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Large (>100 �m), profusely ornamented microfossils comprise a
distinctive paleontological component of sedimentary rocks de-
posited during the Ediacaran Period (635–542 million years ago).
Smaller spinose fossils in Paleozoic rocks have commonly been
interpreted as algal cysts or phycomata, but the Ediacaran popu-
lations differ from modern algal analogs in size, shape, ultrastruc-
ture, and internal contents. In contrast, cysts formed during the
diapause egg-resting stages of many metazoans share features of
size, ornamentation, and internal contents with large ornamented
Ediacaran microfossils (LOEMs). Moreover, transmission electron
microscopic observations of animal-resting cysts reveal a 3-layer
wall ultrastructure comparable to that of LOEM taxa. Interpreta-
tion of these distinctive Ediacaran microfossils as resting stages in
early metazoan life cycles offers additional perspectives on their
functional morphology and stratigraphic distribution. Based on
comparisons with modern marine invertebrates, the recalcitrant
life stage represented by LOEMs is interpreted as an evolutionary
response to prolonged episodes of bottom water anoxia in Edi-
acaran shelf and platform environments. As predicted by this
hypothesis, the later Ediacaran disappearance of LOEM taxa coin-
cides with geochemical evidence for a marked decline in the extent
of oxygen-depleted waters impinging on continental shelves and
platforms. Thus, the form, diversity, and stratigraphic range of
LOEMs illuminate life cycle evolution in early animals as influenced
by the evolving redox state of the oceans.

acritarchs � Diapause egg cysts � origin of metazoans � paleoenvironment

S tratigraphically long-ranging prokaryotes and simple eukary-
otic forms dominate a Proterozoic microfossil record nearly

2 billion years in duration. Viewed in this context, the Ediacaran
radiation of large (generally �100 �m), often profusely-
ornamented microfossils represents a major departure in the
recorded history of life. Like the Ediacaran macrofossils of early
animals (1), these distinctive microfossils first appeared in the
wake of global glaciation and diversified over tens of millions of
years. Unlike macroscopic Ediacaran fossils, however, large
ornamented microfossils largely disappeared by �560 million
years ago (Ma), if not earlier (2).

The Ediacaran microfossil radiation has been interpreted as
an evolutionary response of protists to predation pressure from
bilaterian animals, providing an indirect indication of early
animal evolution (3). Yin et al. (4) (see also refs. 5 and 6),
however, documented multicellular structures previously inter-
preted as early cleavage-stage animal embryos (7) inside large
ornamented microfossils from ca. 580 � 20 Ma rocks in China.
This discovery suggests that the Ediacaran radiation of large
ornamented microfossils may instead provide a direct record of
early metazoans with a resting stage in their life cycle.

In this article, we provide further morphological and ultra-
structural evidence that animal resting cysts are well represented
in the Ediacaran microfossil record and explore the conse-
quences of this conclusion in terms of terminal Proterozoic
evolution and environmental history.

Large Ediacaran Microfossils: Systematic Interpretation

Large spheroidal microfossils, commonly with regularly ar-
ranged spines or other processes (large ornamented Ediacaran

microfossils, or LOEMs) were first reported from Ediacaran
cherts of the Doushantuo Formation, China (8) and have since
been recorded globally (9). These microfossils have organic
walls, and most are much larger than comparable Paleozoic
fossils (100 to �500 �m in vesicle diameter, not including
processes) (Fig. 1). Most also bear one to many spinose or
branched processes distributed across vesicle surfaces. LOEMs
are minor components of lower Ediacaran successions, but
increase dramatically in both abundance and diversity at higher
stratigraphic levels (2, 13). Where microfossils and carbon
isotopic data are available for the same succession, LOEMs
disappear within or just below an interval marked by a pro-
nounced negative C-isotopic excursion tightly constrained by a
551 � 0.7 Ma U-Pb date near its top but only loosely bracketed
from below by ca. 600–621 Ma detrital zircons (Fig. 2 and refs.
27, 32, and 33). Uppermost Ediacaran strata do not contain large
ornamented microfossils; instead they are dominated by simple
spheroidal forms (34). Ornamented organic-walled microfossils
radiated anew in the Early Cambrian, but Paleozoic forms are
generally �50 �m in diameter (Fig. 1). Any hypothesis advanced
to explain the biology and evolution of LOEM taxa must account
for their distinctive features of morphology and stratigraphy.

Evaluation of Candidate Relationships. Variably-ornamented, or-
ganic-walled microfossils occur widely in Lower and Middle
Paleozoic marine rocks. Called acritarchs, they are classified as
problematica, but commonly interpreted as algae. More than a
decade ago, however, van Waveren and Marcus (35) emphasized
the morphological similarities between some of these fossils and
diapause egg cysts produced by copepods and other animals.

Among extant phytoplankton groups, dinoflagellates and
green algae include species that produce decay-resistant cell
walls at some point in their life cycle. Resting stages with
recalcitrant walls also occur in most major clades of animals,
including the gemmules of sponges, cnidarian podocysts, and the
egg and diapause cysts of diverse bilaterian metazoans (10,
36–38). Other protists are known to produce recalcitrant cysts,
but to the best of our knowledge, none provide a close match for
the Ediacaran fossils under consideration. Green algae,
dinoflagellates, and animals, then, provide the principal actual-
istic comparisons to LOEM taxa. Observable characters that can
be used to evaluate hypotheses of systematic relationship include
size, shape, ultrastructure, internal contents, and, in principle,
wall chemistry.

A cardinal feature of LOEMs is their size. More than 80% of
described species have diameters �100 �m, and half exceed 200
�m (Fig. 1). This immediately casts doubt on dinoflagellate
affinities, because most modern and fossil dinocysts are 30–80
�m in diameter; dinocysts �120 �m are rare, and examples �200
�m are unknown (39, 40). [Diffusion within cells and through the
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boundary layer limits cell size in extant phyoplankton that lack
large vacuoles; very likely similar biophysical factors limited algal
cell size in the past (41).] Moreover, at least some large
Ediacaran microfossils preserve multicellular contents (4, 5, 11),
an observation inconsistent with dinoflagellate life cycles (42).
The interpretation of LOEM taxa as dinocysts also runs afoul of
evidence from lipid biomarkers; diagnostically dinoflagellate
steranes are rare in Ediacaran bitumens and do not become
common until the Mesozoic Era, coincident with the appearance of abundant, morphologically-diagnostic dinoflagellate micro-

fossils (43, 44).
Prasinophytes, phytoflagellates that form a paraphyletic base

to the green algal tree, include species that make reproductive
structures called phycomata, which can be up to 500 �m in
diameter (Fig. 1). Prasinophyte phycomata occur as microfossils
in Phanerozoic shales, and Arouri et al. (45) have documented
distinctively phycomate ultrastructure in a large spheroidal
microfossil from Ediacaran strata in Australia. No known
living or fossil prasinophyte, however, produces spinose struc-
tures comparable to those in Ediacaran rocks. In contrast,
chlorophycean zygospores and the resting cysts of some other
derived green algae may bear spinose or branched processes,
but are much smaller than LOEMs (an order of magnitude in
diameter; hence, 3 orders of magnitude by volume). Arouri et
al. (46) identified aliphatic polymers called algaenans in the
walls of some LOEMs, and on this basis they suggested green
algal relationships; however, in the modern biota, algaenan
production is largely limited to 2 specific clades of nonmarine
green algae, and there is reason to believe that at least some
of the algaenans in ancient marine rocks originated during
diagenesis (47).

The resting stages of invertebrate eggs and embryos encom-
pass the full range of sizes observed in LOEM taxa (Fig. 1) and
display a comparable range of morphologies (Fig. 3). Indeed,
among extant organisms, metazoans are the only group known
to produce preservable structures that match LOEM taxa in both
size and morphology. We do not argue that cysts of living animals
provide a precise systematic guide to LOEMs; available evidence
suggests that Ediacaran animals included stem group metazoans,
eumetazoans, and bilaterians only broadly related to extant
metazoans (7). We are more confident, however, in making the
converse argument. If found as fossils, the diapause stages
produced by living animals would be assigned to genera erected
for the description of Ediacaran microfossils. Comparisons
based solely on external morphology and size are incomplete,
however, because of potential convergence. Thus, we turn to

Fig. 1. Size frequency distributions of Ediacaran and Cambrian acritarch

species, with modern analog ranges. Data are from refs. 7–26.

Fig. 2. Stratigraphic relationships of major events in Ediacaran oceans. Dates

are indicated by: # (28), * (27), ˆ (29), and & (30). Carbon isotope data are from

refs. 2, 27, and 31. Geochemical data suggesting oxygenation of the oxygen

miniumum zone are bracketed by the beginning and end of the so-called

Shuram event, the large negative C isotopic anomaly within the Ediacaran

Period (2, 76, 77, 81).

A B

C D E

Fig. 3. Morphologies of LOEM taxa and a modern analog. (A) SEM of resting

cyst, modern arthropod Brachinella longirostris. (B) Alicesphaeridium sp.,

Vychegda Formation, northern Russia. (C) LOEM microfossil, Doushantuo

Formation, China. (D) LOEM microfossil, Officer Basin, Australia. (E) LOEM

microfossil, Kursovsky Formation, Siberia. (Scale bar: 100 �m for A and D; 200

�m for B and C; 150 �m for D and E.)
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ultrastructure to evaluate further the systematic relationships
between LOEM fossils and their extant analogs.

Insights from Ultrastructure. Transmission electron microscopy
(TEM) provides a strong test of proposed systematic affinities.
For example, the walls of some prasinophyte phycomata, includ-
ing the genera Pachysphaera, Halosphaera, and Cymbomonas,
have a distinctive ultrastructure marked by radially-oriented
punctae (refs. 48–50 and Fig. 4 A and B) that, as noted above,
has been recorded in large sphaeromorphic microfossils from
Ediacaran rocks (45). Other Ediacaran sphaeromorphs, how-
ever, preserve ultrastructural features incompatible with a
prasinophyte interpretation (Fig. 4 C and D and see also ref.
51), as do some sphaeromorphs from both older and younger
rocks (52, 53).

TEM observations show that some LOEMs preserve a com-
plex wall structure, with discrete layers of varying electron
density (45, 54). We analyzed additional LOEM specimens, with
similar results, seen clearly in Gyalsosphaeridium sp. from the
Ediacaran Officer Basin of Australia (Fig. 5A). This specimen
shows an electron-dense outer layer that extends outward to
form processes (Fig. 5 B and C), a fibrous and electron tenuous
middle layer, and a thin, electron-dense inner layer. Preserved as
an organic walled structure in siliciclastic sediments, this spec-
imen and others like it represent only the recalcitrant outer wall
of a resting stage. The ultrastructure of Gyalsosphaeridium sp.,
however, is consistent with taphonomic pattern displayed by
silicified LOEMs, which commonly show the diagenetic separa-
tion of an outer, process-bearing layer from the internal wall and
sometimes preserve internal contents lost to decay in organic-
walled forms (4–6, 11).

The ultrastructure of examined LOEM taxa clearly differen-
tiates them from punctate phycomata, and, despite having
multiple layers, it does not closely resemble the trilaminar
ultrastructure of other green algal walls (55). How, though, does
it compare with the resting cysts of animals? To address this

question, we imaged diapause cysts of the brine shrimp
Branchinella longirostris (Fig. 5D). Under TEM, the cyst wall
exhibits a thin, electron-dense outer layer from which processes
arise (Fig. 5E Inset), a thicker, more electron-tenuous and
fibrous middle layer (Fig. 5F), and an inner layer, similar in
electron density to the outer wall but thinner. Comparable
ultrastructure has been documented for other arthropods (56,
57). Like its external morphology, then, the ultrastructure of B.
longirostris compares closely with those of observed LOEM taxa
(Fig. 3).

Systematic Conclusions. Based on available evidence from size,
morphology, ultrastructure, and internal contents, the most
compelling interpretation of LOEM taxa is that they are meta-
zoan resting stages. We do not claim that all early animals had
a resting stage in their life cycle; taphonomic experiments (58)
indicate that cyst-forming animals should be differentially well-
represented in the fossil record. Nor do we claim that all LOEMs
must be metazoan cysts. Not all have close morphological
counterparts among living animals, although the stratigraphic
coherence of these fossils makes such a view tenable. Certainly,
however, species assigned to such genera as Alicesphaeridium,
Appendipshaera, Cerionopora, Gyalosphaeridium, Ericiasphaera,
Dicrospinosphaera, Sinosphaera, Tanarium, Tianzhushania, Tae-
digerasphaera, and Vidalia have attributes of size, shape, and,
where known, ultrastructure and internal contents consistent
with interpretation as metazoan cysts. Although these are un-
doubtedly only a subset of early to mid-Ediacaran animal
diversity, they form the most diverse record of early animals
currently available.

Large spheroidal microfossils that are unornamented (e.g.,
Fig. 4 C and D) may also include animal cysts, although this
interpretation must be evaluated on a case-by-case basis using
TEM. We note that large organic walled microfossils with
regularly-arranged processes on the vesicle surface are rare in
pre-Ediacaran assemblages, with only a single instance docu-
mented from Mesoproterozoic shales (59). Shuiyousphaeridium
maeroreticulatum exhibits regularly-arranged cylindrical pro-
cesses that flare outward; its ultrastructure, however, is distinct
from those of LOEMs (52).

Cyst formation has been documented in freshwater cho-
anoflagellates (60), but these differ markedly from animal cysts
in both size (a few microns) and shape (flask-shaped). Both
molecular clocks (32, 33) and biomarker molecules indicate that
sponges had evolved by the time the Marinoan glaciation ended
(61); thus, LOEM diversification corresponds to the time of
initial animal divergence and likely documents the diversifica-
tion of stem and early crown group metazoans.

Implications for Ediacaran Evolution and Environmental
Change

Peterson and Butterfield (3) interpreted Ediacaran microfossil
morphologies as a defensive response to the evolution of cell-
ingesting animal predators. Such an interpretation is plausible,
but has at least 2 weaknesses. First, the spines-as-defense
hypothesis is explicitly predicated on the assumption that pro-
tistan cells were not subject to predation before the evolution of
eumetazoans. Many protists feed primarily on bacteria or small
organic particles, but the ingestion of whole eukaryotic cells is
also widespread. Indeed, testate amoebae, planktonic forami-
nifera, and the large ciliate Stentor all have been observed to
capture and digest small animals and other protists (62–65).
Thus, to the extent that spinose cysts are protective, they might
well have been required as defense against protistan predators
that were present in the oceans long before the Ediacaran Period
(66). Spines and other ornamentation that effectively increase
cell size may actually provide better protection against protistan
predators than they do against invertebrates, especially if early

A B

C D

Fig. 4. Comparison of a modern algal analog and Ediacaran smooth-walled

microfossil. (A) Halosphaera sp. phycoma from Puget Sound. (B) TEM of

Halosphaera sp. phycoma. I indicates inside of phycoma. (C) Ediacaran Leio-

sphaera sp. (D) TEM Ediacaran Leiosphaera sp. (Scale bars: A and C, 50 �m; B

and D, 500 nm.)
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animals were filter feeders that would have more easily en-
trapped ornamented forms. When offered dinoflagellates in
feeding experiments, copepods choose unencysted prey over
encysted prey, but do not distinguish among cysts with differing
external morphologies (67). In many cases, encysted dinoflagel-
lates and diatoms simply pass through the gut of predators
unharmed (67, 68), which suggests that whereas encystment itself
may be a useful strategy for avoiding predation, resource-costly
spines are not necessarily so.

The second weakness of the spines-as-defense hypothesis is
stratigraphic: LOEM taxa disappear at about the time when trace
and body fossil evidence of bilaterian animals first appears (28, 69).
That is, just when LOEMs should become most useful as defense
against cell ingesting metazoans, they exit the record (Fig. 2).

If LOEM taxa are interpreted as metazoan, why might early
animals have evolved the capacity to encyst? Along modern
shorelines, many species produce encysted resting stages that
accumulate in sediments (70). Resting stages that have been
studied in detail have resistant multilayered walls, contain
abundant lipids as metabolic reserves, and have highly sup-
pressed metabolic rates (67). Although predation pressure can
induce cyst formation in modern lakes (71), encystment in
marine settings often occurs in response to physical rather than
biological challenges. For example, observations of marine cope-
pods show that anoxia can be a factor in the induction of a
diapause stage, causing females to switch production from
subitaneous (immediately hatching) to resting eggs (72, 73). Such
resting stages can settle into marine sediments and remain for
years or even decades before activating their ontogeny (71, 74).
Experimental data show that hypoxia completely inhibits hatch-
ing in a number of animals; when returned to normoxic condi-
tions after an interval of months to years, the same eggs hatch
with high rates of viability (75–77). Modern studies, thus, show
that deleterious environmental conditions are a powerful factor
in inducing diapause in marine organisms. Additionally, tapho-

nomic experiments on Artemia diapause cysts show that resting
stages have high preservation potential (58). In summary, then,
modern comparisons indicate the physical environment may
have played a role in the appearance of LOEM taxa in Ediacaran
oceans and emphasize the fossilization potential of such recal-
citrant ontogenetic stages.

Considering these data, we suggest that some early animals
had a protective resting stage in their life cycles to accommodate
variable and potentially-lethal environmental conditions, includ-
ing anoxia. A resting stage would be highly adaptive where the
probability was high that broadcast eggs would land in an
environment unfavorable for growth. Like the spines-as-defense
hypothesis, our view is predicated on function, but a different
and well-established function of cysts in modern environments.
It is linked to animal evolution directly in terms of life cycle
dynamics, as opposed to indirectly through ecology. Moreover,
our hypothesis provides a direct link to environmental history of
the oceans. Although the first appearance and radiation of
LOEMs reflect, in this view, early animal diversification in
unstable and commonly unfavorable environments, their later
Ediacaran disappearance finds ready explanation in the in-
creased oxygenation of the bottom waters that covered marine
shelves and platforms. The loss of LOEM fossils coincides
stratigraphically with geochemical data from C and S isotopes,
Fe speciation chemistry, and Mo abundances in shales that
collectively indicate the oxygenation of previously widespread
anoxia in the oxygen minimum zones of the world’s oceans (2,
78–80). Thus, the predictions this hypothesis makes about the
stratigraphic relationship between LOEM fossils and geochemi-
cal records of Ediacaran environmental evolution are borne out
by integrated geochemical and micropaleontolgical data.

In light of the above observations, it seems clear that early
metazoans had to contend with water column redox conditions
marked by pronounced spatial and temporal variation through
all phases of their life cycles. The development of a protected egg

A B C

D E F

Fig. 5. Comparison of a LOEM fossil and a modern crustacean analog. (A–C), Gyalosphaeridium sp. (A) Light micrograph. (B and C) TEM. (D–F) Branchinella

longirostris. (D) SEM. (E) TEM. (Inset) Hollow process. (F) TEM of outer wall. (Scale bars: A and D, 100 �m; B and C, 500 nm; E, 4 �m; F, 200 nm.)
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or embryo stage that could withstand adverse conditions would
have enabled early animals to survive through protracted inter-
vals of seafloor anoxia, only reactivating development when
ambient waters or sediments transitioned to more favorable
conditions. The time scales on which these transitions may have
occurred can also account for the large size of LOEM taxa. In
modern marine invertebrates, larger egg size enables organisms
to survive in resting stages for longer periods of time, because
larger size enables enhanced storage of the lipids required to
maintain a highly suppressed but still active metabolism (81).
Viewed physiologically, then, the size of LOEM taxa could
reflect a need to maintain resting metabolism over potentially
long periods of time.

Our hypothesis also has the potential to explain the highly
ornamented nature of LOEM taxa. The majority of modern
marine resting stages show sculpted or spiny coverings, in
contrast to subitaneous eggs, which rarely have ornamentation
(70). Thus, in modern groups, spines appear to play a role in
survival in the marine sedimentary environment. One possible
role could be that during episodic disturbance of the sediment
cysts with spines will stay suspended above the sediment–water
interface longer than settling sediments, allowing organisms to
perceive changes in water column conditions that may induce
excystment (70). In modern environments, spinose cyst mor-
phologies commonly record a life history response to the physical
environment, and by analogy or homology, LOEM taxa may
record the same life history strategy in Ediacaran animals.

Conclusions

The recognition that some Ediacaran microfossils were meta-
zoan prompts the question of whether animal cysts may lurk
among the diverse acritarchs in Paleozoic rocks. It has been
noted that Paleozoic acritarch diversity mirrors the diversifica-
tion of marine invertebrates, a correspondence generally inter-
preted in terms of trophic interactions (82, 83). Without ques-
tion, algal microfossils are present in Paleozoic acritarch
assemblages, but only careful TEM imaging will establish to what
extant Paleozoic acritarchs provide direct versus indirect indi-
cations of animal diversity, and whether the later Paleozoic
collapse of acritarch diversity records extinction among primary
producers, life-cycle alterations in response to a long-lasting state
change in marine redox profiles, or a combination of the two.

In any event, multiple lines of evidence support the hypothesis
that some large, ornamented, organic walled microfossils in

Ediacaran sedimentary rocks record resting stages of early
animals. This conclusion leads to the hypothesis that LOEM taxa
are a life stage evolved by early animals in response to challeng-
ing environmental factors faced by organisms in Ediacaran seas.
The disappearance of LOEMs coincides with geochemical evi-
dence for widespread oxygenation of the seafloor, removing a
major impetus for resting stage formation. In this view, true
biological extinction may not have governed the Ediacaran
microfossil record; the disappearance of LOEM taxa could
reflect life-cycle evolution in early animals. The pattern of
LOEM diversity observed in Ediacaran rocks may, thus, be a
combination of true taxonomic changes and an evolutionary and
physiological response to dramatic transitions in the biogeo-
chemical conditions of the world’s oceans.

Materials and Methods

All fossil samples used for ultrastructural analysis are from the Giles 1 core,

Officer Basin, Australia, meter levels 430 and 427.6. Nine specimens, 6 acan-

thomorphic and 3 smooth-walled, were examined by TEM. Information on

locality and stratigraphy can be found in ref. 84. Fossils were macerated

directly from core samples at the Harvard University Botanical Museum ac-

cording to the methods in ref. 85. Halosphaera phycomata were collected in

January and Feburary, 2006, from northern Puget Sound, Washington and

were fixed in 2% gluteraldehyde in sea water and transferred to distilled

water through a series of washes with decreasing ratios of sea water/distilled

water in 20% increments. Samples were then postfixed in 2% osmium tetrox-

ide for 1 h at 4 °C, then washed with distilled water and stored at 4 °C. For TEM,

both fossil and modern samples were dehydrated with ethanol in successive

20% increasing steps for 1 h at each step. Samples were embedded in a mixture

of 50%–50% Epon epoxy and ethanol for 1 h, 30%–70% for 12–24 h, then

100% Epon for 1 h under vacuum. Samples were embedded in a thin film and

hardened in a 60 oC oven for 12–24 h. Specimens were cut out and remounted

on blank capsules for microtoming with a diamond knife and mounted on

copper or Formvar-coated grids. Grids were stained by using uranyl acetate

and lead citrate to improve contrast and examined with a JEOL 2100 TEM or

a Zeiss SupraVP S-TEM.
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