
http://dx.doi.org/10.1103/PhysRevB.83.115436
http://dx.doi.org/10.1103/PhysRevB.83.115436
http://dx.doi.org/10.1103/PhysRevB.88.115426
http://dx.doi.org/10.1103/PhysRevB.88.115426
http://dx.doi.org/10.1103/PhysRevB.88.115426
http://dx.doi.org/10.1103/PhysRevB.88.115426
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.62.11556
http://dx.doi.org/10.1103/PhysRevB.62.11556
http://dx.doi.org/10.1103/PhysRevB.62.11556
http://dx.doi.org/10.1103/PhysRevB.62.11556
http://dx.doi.org/10.1103/PhysRevB.80.035203
http://dx.doi.org/10.1103/PhysRevB.80.035203
http://dx.doi.org/10.1103/PhysRevB.80.035203
http://dx.doi.org/10.1103/PhysRevB.80.035203
http://dx.doi.org/10.1103/PhysRev.52.191
http://dx.doi.org/10.1103/PhysRev.52.191
http://dx.doi.org/10.1103/PhysRev.52.191
http://dx.doi.org/10.1103/PhysRev.52.191
http://dx.doi.org/10.1016/j.cpc.2007.11.016
http://dx.doi.org/10.1016/j.cpc.2007.11.016
http://dx.doi.org/10.1016/j.cpc.2007.11.016
http://dx.doi.org/10.1016/j.cpc.2007.11.016
http://dx.doi.org/10.1103/PhysRevB.86.165108
http://dx.doi.org/10.1103/PhysRevB.86.165108
http://dx.doi.org/10.1103/PhysRevB.86.165108
http://dx.doi.org/10.1103/PhysRevB.86.165108
http://dx.doi.org/10.1016/S0927-0256(03)00104-6
http://dx.doi.org/10.1016/S0927-0256(03)00104-6
http://dx.doi.org/10.1016/S0927-0256(03)00104-6
http://dx.doi.org/10.1016/S0927-0256(03)00104-6
http://dx.doi.org/10.1007/BF00551162
http://dx.doi.org/10.1007/BF00551162
http://dx.doi.org/10.1007/BF00551162
http://dx.doi.org/10.1007/BF00551162
http://dx.doi.org/10.1039/tf9615701441
http://dx.doi.org/10.1039/tf9615701441
http://dx.doi.org/10.1039/tf9615701441
http://dx.doi.org/10.1039/tf9615701441
http://dx.doi.org/10.1103/PhysRevB.88.085433
http://dx.doi.org/10.1103/PhysRevB.88.085433
http://dx.doi.org/10.1103/PhysRevB.88.085433
http://dx.doi.org/10.1103/PhysRevB.88.085433
http://dx.doi.org/10.1103/PhysRev.94.1498
http://dx.doi.org/10.1103/PhysRev.94.1498
http://dx.doi.org/10.1103/PhysRev.94.1498
http://dx.doi.org/10.1103/PhysRev.94.1498
http://dx.doi.org/10.1103/PhysRevB.88.075409
http://dx.doi.org/10.1103/PhysRevB.88.075409
http://dx.doi.org/10.1103/PhysRevB.88.075409
http://dx.doi.org/10.1103/PhysRevB.88.075409
http://dx.doi.org/10.1103/PhysRevB.88.085440
http://dx.doi.org/10.1103/PhysRevB.88.085440
http://dx.doi.org/10.1103/PhysRevB.88.085440
http://dx.doi.org/10.1103/PhysRevB.88.085440
http://dx.doi.org/10.1038/ncomms2584
http://dx.doi.org/10.1038/ncomms2584
http://dx.doi.org/10.1038/ncomms2584
http://dx.doi.org/10.1038/ncomms2584
http://dx.doi.org/10.1103/PhysRevB.88.075404
http://dx.doi.org/10.1103/PhysRevB.88.075404
http://dx.doi.org/10.1103/PhysRevB.88.075404
http://dx.doi.org/10.1103/PhysRevB.88.075404
http://dx.doi.org/10.1103/PhysRevLett.110.066803
http://dx.doi.org/10.1103/PhysRevLett.110.066803
http://dx.doi.org/10.1103/PhysRevLett.110.066803
http://dx.doi.org/10.1103/PhysRevLett.110.066803
http://dx.doi.org/10.1103/PhysRevLett.111.026601
http://dx.doi.org/10.1103/PhysRevLett.111.026601
http://dx.doi.org/10.1103/PhysRevLett.111.026601
http://dx.doi.org/10.1103/PhysRevLett.111.026601
http://dx.doi.org/10.1038/nnano.2013.151
http://dx.doi.org/10.1038/nnano.2013.151
http://dx.doi.org/10.1038/nnano.2013.151
http://dx.doi.org/10.1038/nnano.2013.151
http://dx.doi.org/10.1103/PhysRevB.87.125401
http://dx.doi.org/10.1103/PhysRevB.87.125401
http://dx.doi.org/10.1103/PhysRevB.87.125401
http://dx.doi.org/10.1103/PhysRevB.87.125401
http://dx.doi.org/10.1103/PhysRevB.88.125301
http://dx.doi.org/10.1103/PhysRevB.88.125301
http://dx.doi.org/10.1103/PhysRevB.88.125301
http://dx.doi.org/10.1103/PhysRevB.88.125301
http://arxiv.org/abs/arXiv:1310.7720



