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ABSTRACT. In this paper we study the existence and stability of asymp-
totically large stationary multi-pulse solutions in a family of singularly
perturbed reaction-diffusion equations. This family includes the gen-
eralized Gierer-Meinhardt equation. The existence of N-pulse homo-
clinic orbits (N ≥ 1) is established by the methods of geometric singular
perturbation theory. A theory, called the NLEP (=NonLocal Eigenvalue
Problem) approach, is developed, by which the stability of these patterns
can be studied explicitly. This theory is based on the ideas developed in
our earlier work on the Gray-Scott model. It is known that the Evans
function of the linear eigenvalue problem associated to the stability of
the pattern can be decomposed into the product of a slow and a fast
transmission function. The NLEP approach determines explicit leading
order approximations of these transmission functions. It is shown that
the zero/pole cancellation in the decomposition of the Evans function,
called the NLEP paradox, is a phenomenon that occurs naturally in sin-
gularly perturbed eigenvalue problems. It follows that the zeroes of the
Evans function, and thus the spectrum of the stability problem, can be
studied by the slow transmission function. The key ingredient of the
analysis of this expression is a transformation of the associated nonlocal
eigenvalue problem into an inhomogeneous hypergeometric differential
equation. By this transformation it is possible to determine both the
number and the position of all elements in the discrete spectrum of the
linear eigenvalue problem. The method is applied to a special case that
corresponds to the classical model proposed by Gierer and Meinhardt. It
is shown that the one-pulse pattern can gain (or lose) stability through a
Hopf bifurcation at a certain value µHopf of the main parameter µ. The
NLEP approach not only yields a leading order approximation of µHopf ,
but it also shows that there is another bifurcation value, µedge, at which
a new (stable) eigenvalue bifurcates from the edge of the essential spec-
trum. Finally, it is shown that the N-pulse patterns are always unstable
when N ≥ 2.
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1. INTRODUCTION

In this paper we study the existence and stability of stationary pulse or multi-pulse
solutions (Uh(x), Vh(x)) to a singularly perturbed two-dimensional system of
reaction-diffusion equations on the unbounded, one-dimensional domain. The
unboundedness of the domain reflects our choice to study a spatially extended
system: the spatial scale of the patterns is much smaller than the length scale of
the domain. This implies that the structure and the stability of the patterns does
not depend on the domain and/or boundary conditions.
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FIGURE 1.1. The stable 1-pulse homoclinic solution of the
scaled equation (1.7) in the classical Gierer-Meinhardt case (1.9)
with µ = 0.38 and ε = 0.1. Note that one has to multiply by
1/ε (1.6) to obtain the amplitudes of the corresponding solution
to the unscaled equation (1.2).
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The pulse solutions are assumed to be of a homoclinic nature:

lim
|x|→∞

(Uh(x), Vh(x)) = (U0, V0),

where (U0, V0) is an asymptotically stable trivial state that can be set to be (0,0)
by a translation, see Figure 1.1 on the facing page. In the most general setting, the
pulse pattern (Uh(x), Vh(x)) is assumed to be a solution of the system{

Ut = dUUxx + a11U + a12V +H1(U,V),
Vt = dVVxx + a21U + a22V +H2(U,V),

(1.1)

with x ∈ R and dV � dU , so that we can define the small parameter ε by
ε2 = dV/dU � 1. The nonlinear terms Hi(U,V), i = 1, 2, are assumed to be
smooth enough for (U,V) ≠ (0,0); the coefficients aij of the linear terms are
chosen such that the trivial pattern (U0, V0) ≡ (0,0) is asymptotically stable as a
solution to (1.1) with Hi(U,V) ≡ 0; see Remarks 1.2 and 1.3.

The (generalized) Gierer-Meinhardt system in morphogenesis ([15], [28], and
the references there) and the Gray-Scott model for autocatalytic reactions ([17],
[9], and the references there) are among the most well-known examples of systems
of the type (1.1) that exhibit (stable) singular pulse patterns of the type studied in
this paper. We refer to [27], [24] for many other explicit examples of systems of
the type (1.1) originating from applications in biology, chemistry, and physics.

The methods to be developed in this paper can be applied to the existence
and stability analysis of singular pulse solutions (Uh(x), Vh(x)) of (1.1) that can
either be large or small (with respect to ε), and positive or negative (see Remark
1.1). In this paper, we will focus on pulses that are large and positive, i.e., the
components of the solutions are positive, Uh(x) > 0 and Vh(x) > 0, and their
amplitudes scale with negative powers of ε, see Figure 1.1 on the preceding page.
The pulse solutions (Uh(x), Vh(x)) are also singular in the sense that the V -
component evolves on a spatial scale that is shorter than the U-component (since
dV � dU in (1.1)): Vh(x) is exponentially small except on x-intervals that are
so short that Uh(x) can be assumed to be constant (to leading order) on such an
interval, see Figure 1.1.

The leading order behavior for U , V � 1 of the nonlinear terms Hi(U,V)
in (1.1) can be represented by a small number of parameters. Nevertheless, we
consider a less general version of (1.1), in order to simplify the analysis:Ut = Uxx −µU +F1(U)G1(V),

Vt = ε2Vxx −V +F2(U)G2(V),
(1.2)

with µ > 0 and µ = O(1). The decomposition of the nonlinear terms Hi(U,V)
into the products Fi(U)Gi(V) is motivated by the fact that it is a straightforward
procedure to describe the leading order behavior of Fi(U)Gi(V) for U and V
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large and positive, while this leading order behavior will depend on the relative
magnitudes of U and V for general nonlinearities Hi(U,V), see Appendix A on
page 501. Thus, the restriction of (1.1) to (1.2) is merely a technical one; it has
no influence on the essence of the method. The same is true for the removal of
the linear coupling terms (i.e., a12 = a21 = 0) (Appendix A).

The ‘critical’ or ‘significant’ magnitudes of the homoclinic patterns (Uh(x),
Vh(x)) as functions of ε are determined by a straightforward scaling analysis. We
introduce

Ũ(x, t) = εrU(x, t), r > 0,

Ṽ (x, t) = εsV(x, t), s > 0,
(1.3)

so that the leading order behavior of Fi(U) and Gi(V) can be described by the
constants αi, βi and fi, gi (≠ 0):

Fi

(
Ũ
εr

)
=
(
Ũ
εr

)αi
(fi + εr F̃i(Ũ ; ε)),

Gi

(
Ṽ
εs

)
=
(
Ṽ
εs

)βi
(gi + εsG̃i(Ṽ ; ε)),

i = 1,2.(1.4)

Thus, we have implicitly assumed that Fi(U) and Gi(V) are smooth functions for
U , V > 0 that have a leading order behavior that is algebraic in U , respectively
V , when U , V become large. Both in the existence and in the stability analysis
of this paper we will have to assume that βi > 1 and that limV→0Gi(V) = 0
(i = 1, 2), which implies that the functions Gi(V) are at least C1 functions,
for all V . However, the αi’s might become negative (in fact, we need to impose
that α2 < 0, see Theorem 2.1), so that the functions Fi(U) are allowed to have
algebraic singularities as U → 0 (see Remark 1.3). The leading order behavior of
the nonlinear terms in (1.2) is thus described by r , s, αi, βi, hi, H̃i, and ε̂, where
the latter three expressions are defined by

(1.5) (fi + εr F̃i(Ũ, ε))(gi + εsG̃i(Ũ, ε)) = hi + ε̂H̃i(Ũ, Ṽ ; ε)

: hi = figi, ε̂ = εmin(r ,s).

The details of the scaling procedure are given in Appendix A on page 501. There,
it is shown that, with x = √εx̃, ε̃ = √ε, and

r = β2 − 1
D

> 0, s = −α2

D
> 0, D = (α1 − 1)(β2 − 1)−α2β1 ≠ 0,(1.6)
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equation (1.2) can be written in the ‘normal form’
2Ut = Uxx − ε2µU +Uα1Vβ1(h1 + ε̂H1(U,V ; ε)),

Vt = ε2Vxx − V +Uα2Vβ2(h2 + ε̂H2(U,V ; ε)),
(1.7)

where we have dropped the tildes. This equation is the subject of the analysis in
this paper.

An unusual aspect of the pulse solutions under consideration is that they are
homoclinic solutions to a point (U,V) = (0,0) which is a singularity of the non-
linearities in the equations. While it is possible to control the singularities in the
ODE’s arising in both the steady state existence analysis and the linearized stability
analysis, standard parabolic theory cannot immediately be applied to such basic
questions as the well-posedness of the partial differential equations (1.7) for solu-
tions in a neighborhood of the steady state solutions studied in this paper. The
abstract semigroup techniques that are usually employed when deriving nonlinear
stability from linearized stability are similarly unavailable. Standard treatments
usually require some amount of smoothness [18]. These are interesting and im-
portant issues, but they are not directly related to the present analysis. They are
the subject of work in progress, and will be addressed in future publications; see
also Remark 1.3.

The singularly perturbed ordinary differential equation for the stationary so-
lutions to (1.7) can be studied by the methods of geometric singular perturbation
theory [11], [21] in combination with the topological approach developed in [8]
(for the N > 1-pulses). It is shown in Section 5.3 that for any parameter combina-
tion in an open, unbounded part of the (α1, α2, β1, β2, h1, h2)-parameter space
(2.5), there exists a homoclinic N-pulse solution (N = 1, 2, . . . , N = O(1)) for
any µ > 0 (there is one additional condition on Gi(V), i = 1, 2, for V small,
(2.6), see Theorem 2.1). Here, the N describes the number of (fast) circuits the
V -component makes through the 4-dimensional phase space; theN-pulse solution
is homoclinic to the critical point (0,0,0,0) that corresponds to the trivial state
(U0, V0) ≡ (0,0). The function Vh(x) has, as a function of x, N distinct narrow
pulses at an O(| log ε|) distance apart. The function Uh(x) is to leading order
constant in the region where Vh(x) has its peaks, Uh(x) decreases to 0 on a much
slower spatial scale (Figure 1.1 on page 444). As was the case for a similar analysis
in the Gray-Scott model [9], the existence of these solutions depends crucially on
the reversibility symmetry (with respect to x) in (1.7) and the fact that the limit
problem for the slow system is ‘super slow’, see Section 2. The geometric analysis
also implies that (stationary) N-pulse homoclinic patterns of the type described
by Theorem 2.1 can only exist in the non-scaled system (1.2) when U and V are
scaled according to (1.3) with r and s as in (1.6).

After the existence is established, a theory is developed by which the stability
of the N = 1-pulse patterns can be determined explicitly as function of the param-
eters in the problem (in Sections 3, 4, 5). We will show that the method, called
the NLEP approach [6], [7], enables us to determine the number and position (to
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leading order) of all elements in the discrete spectrum of the linear eigenvalue
problem associated to the stability of the pattern. Here NLEP stands for NonLo-
cal Eigenvalue Problem. The NLEP approach can also be applied to the stability
analysis of the N-pulse patterns (N ≥ 2), as we shall show in Section 6.

The first step of the NLEP approach (Section 3) follows the ideas developed
by Alexander, Gardner, and Jones ([1], [13]): it is shown that the 4-dimensional
linear eigenvalue problem associated to the stability problem for the 1-pulse pat-
terns can be studied through the Evans function D(λ, ε). D(λ, ε) is in essence
the determinant of the 4×4-matrix formed by 4 independent functions that span
the solution space of the linear eigenvalue problem. By the general theory devel-
oped in [1], one can choose these functions such that D(λ, ε) = 0 if and only
if λ is an eigenvalue (counting multiplicities). It follows from the singular char-
acter of the equations that D(λ, ε) can be decomposed into a product of a fast
and a slow ‘transmission’ component [13]: D(λ, ε) = ft1(λ, ε)t2(λ, ε), where
f = f(λ, µ, ε) > 0 is an explicitly known non-zero factor, see (3.21).

For N = 1, the fast component, t1(λ, ε), corresponds to the Evans function
associated to the stability problem for the stationary homoclinic orbit V red

h (ξ) of
the scalar fast reduced limit problem

Vt = Vξξ − V + h2U
α2
0 V

β2 ,(1.8)

with h2 > 0, β2 > 1, and U0 > 0 an explicitly known constant (see (3.13));
ξ = x/ε is the fast spatial scale. Note that this eigenvalue problem can be written
as (Lf (ξ) − λ)v = 0, where v(ξ) is defined by V(ξ, t) = V red

h (ξ)+ eλtv(ξ). It
is shown, by a topological winding number argument (as in [1], [13]), that there
corresponds to any eigenvalue λjf of this fast reduced stability problem a zero

λj(ε) of t1(λ, ε) such that limε→0 λj(ε) = λjf (Section 4). Since it is well-known
that the stationary homoclinic solution to (1.8) is unstable with one eigenvalue
λ∗f = λ0

f > 0 (see also Proposition 5.6), we encounter the same ‘NLEP paradox’ for
this general problem as was studied in [6], [7] for the Gray-Scott model: although
t1(λ∗(ε), ε) = 0, we will find that

D(λ∗(ε), ε) = ft1(λ∗(ε), ε)t2(λ∗(ε), ε) ≠ 0.

The resolution to this paradox lies in a detailed analysis of the slow component
t2(λ, ε) ofD(λ, ε). Using the matched asymptotics approach originally developed
in [6], we determine an explicit expression for t2(λ, ε) in terms of an integral
involving the (uniquely determined) solution to an inhomogeneous version of the
reduced fast limit problem: (Lf (ξ) − λ)v = g(ξ), where g(ξ) is an explicitly
known function (see (4.7) and (4.11)). Since the operator (Lf (ξ) − λ) is not
invertible at the eigenvalue λ∗f , we deduce that t2(λ, ε) has a pole of order 1 at
λ = λ∗(ε). Hence,D(λ∗(ε), ε) ≠ 0.
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Due to the reversibility symmetry x → −x in (1.2) and (1.7), we know that
all eigenfunctions vjf (ξ) of the fast reduced stability problem are either even (for
j even) or odd (for j odd) as functions of ξ. We show that the zero of t1(λ, ε) at
λj(ε) is cancelled by a pole of t2(λ, ε) for all even j; however, the inhomogeneous
term g(ξ) is such that there is no pole at λj(ε) when j is odd (Corollary 4.4).
This implies that every eigenvalue λjf of the fast reduced limit problem with j odd
persists, for ε ≠ 0, as an eigenvalue for the full problem. However, neither of these
eigenvalues is positive when N = 1 (see Proposition 5.6), so that we can conclude
that all ‘relevant’ eigenvalues of the full instability problem are determined by the
zeroes of t2(λ, ε).

Using the leading order approximation of t2(λ, ε) we prove, by topological
winding number arguments, a number of general results on the instability of the
1-pulse as function of the parameters µ, α1, α2, β1, and β2. The most important
of these results, Theorem 5.1, states that there exists a µU > 0 such that the
homoclinic pattern (Uh(x), Vh(x)) is unstable for all µ < µU . This for instance
implies that the pulse pattern cannot lose its stability by an ‘essential instability’,
i.e., an instability caused by the essential spectrum (see [37], [38]).

Next, it is shown that the inhomogeneous problem
(Lf (ξ)−λ)v = g(ξ) can

be solved explicitly in terms of integrals involving hypergeometric functions. Such
a reduction is known in the literature on (linear) Schrödinger problems in the case
that the potential, in our case V red

h (ξ), is explicitly known (see for instance [26]).
This is only the case in (1.2) or (1.8), when β2 = 2 or β2 = 3 (see [6], which
corresponds to β2 = 2; here V red

h (ξ) = c1/(coshc2ξ)2 for certain c1, c2). In this
paper, we present a general transformation, that does not depend on an explicit
expression for V red

h (ξ), by which the inhomogeneous problem can be written as
an inhomogeneous hypergeometric differential equation. This equation can be
solved by the classical Green’s function method (see Appendix B on page 502).
This solution is substituted into the expression for t2(λ, ε).

Thus, we have obtained a completely explicit leading order approximation of
the slow transmission function t2(λ, ε) that determines the stability of the pat-
tern (Uh(x), Vh(x)), (5.21). Since we also can determine all zeroes of the fast
transmission coefficient t1(λ, ε), it follows that one can obtain all relevant infor-
mation on the spectrum associated to the stability of the 1-pulse patterns by the NLEP
approach.

It should be noted that the transformation into a hypergeometric form has
also been used to get an exact description of the spectrum of the reduced linear
operator Lf (ξ) − λ. It is for instance shown that λ∗f = 1

4(β2 + 1)2 − 1 and
that the number of (discrete) eigenvalues equals J + 1, where J = J(β2) satisfies
J < (β2 + 1)/(β2 − 1) ≤ J + 1. Hence, J(β2) → ∞ as β2 ↓ 1 and J ≡ 1 for all
β2 ≥ 3. See Proposition 5.6.

The general theory can be applied to the generalized Gierer-Meinhardt model
[20], [28], [29], [30]. This model corresponds to h1 = h2 = 1 and H1(U,V ; ε) =
H2(U,V ; ε) ≡ 0 in (1.7). Note that the elimination of the higher order nonlinear
terms in (1.7) is a rather strong restriction, since the magnitude of these terms can
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be�O(ε2) (1.5). The special case

α1 = 0, α2 = −1, β1 = β2 = 2, h1 = h2 = 1,
H1(U,V ; ε) = H2(U,V ; ε) ≡ 0,

(1.9)

in (1.7) corresponds to the original biological values of the parameters by Gierer
and Meinhardt [15], see also [20], [28], [29], [30]. It is shown in Section 5.3
that there are two unstable (real) solutions of the equation t2(λ, ε) = 0, i.e.,
eigenvalues, when µ is ‘too small’. As µ increases, these solutions merge, at
µ = µcomplex = 0.053 . . . (+O(ε)) and become a pair of complex conjugate
eigenvalues. This pair crosses the imaginary axis and enters the stable part of
the complex plane at µ = µHopf = 0.36 . . . (to leading order in ε). Hence, we
conclude that the homoclinic 1-pulse solution of the ‘classical’ Gierer-Meinhardt
problem (1.2) with (1.9) is spectrally stable for µ > µHopf (Theorem 5.11).
Moreover, the method also shows that there is a so-called ‘edge bifurcation’ at
µ = µedge = 0.77 . . . (+O(ε)): a new, fourth, eigenvalue appears from the edge
of the essential spectrum as µ increases through µedge; this eigenvalue remains
negative for all µ > µedge. The leading order approximations of µcomplex, µHopf ,
and µedge have been computed with the aid of Mathematica; the stability result
has been confirmed by a direct numerical simulation of (1.7), see Figure 1.1 on
page 444.

It is stressed that this result is only an application of the ‘NLEP approach’
to a special case: the method can be applied to the stability problem for any
(singular) homoclinic pattern (Uh(x), Vh(x)) to (1.2) (and in principle to (1.1),
see Appendix A).

The stability problem for theN-pulse patterns withN ≥ 2 can now be studied
along the lines of the machinery developed for the 1-pulse patterns. We can define
the Evans functionsDN(λ, ε) and determine its decomposition into the transmis-
sion functions tN1 (λ, ε) and tN2 (λ, ε). The most important ‘new’ insight for this
problem is that the linear problem associated to the fast reduced limit problem
will have more than one unstable eigenvalue. Intuitively this is clear, since instead
of studying the linearization of (1.8) around V red

h (x), one now has to linearize
around, roughly speaking, N copies of the V red

h (x)-pulse (at O(| log ε|) distances
apart). Therefore, one expects N unstable eigenvalues λN,jf , j = 1, 2, . . . , N that
all merge with λ∗f in the limit ε → 0 [35]. It is shown in Section 6 that, for

N ≥ 2, there is at least one such an eigenvalue, λN,1f , that is associated to an odd
eigenfunction. By the same mechanism as for the case N = 1, we can conclude
that there thus is a λN,1(ε) such that tN1 (λN,1(ε), ε) = 0, while tN2 (λN,1(ε), ε) is
well-defined (i.e., tN2 (λ, ε) has no pole at λN,1(ε)). Hence, we establish that all
N-pulse patterns are unstable for N ≥ 2 (Theorem 6.4).

Several aspects of the contents of this paper are related to existing literature,
such as: the existence and stability of singular ‘localized’ patterns in the Gray-Scott
model [9], [6], [7], [41]; the shadow system approach [20], [28], [29], [30], [2];
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the stability of multi-pulse solutions [35], [36], [2], [3]; and the SLEP method
[32], [33], [31], [19]. A section in which these relations are discussed concludes
the paper.

Remark 1.1. We focus on the existence and stability of large and positive so-
lutions to (1.1) and (1.2) in this paper. However, the methods we develop here
can also be used when one is interested in small solutions, or in negative solutions
or any ‘mixture’ (for instance 0 ≤ U � 1 and V � −1). See also Remarks A.1,
2.9, and 3.1.

Remark 1.2. If we assume that aij = O(1), then the solution (U,V) ≡ (0,0)
is asymptotically stable as solution to (1.1), with Hi(U,V) ≡ 0 when a22 < 0,
a11 + a22 < 0, and a11a22 − a12a21 > 0.

Remark 1.3. We do allow for singular behavior in the nonlinearities in equa-
tions (1.1), (1.2), (1.7) as U → 0, as is the case in the (generalized) Gierer-
Meinhardt model. We shall see in Section 2 that what makes the singularity at the
origin manageable in the existence (ODE) analysis is that the U and V compo-
nents of the wave decay respectively at slow and fast exponential rates as |x| → ∞.
In work in progress, we use semigroup theory in a suitable class of exponentially
decaying perturbations to study both well-posedness and nonlinear stability in a
neigborhood of the various waves analyzed in the present paper. This technique
was first introduced in [39] for wave solutions of parabolic systems, but a funda-
mental difference here is that the two components of the wave require different
exponential decay rates in order to control the singularities in the nonlinear terms.
It appears that this leads to a coherent theory of local existence and uniqueness for
the partial differential equations (1.7).

The issue of nonlinear stability is more delicate than well-posedness. A new
complication arises in the equations of perturbations for the (exponentially)
weighted variables, due to the exponential weights that are required to control
the singularities at the origin. It turns out that the linearized operator about the
wave (in the new, exponentially weighted variables) necessarily has essential spec-
trum that is tangent to the imaginary axis at the origin, and that this portion of
the spectrum cannot be removed by the approach of [39] involving the introduc-
tion of additional exponential weights. Hence the general results in [39], [18]
still cannot be applied. A similar problem with the essential spectrum occurs in
the nonlinear stability analysis of traveling wave solutions of a class of Ginzburg-
Landau equations. In [22], a nonlinear stability theory for these solutions for
classes of perturbations that decay algebraically at infinity is presented. It appears
that the technique developed in [22] is also relevant for the nonlinear stability of
the (linearly stable) waves studied in this paper.

2. THE EXISTENCE OF LARGE-AMPLITUDE MULTI-CIRCUIT
HOMOCLINIC SOLUTIONS



452 ARJEN DOELMAN, ROBERT A. GARDNER & TASSO J. KAPER

In this section, we will study the existence of stationary multi-circuit homoclinic
solutions to (1.7). The associated ODE can be written in two ways: as the slow
system 

u′ = p
p′ = −h1uα1vβ1 − ε̂uα1vβ1H1(u,v; ε)+ ε2µu

εv′ = q
εq′ = v − h2uα2vβ2 − ε̂uα2vβ2H2(u,v; ε),

(2.1)

where ′ denotes the derivative with respect to the slow spatial variable x, and as
the fast system



u̇ = εp
ṗ = ε[−h1uα1vβ1 − ε̂uα1vβ1H1(u,v; ε)]+ ε3µu
v̇ = q
q̇ = v − h2uα2vβ2 − ε̂uα2vβ2H2(u,v; ε),

(2.2)

where ˙ denotes the derivative with respect to the fast spatial variable defined by
ξ = x/ε. Note that both equations possess the reversibility symmetry

x, ξ → −x, −ξ, p → −p, q → −q.(2.3)

This symmetry will play a crucial role in the forthcoming analysis.
The central feature of interest in (2.2) is the semi-infinite, two-dimensional

plane

M= {(u,p,v, q) : v = q = 0, u > 0}.(2.4)

Note that the vector field defined by (2.2) might be singular in the limit u→ 0 (for
αi < 0, see Remark 1.3). As may be seen from a direct inspection of (2.2), when
ε = 0, this manifoldM is invariant under (2.2). In addition, it is also invariant for
all ε ∈ R, due to the assumptions (1.4) on Gi(V), and the conditions β1, β2 > 0
(which we will explicitly assume, see (2.5) in the hypotheses of Theorem 2.1).
Finally, there is one fixed point, S, on the boundary ofM, precisely at (0,0,0,0).
We can now state the main result of this section.

Theorem 2.1. Let Fi(U) and Gi(V) in (1.2) be such that (1.4) holds with

f1g1 = h1 > 0, f2g2 = h2 > 0,

α1 > 1+ α2β1

β2 − 1
, α2 < 0, β1 > 1, β2 > 1,

(2.5)
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and let Gi(V) satisfy

lim
V→0

Gi(V)
V

= 0, i = 1,2.(2.6)

Then, for any N ≥ 1 with N = O(1), (2.2) possesses an N-loop orbit γNh (ξ) homo-
clinic to S = (0,0,0,0); the u, v coordinates of γNh (ξ) are non-negative; and γNh (ξ)
is exponentially close to M, except for N circuits through the fast field during which
γNh (ξ) remains at least O(√ε) away fromM. Moreover, each γNh lies in the transverse
intersection of WS(M) and WU(M).

This theorem will be proven in Sections 2.1-2.4. The fact that the fixed point
S lies on the boundary of M, where u = 0, introduces a technical difficulty for
the application of the Fenichel geometric singular perturbation theory, since the
theory applies for u > 0. Moreover, since α2 < 0, there is a singularity in the
vector field at u = 0 that, a priori, could prevent the existence of orbits homoclinic
to S. Both of these issues are treated and resolved in the conclusion of the proof
of the theorem in Section 2.4.

Remark 2.2. The same geometric method by which the existence of the
(multi-pulse) homoclinic solutions is established can also be used to construct
several families of singular stationary spatially periodic patterns. This has been
done in [9], [25] in the case of Gray-Scott model and the ideas developed there
can be applied in a straightforward fashion to this more general case. Moreover,
unlike the Gray-Scott case, it is also possible to construct singular stationary ape-
riodic patterns in (2.2). The periodic, respectively the aperiodic, orbits consist of
a periodic, resp. arbitrary, arrangement of various kinds of fast N-loop excursions
interspersed with long ‘periods’ close toM. Both types of orbits are exponentially
close to certain N-loop homoclinic orbits toM that are not homoclinic to S. Fur-
thermore, it has been shown in [6] that the NLEP approach can also be used, at
least on formal grounds, to study the stability of non-homoclinic solutions (see
also [12]). We do not go any further into this subject of future research in this
paper.

2.1. The geometry of the slow manifoldsM and the dynamics of (2.2) on
and normal to them. The fast reduced limit ε ↓ 0 of (2.2) is:

v̈ = v − h2uα2vβ2 ,(2.7)

where u > 0 is a constant. System (2.7) is integrable and has a saddle fixed point
at (v = 0, v̇ = 0) that has an orbit (vh(ξ), qh(ξ) = v̇h(ξ)) homoclinic to it
when

h2 > 0,(2.8)

and
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β2 > 1,(2.9)

which are two conditions explicitly contained in the hypotheses (2.5) of Theorem
2.1. Note by (1.6) that the latter condition implies that

D = (α1 − 1)(β2 − 1)−α2β1 > 0,(2.10)

and that α2 < 0. We have assumed in the scaling that v = O(1). We now see that
even when 0 < v � 1, i.e., when 0 < V � O(1/εs) (and one must analyze the
stationary version of problem (1.2) with U = U0 constant, instead of the reduced
system associated to (1.7)), the point (V = 0, dV/dξ = 0) is a saddle equilibrium
as long as the condition (2.6) formulated in Theorem 2.1 holds. Also, we note
that in this case (when 0 < V � O(1/εs)), there are only two fixed points, i.e.,
two roots of

F2(U0)G2(V) = V,(2.11)

and the homoclinic orbit connecting (V = 0, dV/dξ = 0) is the same as that of
(2.7). These statements follow since U0 � 1 (we study large amplitude solutions)
implies by (1.4), (1.6), and (2.10) that |F2(U)| � 1, and hence, by (2.6), (2.11)
can only have solutions for |V | � 1. We can then apply the scaling analysis of
Appendix A on page 501 to draw the desired conclusion.

The manifold M, defined in (2.4), which is simply the union of the saddle
points (0,0) over all u > 0 and all p ∈ R, is normally hyperbolic relative to
(2.2) when ε = 0 for all v. Specifically, M has three-dimensional stable and
unstable manifolds which are the unions of the two-parameter (u, p) families of
one-dimensional stable and unstable manifolds, respectively, of the saddle points
(v, q) = (0,0).

The Fenichel persistence theory (see [10], [11], and [21]) implies that system
(2.2) with 0 < ε � 1 has a locally invariant, slow manifold, under the condition
that the vector field is at least C1. Hence, we have to impose (2.6) (Remark
2.4). Here, we know even more already, since the manifoldM is also invariant in
the full system (2.2) with ε 6= 0, as noted above, so that it is a locally invariant,
persistent slow manifold. In addition, the Fenichel theory states that, in the system
(2.2) with 0 < ε � 1, M has three-dimensional local stable and local unstable
manifolds, which we denote WSloc(M) and WUloc(M) in the full system, and that
these manifolds are O(ε, ε̂) close to their ε = 0 counterparts.

The flow onM is obtained by setting v, q = 0 in (2.1):

u′′ = ε2µu.(2.12)

Hence, it is linear and slow. Moreover, it is actually super slow, since d/dx = O(ε)
and x is already the slow variable. We will find that this ‘super slowness’ is crucial
both for the existence of the singular pulse solutions and for their stability. Finally,
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onM, there are one-dimensional stable and unstable manifolds (restricted toM)
that are asymptotic to the saddle S = (0,0,0,0) on the boundary ofM:

`U,S : p = ±ε√µu.(2.13)

Remark 2.3. The conditions (2.8) and (2.9) arise naturally in the search for
homoclinic orbits. First, the condition h2 > 0 arises since we look for positive
solutions u, and so the two terms on the right hand side of (2.7) are of opposite
signs, as is necessary. Second, if instead of (2.9) one has 0 < β2 < 1, thenM is still
invariant but no longer normally hyperbolic, as may be verified directly on (2.7).
Therefore, if the original nonlinearities H2(U,V) of (1.1) or F2(U) and G2(V) of
(1.2) are such that β2 < 1 and/or h2 < 0, then there cannot be a mechanism that
enables (positive) solutions to (2.1), (2.2) to be biasymptotic toM.

Remark 2.4. Since one has to use the original scalings of (1.2) when v be-
comes small, it is not necessary to impose the condition β1 > 1 to apply the
persistence results of [10], [11]. Nevertheless, we will see in Section 4.1 that we
need to assume that β1 > 1 in order to develop the ‘NLEP approach’ (see, how-
ever, Remark 3.2). Therefore, we have added this condition to (2.5). Note that
the conditions on the Gi(V)’s and the βi’s in Theorem 2.1 can be replaced by the
slightly stronger but simpler assumptions that, for i = 1, 2, Gi(V) = VG̃i(V)
with G̃i(0) = 0 and G̃i(V)→∞ algebraically as V →∞.

Remark 2.5. When G2(V) ∼ V in the limit V → 0, i.e., when (2.6) no
longer holds, the character of the critical points depends on F2(U). We do not
consider this case in the paper. Also, the above arguments about G2(V) and the
number of fixed points need not hold for general (nonseparable) reaction terms,
H2(U,V) ≠ F2(U)G2(V). In the more general case, one needs to impose another
(nontrivial) non-degeneracy condition to avoid additional complications.

2.2. One-circuit orbits homoclinic to M. One-circuit orbits homoclinic
to M in the full system (2.2) with 0 < ε � 1 will lie in the transverse intersec-
tion of the extensions WU(M) and WS(M) of the local manifolds WUloc(M) and
WSloc(M), and their excursions in the fast field will lie close to a homoclinic orbit
of (2.7) for some particular value of u.

In order to detect these solutions, we use a Melnikov method for slowly vary-
ing systems. Here, we refine the approach of [34] a little bit so that we have
better control over the O(ε̂) terms. In particular, it is helpful to make use of the
integrable planar system

v̈ = v − h2uα2vβ2 − ε̂uα2vβ2H2(u,v; ε),(2.14)

with q = v̇, and u > 0 fixed, rather than the reduced system (2.7). System (2.14)
has a conserved quantity, or energy, given by:

K(ξ) = 1
2
q2 − 1

2
v2 + h2

β2 + 1
uα2vβ2+1 + ε̂uα2

∫ v
0
ṽβ2H2(u, ṽ; ε)dṽ.(2.15)
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By construction, K|M = 0, and K < 0 for orbits inside the homoclinic orbit
(ṽh(ξ;u0), q̃h(ξ;u0)) of (2.14), while K > 0 for orbits outside. In addition, a
direct calculation yields:

(2.16) K̇ = εα2uα2−1p
[
h2

β2 + 1
vβ2+1

+ ε̂
∫ v

0
ṽβ2

(
H2(u, ṽ; ε)+ 1

α2
u
∂H2

∂u
(u, ṽ; ε)

)
dṽ

]
.

Hence, K̇ = O(ε), also by construction.
Now, since K|M ≡ 0, any orbit γ(ξ) = (u(ξ),p(ξ), v(ξ), q(ξ)) of (2.2) that

is homoclinic toM must satisfy the condition

∆K(u0, p0) =
∫∞
−∞
K̇(γ(ξ))dξ = 0.(2.17)

Here, without loss of generality, we assume that the orbits γ(ξ) homoclinic toM,
if they exist, are parameterized such that γ(0) = (u0, p0, v0,0). Therefore, (2.16)
implies:

(2.18) εα2

∫∞
−∞
uα2−1p

[
h2

β2 + 1
vβ2+1 + ε̂

∫ v
0
ṽβ2

(
H2(u, ṽ; ε)

+ 1
α2
u
∂H2

∂u
(u, ṽ; ε)

)
dṽ

]
dξ = 0.

The condition (2.18) is exact in the sense that we did not introduce any approx-
imations so far. Moreover, as we now show, if the zero of ∆K is a simple one,
then the homoclinic orbit γ(ξ) lies in the transverse intersection of WS(M) and
WU(M).

Now, WS(M) and WU(M) are three-dimensional manifolds. Thus, in the
four-dimensional phase space of (2.2), one expects that WS(M) ∩ WU(M) is a
two-dimensional manifold, or, equivalently, that there is a one-parameter family
of orbits γ that are homoclinic toM. The analysis carried out in the remainder of
this subsection reveals that this is indeed the case (if (2.5) holds).

Since WS(M) and WU(M) are O(ε, ε̂) close to the (u0, p0)-family of ho-
moclinic orbits to (2.7), as stated above, both WS(M) and WU(M) intersect the
three-dimensional hyperplane {q = 0} transversely in two-dimensional manifolds,
defined as I−1(M) and I+1(M), respectively. These manifolds can be parameter-
ized by (u0, p0):

I±1(M) = {(u0, p0, v±1
0 (u0, p0),0), u0 > 0} ⊂ {q = 0}.(2.19)

Thus, for every u0 > 0 and p0 ∈ R, there exists a v−1
0 such that the solution

γ(ξ) of (2.2) with γ(0) = (u0, p0, v−1
0 ,0) satisfies limξ→∞ γ(ξ) ∈ M. Similarly,
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there exists a v+1
0 such that the solution γ(ξ) of (2.2) with γ(0) = (u0, p0, v+1

0 ,0)
satisfies limξ→−∞ γ(ξ) ∈M (where the superscripts are indices, not powers). Note
that using the above limits is, in fact, a slight abuse of notation. The slow manifold
M has a boundary ∂M= {(u,p,v, q) : u = v = q = 0} (2.4) and the vector field
(2.2) can be singular when u → 0. However, in this paper we are only interested
in orbits that are homoclinic to S ∈ ∂M and we will show in Section 2.4 how to
extend the geometric analysis to the boundary ofM.

Having established that the sets I−1(M) and I+1(M) are nonempty, we now
show they intersect in the hyperplane {p = 0}. We remark that we have a choice in
how to show this. We can use either the homoclinic orbit (vh(ξ), qh(ξ)) of (2.7)
or the homoclinic orbit (ṽh(ξ), q̃h(ξ)) of (2.14) to approximate the solutions on
WU(M) and WS(M), and we choose the latter, as is consistent with our choice of
K. In particular, using ṽh to approximate the fast-field behavior of the solutions to
(2.2) in WU(M) and WS(M), the exact condition (2.18) implies that, to leading
order, one-circuit homoclinic solutions must satisfy:

(2.20) εα2u
α2−1
0 p0

∫∞
−∞

[
h2

β2 + 1
ṽβ2+1
h + ε̂

∫ ṽh
0
ṽβ2

(
H2(u0, ṽ; ε)

+ 1
α2
u0
∂H2

∂u
(u0, ṽ; ε)

)
dṽ

]
dξ +O(ε2) = 0.

The improper integral exists because ṽh converges exponentially to zero as ξ →
±∞, and hence so does the entire integrand. Then, since the integrand in (2.20)
is positive and since u0 is assumed to be positive, we see that it is only possible to
satisfy (2.20) if p0 is O(ε). In addition, we conclude that

∆K(u0, p0) = O(ε2) for p0 = O(ε).(2.21)

Finally, for the one circuit homoclinic orbits we are after here, we now show that
not only is it necessary that p0 = O(ε), but it is in fact the case that p0 ≡ 0. We
go back to the exact condition (2.18). For any solution

γ(ξ) = (u(ξ),p(ξ), v(ξ), q(ξ)) ∈ WU(M)

with γ(0) = (u0,0, v+1
0 (u0,0),0) ∈ I+1(M), the reversibility symmetry (2.3)

implies that

u(−ξ) = u(ξ), p(−ξ) = −p(ξ),(2.22)

v(−ξ) = v(ξ), q(−ξ) = −q(ξ),

and, hence also, v+1
0 = v−1

0 . Therefore, along γ(ξ), the integrand in (2.18) is an
odd function of ξ, and the integral vanishes identically. This, in turn, implies that
WU(M)∩WS(M) precisely in the orbit γ(ξ) and that the set I+1(M)∩I−1(M) ⊂
{p = 0}.
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2.3. Multi-circuit orbits homoclinic to M. In this subsection, we extend
the results for one-circuit homoclinic orbits toM from the previous subsection to
multi-circuit orbits homoclinic toM.

As we shall show below, the global stable and unstable manifolds of M in-
tersect the hyperplane {q = 0} many times. The sets I±1(M) defined above can
be seen to be the first intersections of WS(M) and WU(M) with {q = 0}: an
orbit γ(ξ) with initial condition in I−1(M) only follows the reduced fast flow
for half a circuit and ‘gets caught’ by M, i.e., it does not leave an exponentially
small neighborhood of M anymore. Orbits that have their initial conditions in
the second intersections of WU,S(M) with {q = 0}, whose existence we shall show
shortly, follow the fast flow for two half circuits through the fast field before set-
tling down on M. Hence, they each make one full circuit. We label these sets
of initial conditions (u0, p0, v±2(u0, p0),0) by I±2(M). For initial conditions in
them, v±2

0 (u0, p0) are strictly O(√ε).
Similar definitions can be given for the n-th intersection sets I±n(M). These

sets are also two-dimensional manifolds. For n even, v±n0 is strictly O(√ε), since
these solutions make n/2 full circuits in the fast field; while, for n odd, v±n0
is strictly O(1) (and O(ε, ε̂) close to the intersection of the corresponding un-
perturbed homoclinic orbit of (2.7) with {q = 0}), since these solutions make
a half-integer number of circuits in the fast field. Below, we will show that all
I±n(M) exist. Finally, we will show that I−m(M) ∩ In(M) for all m + n even,
and it is precisely in these intersections in which the orbits homoclinic toM, that
make (m+n)/2 full circuits through the fast field of (2.2), lie.

Remark 2.6. Intersections withm+n odd are ruled out due to the locations
of v−m0 and vn0 , since one of these is strictly O(√ε), while the other is strictly
O(1).

We first establish that the curves I±n(M) exist for all n > 1 (if (2.5) holds),
focusing on the case of I+n(M), since the case of I−n(M) may be done similarly.
The plane {p0 = 0} separates I+1(M) into two parts. Orbits with initial condi-
tions in the ‘wrong’ part of I+1(M) are ‘outside’ the three-dimensional manifold
WS(M) and follow the unbounded part of the integrable flow (2.14) in forward
‘time’ ξ. Hence, they do not return to {q = 0}. On the other hand, orbits with
initial conditions in the ‘right’ part of I+1(M) are ‘inside’ the three-dimensional
manifold WS(M) and follow the bounded part of the integrable flow (2.14) in
forward ‘time’ ξ. Hence, there is the possibility that they can return to {q = 0}.

In order to deduce which part of I+1(M) does return to {q = 0}, i.e., which
part of I+1(M) is the ‘right’ part, we consider an orbit

γ+1(ξ) = (u+1(ξ), p+1(ξ), v+1(ξ), q+1(ξ))

with γ+1(0) = (u+1
0 , p

+1
0 , v

+1
0 ,0) ∈ I+1(M). We assume that p+1

0 is strictly
O(ε), i.e., γ+1(0) is not too close to I−1(M). Thus, γ+1 is at its minimal distance
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(O(√ε)) fromM when ξ = Ξ = O(| log ε|). Then, since γ+1(ξ) →M as ξ → −∞
and since K ≡ 0 onM, we see that

K(γ+1(Ξ)) = ∫ Ξ
−∞
K̇(γ(ξ))dξ(2.23)

= ε α2h2

β2 + 1
(u+1

0 )
α2−1p+1

0

∫∞
−∞
ṽβ2+1
h dξ +O(ε1+σ )

for some σ > 0 (since ṽh(ξ) approaches 0 exponentially fast), where we have
made the same approximation as in (2.20). Thus, since h2 > 0 and α2 < 0 (1.6),
(2.10), we have

K(γ+1(Ξ)) < 0⇐⇒ p+1
0 > 0.(2.24)

Finally, since K < 0, we know from the definition (2.15) of K that γ+1(Ξ) is
‘inside’ WS(M); and, also that γ+1(Ξ) intersects {q = 0} again, i.e., I+2(M) is
nonempty. Correspondingly, the above argument shows that if p+1

0 < 0, then
K > 0 and the orbit γ+1(Ξ) is ‘outside’ WS(M). Hence, it cannot intersect
the hyperplane {q = 0} again. The same argument in backwards ‘time’ yields
that orbits γ−1(ξ) with γ−1(0) = (u−1

0 , p
−1
0 , v

−1
0 ,0) ∈ I−1(M) intersect {q =

0} again when p−1
0 < 0 (but not when p−1

0 > 0). Thus, both I±2(M) exist.
Furthermore, the above argument may be extended to show that all I±n(M) exist,
and we denote the points in these sets by (u±n0 ,0, v±n0 (u±n0 ,0),0), respectively.

Next, we show that the intersections I+2(M) ∩ I−2(M), and their higher
order equivalents, exist. Orbits with initial conditions in I±2(M) can also be
approximated by ṽh(ξ) (2.14) to leading order, since both circuits must be O(ε)
close to ṽh(ξ). Thus, to leading order,

∆K = 2ε
α2h2

β2 + 1
(u+1

0 )
α2−1p+1

0

∫∞
−∞
ṽβ2+1
h dξ,(2.25)

and we find that the p-coordinate p0 of the initial condition must also be 0, to
leading order, for a two-circuit homoclinic orbit with initial conditions in I+2(M)∩
I−2(M). Moreover, not only is p0 = 0 to leading order, but p0 ≡ 0 exactly, since
the reversibility symmetry (2.3) implies that the homoclinic orbits with initial
conditions p0 = 0 in I+2(M)∩I−2(M) are also symmetric, just as we saw for the
one-circuit orbits. That is, we have shown

I+2(M)∩ I−2(M) ⊂ {p = 0} exactly.(2.26)

Finally, the same argument may be repeated inductively to show that

I+n(M)∩ I−n(M) ⊂ {p = 0} for all n = O(1) exactly.(2.27)
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It remains to determine, for which pairsm ≠ n andm+n even, whether or not

I+n(M)∩ {p = 0} ≠∅ and I−m(M)∩ {p = 0} ≠∅,(2.28)

so that we also have nonsymmetric multi-circuit homoclinic orbits to M. As
shown above, only those orbits with initial conditions in I+1(M) ∪ {p > 0} can
‘build’ I+2(M). The main question then is: which of those orbits satisfy p(ξ) = 0
at their second (or higher-order) intersection with {q = 0}?

We begin by calculating the change in p during the half-circuit from {q = 0}
back to itself. Consider the orbit γ+1(ξ) = (u+1(ξ), p+1(ξ), v+1(ξ), q+1(ξ))
with γ+1(0) = (u+1

0 , p
+1
0 , v

+1
0 ,0) ∈ I+1(M), where now p+1

0 = εp̃0 > 0 with p̃0
strictly O(1). Let Ξ (= O(| log ε|)) be such that γ+1(Ξ) ∈ I+2(M) ⊂ {q = 0}.
We define ∆p by p+1(Ξ) def= εp̃0+∆p. Hence, by the second component of (2.2),

(2.29) ∆p+1(u0, εp̃0) = −ε
∫ Ξ

0
[h1uα1vβ1 + ε̂uα1vβ1H1(u,v; ε))]dξ

+ O(ε3| logε|),

and we see that ∆p+1(u0, εp̃0) is finite, since β1, β2 > 0. Using the approxima-
tion ṽh(ξ) defined by (2.14), we find

∆p+1(u0, εp̃0) = −εh1u
α1
0

∫∞
0
(ṽh(ξ))β1 dξ +O(ε1+σ ),(2.30)

for some σ > 0. Note that we can replace ṽh(ξ) by vh(ξ) ≥ 0, the corresponding
homoclinic solution to (2.7). The p-coordinate of γ+1(Ξ) ∈ I+2(M) is given to
leading order by

ε
[
p̃0 − h1u

α1
0

∫∞
0
(vh(ξ))β1 dξ

]
, with p̃0 > 0.(2.31)

Since u0 > 0 and vh(ξ) > 0, this expression can only change sign when

h1 > 0,(2.32)

as assumed in (2.5). We see again therefore that, for h1 > 0, all intersections
I+n(M) ∩ I−n(M) exist and satisfy (2.27). Moreover, by following the fast flow
for j half circuits, we see that all In+j(M)∩ I−n+j(M) exist, although these sets
are not subsets of {p = 0}, since ∆p ≠ 0, by (2.30). Summarizing,

I+n(M)∩ I−m(M) ≠∅, for all n+m even, andm,n = O(1).(2.33)
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Remark 2.7. The condition β1 > 0 in the hypotheses (2.5) of Theorem 2.1,
which was imposed to help establish the existence ofM, has been crucial here for a
different reason. The quantity ∆p+1 becomes unbounded as p̃0 ↓ 0 when β1 < 0
(recall that the v-coordinate of γ+1(Ξ) is at most O(√ε)). In addition, the case
β1 = 0 is special, and we do not consider the details of this degenerate case here.

Remark 2.8. We have also just seen the reason for imposing the requirement
(2.32) in Theorem 2.1 (recall (2.5)). In the opposite case when h1 < 0, the p-
coordinate of γ+1(Ξ) is strictly positive. Thus, I+2(M) ⊂ {p > εp+2∗ } for some
0 < p+2∗ = O(1). Analogously, it follows that I−2(M) ⊂ {p < −εp−2∗ } for some
0 < p−2∗ = O(1), and hence that I+2(M) ∩ I−2(M) = ∅. Then, by repeating
this argument, one readily sees also that

I+n(M)∩ I−n(M) = ∅, for n > 1, when h1 < 0.(2.34)

In other words, if there exist homoclinic orbits to M when h1 < 0 (with non-
negative u and v coordinates), then they can only be of the type that make at
most one circuit through the fast field.

2.4. Take off and touch down curves and the proof of Theorem 2.1. So
far, we have focused on the dynamics in the fast field of (2.2), and for every O(1)
N > 0, we have constructed a one-parameter family of multi-circuit orbits homo-
clinic to M, under the conditions in the hypotheses (2.5) of Theorem 2.1. We
now turn our attention for each N ≥ 1 to locating special pairs of curves on M
that are essential for determining the slow segments of these same multi-circuit
orbits. In particular, we will need the ideas developed in [11].

Let γN(ξ) be an N-circuit orbit homoclinic toM, of the type whose existence
has been shown in the previous subsection, with γN(0) ∈ IN(M) ∩ I−N(M) ⊂
{p = 0}. By geometrical singular perturbation theory (see [11] and [21]), there
are two orbits γ+NM = γ+NM (ξ; (u+N0 , p+N0 )) ⊂ M and γ−NM (ξ; (u−N0 , p−N0 )) ⊂
M, respectively (where γ±NM (0; (u±N0 , p±N0 )) = (u±N0 , p±N0 ) ∈ M), such that
‖γN(ξ)−γ+NM (ξ; (u+N0 , p+N0 ))‖ is exponentially small for ξ > 0 with ξ ≥ O(1/ε)
and ‖γN(ξ)− γ−NM (ξ; (u−N0 , p−N0 ))‖ is exponentially small for ξ < 0 with −ξ ≥
O(1/ε). As a consequence,

d(γN(ξ),M) = O(e−k/ε) for |ξ| ≥ O(1/ε) or larger,(2.35)

for some k > 0. The orbits γ±NM (ξ; (u±N0 , p±N0 )) determine the behavior of γN(ξ)
near M. Moreover, γN(ξ) satisfies the reversibility symmetry (2.3) by the choice
of initial conditions, and thus

γ−NM (ξ; (u−N0 , p−N0 )) = γ+NM (−ξ; (u+N0 ,−p+N0 )).(2.36)
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We now define the curves TNd ⊂M (‘touch down’) and TNo ⊂M (‘take off ’) as

TNd =
⋃
γN(0)

{(u+N0 , p+N0 ) = γNM(0; (u+N0 , p+N0 ))},

TNo =
⋃
γN(0)

{(u+N0 ,−p+N0 )},
(2.37)

where the unions are over all γN(0) ∈ IN(M) ∩ I−N(M) ⊂ {p = 0} ∩ {q = 0}.
For each N = 1, 2, . . . , the take off set TNo (respectively, the touch down set TNd ) is
the collection of base points of all of the Fenichel fibers in WU(M) (respectively,
WS(M)) that have points in the transverse intersection of WU(M) and WS(M).

Detailed asymptotic information about the locations of TNo and TNd can be
obtained explicitly by determining the relations between γN(0) = (u0,0, v0,0)
and (u+N0 , p+N0 ,0,0). First, we observe that ṗ = O(ε3) on M (2.2), thus, the
p-coordinate of γ+NM remains constant to leading order during the fast excursions
of γN(ξ). Therefore, p+N0 is completely determined (to leading order) by the
accumulated change in p of γN(ξ) during its ‘time’ ξ > 0 in the fast field. These
changes have already been calculated for N = 1 in (2.29) and (2.30). For N > 1,
the calculation is exactly the same, except for the fact that γN(ξ) now makes N
half circuits before ‘touching down’ onM:

p+N0 = −εh1Nu
α1
0

∫∞
0
(vh(ξ))β1 dξ +O(ε1+σ ),(2.38)

for some σ > 0. From the first component of (2.2) and the fact that p = O(ε),
we also conclude that u+N0 = u0 to leading order. Thus, we find

TNd :
{
p def= pNd (u) = −εh1Nuα1

∫∞
0
(vh(ξ))β1 dξ +O(ε1+σ )

}
,

TNo : {p = −pNd (u)}
(2.39)

(σ > 0), where vh(ξ) = vh(ξ;u), the homoclinic solution of (2.7).
To more fully determine the behavior of pNd as a function of u, we introduce

wh = wh(ξ;β2) ≥ 0, which is the (positive) homoclinic solution of a rescaled
version of (2.7):

ẅ = w −wβ2 .(2.40)

Without loss of generality, we take the solutions to be parameterized such that
wh(ξ) is symmetric with respect to ξ = 0. Thus,

vh(ξ;u) = vh(ξ;u,h2, α2, β2) = (h2uα2)1/(1−β2)wh(ξ;β2),(2.41)
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which yields ∫∞
−∞
(vh(ξ))β1 dξ = 2

∫∞
0
(vh(ξ))β1 dξ(2.42)

= h−β1/(β2−1)
2 u−α2β1/(β2−1)W(β1, β2),

where

W(β1, β2) =
∫∞
−∞
(wh(ξ;β2))β1 dξ.(2.43)

We can now rewrite (2.39) to leading order as

(2.44) TNd,o : {p = ±pNd (u)},

with pNd (u) = −
N
2
εh1h

−β1/(β2−1)
2 u1+D/(β2−1)W(β1, β2),

with D > 0 (2.10). Note that the higher order corrections, which are not needed
here, can be obtained by a straightforward asymptotic approximation scheme, see
[9].

In Figure 2.1 on the following page, we have plotted the curves TNd,o for a few
values of N superimposed onto the linear flow onM given by (2.12). Since D > 0
and β2 > 1, the curve TNo given by (2.44) to leading order is tangent to the u-axis
for each N; and, thus, by (2.13), TNo ∩ `U exists for all N. In fact, the unique
intersection is given to leading order by

uh,N =
 2hβ1/(β2−1)

2
√µ

h1NW(β1, β2)

(β2−1)/D

.(2.45)

Then, the reversibility symmetry (2.3) implies that TNd ∩ `S also, with precisely
the same value of u given by (2.45). Therefore, for each N > 0, there is a unique
homoclinic orbit to the saddle point S = (0,0,0,0) in (2.2) that (i) flows out-
ward from S staying exponentially close to `U (and hence also to M) until the u
coordinate reaches a neighborhood of uh,N , (ii) makes N full circuits through the
fast field near the homoclinic orbit (vh(ξ), qh(ξ)) of (2.7) while u is constant
(= uh,N ), and (iii) returns to an exponentially small neighborhood ofM, flowing
in toward S along `S .

We have shown in Sections 2.2 (N = 1) and 2.3 (N > 1) that this homoclinic
orbit lies in the transverse intersection of the manifolds WU(M) and WS(M).
Therefore, we can conclude that there exists an orbit γNh (ξ) = (uNh (ξ), pNh (ξ),
vNh (ξ), q

N
h (ξ)) ∈ WU(M) ∩WS(M) that is asymptotically close to an orbit on

`U ⊂ M for ξ � −1/ε and asymptotically close to an orbit on `S ⊂ M for
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0.4
u

-0.4

0.4
p/eps

FIGURE 2.1. The stable and unstable manifolds `U and `S in
M and the take off and touch down curves TNo (p > 0) and TNd
(p < 0), N = 1, 2, 3 (with parameters as in (1.9) and µ = 1).
The dashed lines indicate the projections of the leading order ap-
proximations of the fast N-circuit ‘jumps’ from `U to `S through
the 4-dimensional phase space (N = 1 (right), 2 (middle), 3
(left)).

ξ� 1/ε. However, it is not yet clear whether γNh (ξ) approaches the critical point
S = (0,0,0,0) as |ξ| → ∞, since S is on the boundary of M. Recall that the line
{u = 0} had to be excluded from the definition ofM (2.4), since the vector field
is not smooth as u → 0 (by (2.5): α2 < 0, and α1 < 0 is also possible; see also
Remark 1.3).

Nevertheless, the methods of geometric singular perturbation theory can be
and have been applied in the half space {u ≥ δ} for any 0 < δ � 1. The
above analysis shows that γNh (ξ) intersects the hyperplane {u = δ} twice for
any 0 < δ � 1. At the intersection points, vNh (ξ) and |qNh (ξ)| are at least
O(exp(−1/ε)) small, since |ξ| � 1/ε, due to the super slow flow onM, and they
decrease with the rate exp(−|ξ|). Moreover, uNh (ξ) and pNh (ξ) are O(exp(−1/ε))
close to orbits on `U or `S that decrease as exp(−ε2|ξ|). Thus, since βi > 1 (2.5),
the ‘dangerous’ terms in the vector field (2.2), uαivβi , i = 1, 2, are also at least
O(exp(−1/ε)) small. A local analysis of (2.2) near S shows that the unstable
and stable manifolds of S, WUloc(S) and WSloc(S), do exist in a cusp shaped regionΩcusp ⊂ {u > 0}. By considering (for instance) Ωcusp as the region bounded by
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the manifolds {v = 0} and {v2+q2 = u−2/ε} with 0 < u < 2δ and −δ < p < δ,
we establish an overlap region between the local and the global analysis. Therefore,
WUloc(S) ⊂ WU(M) and WSloc(S) ⊂ WS(M) can both be extended as globally
existing manifolds WU(S) and WS(S). The above global analysis (in the space
{u ≥ 0}) has shown that γNh (ξ) ⊂ WU(S) ∩WS(S) ≠ ∅. Hence, γNh (ξ) → S as
|ξ| → ∞. �

Remark 2.9. The choice to consider only large, positive solutions does not
have an essential influence on the analysis in this section. One can, for instance,
immediately formulate an existence theorem for ‘small’ N-loop homoclinic solu-
tions to (2.2) – both TNd,o can now become singular at p ↓ 0, but TNo ∩ `U always
defines a unique point. The only difference is that for small loops one has r , s < 0
(1.6) and thus, by (2.9), the conditions on αi flip. In fact, only the conditions
on β1 and β2 are crucial for the existence of any type of singular homoclinic so-
lutions. We have seen in the above analysis that violating the assumptions that
β1 > 0 and β2 > 1 truly obstructs this construction (see also Remarks 2.4 and
3.2). The conditions on the signs of h1 and h2 are caused by our choice for pos-
itive (U,V)-solutions of (1.7) and (1.2), (1.1). The conditions on α1 and α2 are
clearly determined by our ‘preferences’ for the signs of r and s.

Remark 2.10. For h1 < 0, we found in Remark 2.8 that TNo,d exists only for
N = 1. However, it turns out that TNo ∩ `U = ∅, due to the sign change. Hence,
there is no 1-loop homoclinic orbit at all. The intersection TNo ∩ `S corresponds
to an unbounded orbit that ‘jumps’ from `S to `U without getting close to S.

3. LINEAR STABILITY ANALYSIS

In Section 3.1 below we will derive the linearized stability problem associated to
a general N-loop homoclinic pattern (see Theorem 2.1). However, in Sections
3.2, 4, and 5 we will focus on the stability analysis of the homoclinic 1-pulse
patterns. The more general case of the homoclinicN-pulse solutions is considered
in Section 6 on page 492.

Remark 3.1. The issue of nonlinear stability is a separate issue with its own
subtleties due to the singularities in the nonlinear terms of (1.1), (1.2), (1.7) as
U → 0, as was explained in Remark 1.3. These singularities occur due to the
conditions on α1 and α2 in (2.5) which arise from our choice to consider large
solutions (see Remark 2.9). The linear stability theory to be developed in this
paper can also be applied to the small solutions (or the solutions of ‘mixed type’,
Remark 1.1), where the α1 and α2 are not necessarily negative. Hence, in such
cases, the nonlinear terms will not be singular and one can apply the nonlinear
stability results of (for instance) [18].

3.1. The linearized equations. Let (U0(ξ), V0(ξ)) be a homoclinic N-pulse
associated to γNh (ξ) described in Theorem 2.1. We introduce u(ξ), v(ξ), and λ
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by

U(ξ, t) = U0(ξ)+u(ξ)eλt, V(ξ, t) = V0(ξ)+ v(ξ)eλt,

where (U(ξ, t), V(ξ, t)) is a solution of (1.7) in the fast spatial scale ξ. The
linearized equations for (u,v) read

uξξ = −ε2[(α1h1U
α1−1
0 Vβ1

0 + ε̂R1(U0, V0))u

+ (β1h1U
α1
0 V

β1−1
0 + ε̂S1(U0, V0))v]+ ε4(µ + λ)u,

vξξ + [β2h2U
α2
0 V

β2−1
0 + ε̂S2(U0, V0)− (1+ λ)]v

= −[α2h2U
α2−1
0 Vβ2

0 + ε̂R2(U0, V0)]u,

(3.1)

where

Ri(U0, V0) = αiHi(U0, V0)U
αi−1
0 Vβi0 + hiUαi0 V

βi
0
∂Hi
∂u
(U0, V0),

Si(U0, V0) = βiHi(U0, V0)U
αi
0 V

βi−1
0 + hiUαi0 V

βi
0
∂Hi
∂v
(U0, V0),

(3.2)

for i = 1, 2. Note that u(ξ) remains constant to leading order on ξ-intervals of
length�O(1/ε). This system can be written in vector form

ϕ̇ = A(ξ;λ, ε)ϕ,(3.3)

where, with abuse of notation (see Section 2), ϕ(ξ) = (u(ξ),p(ξ), v(ξ), q(ξ))t
and

(3.4) A(ξ;λ, ε) =


0 ε

−ε[α1h1U
α1−1
0 Vβ1

0 +ε̂R1]+ε3[µ+λ] 0

0 0

−[α2h2U
α2−1
0 Vβ2

0 +ε̂R2] 0

0 0

−ε[β1h1U
α1
0 V

β1−1
0 +ε̂S1] 0

0 1

−[β2h2U
α2
0 V

β2−1
0 +ε̂S2]+(1+λ) 0

 .
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Taking into account that the fast pulse V0(ξ) decays much faster than U0(ξ), we
can take the limits |ξ| → ∞ in A(ξ) (using (2.6)). The result is the constant
coefficient matrix

A∞(λ, ε) =


0 ε 0 0

ε3[µ + λ] 0 0 0

0 0 0 1

0 0 (1+ λ) 0

 .(3.5)

Using the structure of (U0(ξ), V0(ξ)) it can be concluded by (2.6) that there exist
positive, O(1), constants C1 and C2 such that

‖A(ξ;λ, ε)−A∞(λ, ε)‖ ≤ C1e−C2|ξ| for |ξ| > 1/εσ , σ > 0,(3.6)

see Remark 3.2. Thus, A(ξ) is exponentially close to A∞ as soon as |ξ| is alge-
braically large in 1/ε.

The eigenvalues of A∞(λ, ε) are given by

Λ1,4(λ) = ±
√

1+ λ, Λ2,3(λ, ε) = ±ε2
√
µ + λ,(3.7)

so that Re(Λ1(λ)) > Re(Λ2(λ, ε)) > Re(Λ3(λ, ε)) > Re(Λ4(λ)). The associated
eigenvectors are given by

E1,4(λ) = (0,0,1,±
√

1+ λ)t, E2,3(λ, ε) = (1,±ε
√
µ + λ,0,0)t.(3.8)

As a consequence, we find for the essential spectrum of the linear eigenvalue prob-
lem (3.1), that

σess ⊂ {λ ∈ R : λ ≤ max(−µ,−1)}.(3.9)

Since µ > 0, we conclude that the stability of the pattern (U0, V0) is determined
by the discrete spectrum of (3.1). We denote the complement of the essential
spectrum by

Ce = C \ {λ ∈ R : λ ≤ max(−µ,−1)}.(3.10)

Remark 3.2. Note that it again (Remark 2.4) has not been necessary to im-
pose β1 > 1 in order to obtain (3.6). For 0 < β1 < 1 the (2,3)-coefficient of
A(ξ) will become algebraically large for |ξ| logarithmically large (i.e., ξ is smaller
than 1/εσ for all σ > 0). As soon as |ξ| is algebraically large, V0 is exponen-
tially small, so that the original unscaled V in (1.2) is also (exponentially) small.
Conditions (2.6) are thus enough to guarantee that (3.6) holds (in other words:
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in the case 0 < β1 < 1 there is a singularity in S1 (3.2) that cancels the growth
of the Uα1

0 V
β1−1
0 -term for algebraically large ξ). Nevertheless, with β1 > 1 it

is straightforward to obtain uniform bounds on the coefficients of A(ξ;λ, ε) as
ε → 0, which will be necessary in the proof of Lemma 4.2. We do not go further
here into the possibility of relaxing the condition on β1.

Remark 3.3. In this paper we do not consider the case that 0 < µ → 0
as ε → 0 in (1.2), or, more generally, aij with a22 < 0, a11 + a22 < 0, and
0 < a11a22 − a12a21 → 0 as ε → 0 in (1.1) – see Remark 1.2. In these cases, the
essential spectrum approaches 0 (from below) as ε → 0. Hence, one has to take the
essential spectrum into account in the stability analysis (by extending the Evans
function into the essential spectrum, see [14], [23], and [7] for more details).

3.2. The Evans function and its decomposition. An eigenfunction asso-
ciated to a point in the discrete spectrum of (3.3) decays exponentially fast as
|ξ| → ∞. Since A(ξ) is exponentially close to A∞ for algebraically large |ξ|, we
can give a more precise description of the behavior of bounded solutions to (3.3)
for large |ξ|. We first consider the case ξ�−1.

Lemma 3.4. For all λ ∈ Ce there is a two-dimensional family of solutionsΦ−(ξ;λ, ε) to (3.3) such that limξ→−∞ϕ−(ξ;λ, ε) = (0,0,0,0)t for allϕ−(ξ;λ, ε)
∈ Φ−(ξ;λ, ε). Φ−(ξ;λ, ε) depends analytically on λ.

Proof. This result is very natural: A(ξ) → A∞ and limit system ˙̃ϕ = A∞ϕ̃
has a two-dimensional unstable subspace (spanned by EieΛiξ , i = 1, 2). See [1,
Lemma 3.3] for the details. ❐

Of course, a similar result can be formulated for ξ > 1/εσ and functions
ϕ+(ξ;λ, ε) ∈ Φ+(ξ;λ, ε). An eigenfunctionϕe(ξ) is an element of Φ−(ξ;λ, ε)∩Φ+(ξ;λ, ε). This observation is the starting point for the definition of the Evans
function, D(λ, ε), associated to (3.3) (see [1], [13], [7] for more details). The
Evans functionD(λ, ε) is defined by

D(λ, ε) = det[ϕ1(ξ;λ, ε),ϕ2(ξ;λ, ε),ϕ3(ξ;λ, ε),ϕ4(ξ;λ, ε)],(3.11)

where {ϕ1,ϕ2} (respectively {ϕ3,ϕ4}) span the space Φ− (resp. Φ+). It is shown
in [1] that the Evans function is analytic in λ for λ outside of the essential spectrum
(i.e., λ ∈ Ce) and that the zeroes of D(λ, ε) correspond to eigenvalues of (3.3) –
counting multiplicities. Note thatD(λ, ε) does not depend on ξ since Tr(A) ≡ 0.
In general, there is a certain freedom of choice in ϕ1(ξ), ϕ2(ξ), ϕ3(ξ), ϕ4(ξ).
However, here we will determine them uniquely.

Lemma 3.5. For all λ ∈ Ce there is a unique solutionϕ1(ξ;λ, ε) ∈ Φ−(ξ;λ, ε)
of (3.3) such that

lim
ξ→−∞

ϕ1(ξ;λ, ε)e−Λ1(λ)ξ = E1(λ).(3.12)
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Proof. As in the case of Lemma 3.4, see [1, Lemma 3.3] for the details. ❐

These two results hold for any N-homoclinic pattern (U0(ξ), V0(ξ)). How-
ever, we need to distinguish between the cases N = 1 and N ≥ 2 to define ϕ2(ξ).
This is because we initially have to exclude certain regions from the domain Ce
(3.10) of potential eigenvalues. In order to do so, we first need to consider the fast
reduced scalar equation associated to (1.7):

Vt = Vξξ − V + h2u
α2
h,NV

β2 ,(3.13)

where uh,N (2.45) is the (leading order) constant value of U0(ξ) during the fast
excursion(s) of V0(ξ). When N = 1 we can approximate V0(ξ) by the stationary
homoclinic solution V(ξ) = vh(ξ;uh,1) (2.41) of this equation (that exists under
the conditions of Theorem 2.1). This is not the case for N ≥ 2: V0(ξ) can be
seen, to leading order, to be N copies of the homoclinic solution vh(ξ;uh,N) of
(3.13). This situation is technically a bit more involved, therefore we focus on
the case N = 1 in this (sub)section, and in Sections 4 and 5. The case N ≥ 2 is
considered in Section 6 on page 492.

The linearized stability problem associated to v(ξ) = V(ξ) − vh(ξ;uh,1)
(2.41), (2.45) can be written as

ψ̇ = Af(ξ;λ)ψ, where ψ(ξ) = (v(ξ), v̇(ξ)).(3.14)

Here, Af(ξ;λ) = the lower diagonal 2 × 2 block of A(ξ;λ, ε) (3.4) in the limit
ε → 0, with U0(ξ) replaced by uh,1 and V0(ξ) by vh(ξ). The Evans function
associated to this problem can be written as

Df (λ) = det[ψ1(ξ, λ),ψ4(ξ, λ)],(3.15)

where

lim
ξ→−∞

ψ1(ξ)e−Λ1ξ = (1,
√

1+ λ)t and lim
ξ→∞

ψ4(ξ)e−Λ4ξ = (1,−
√

1+ λ)t

(compare to E1,4 (3.8)). This (stationary) solution is unstable, there is one real
eigenvalue λ∗f > 0. We denote the set of all eigenvalues of (3.14) by λjf , j = 0, 1,

. . . , J, where λ0
f = λ∗f , λ1

f = 0, and −1 < λjf < λ
j−1
f ≤ 0 for J ≥ j ≥ 2 (both

J = J(β2) and λjf will be explicitly determined in Proposition 5.6). Note that

Df (λjf ) = 0 for j = 0, . . . , J.
We introduce a second asymptotically small parameter, 0 < δ � 1 that is

independent of ε, and define Bλjf ,δ
as the disk around the eigenvalue λjf of (3.14)
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with radius δ (j = 0, . . . , J). Moreover, we introduce the complement of a δ-
neighborhood of the essential spectrum Ce:

(3.16) Cδ = C \ {λ ∈ C : (Re(λ) < max(−µ,−1), | Im(λ)| < δ)
or ‖λ−max(−µ,−1)‖ < δ}.

Clearly, Cδ ⊂ Ce.
Lemma 3.6. Let λ ∈ Cδ, then

lim
ξ→∞

ϕ1(ξ;λ, ε)e−Λ1(λ)ξ = t1(λ, ε)E1(λ),(3.17)

where t1(λ, ε) is an analytic (transmission) function of λ ∈ Cδ. Moreover, t1(λ, ε) ≠
0 for λ ∈ Cδ \ {

⋃J
j=0 Bλjf ,δ

}.

Proof. This result is again quite natural: in general a solution to (3.3) will
grow as eΛ1ξ as ξ → ∞. This observation can be made precise by the ‘elephant
trunk’ procedure [13, 7] for ϕ1(ξ). By construction, in the limit ε → 0, the
(v, q)-part ofϕ1(ξ) approaches the solutionψ1(ξ) of the fast reduced eigenvalue
problem (3.14) defined in (3.15). Since ψ1(ξ) = ψ4(ξ) at λ = λjf , an eigenvalue

of (3.14), ψ1(ξ) will not grow like eΛ1ξ at λ = λjf : the elephant trunk procedure

cannot be applied for λ close to λjf , in the sense that ϕ1(ξ) might also not grow

like eΛ1ξ for ξ → ∞ (here ‘close’ means in a neighborhood of λjf that shrinks
to 0 in the limit ε → 0). Note, however, that this implies that t1(λ, ε) ≠ 0 for
λ ∈ Cδ and not in a Bλjf ,δ

disk, while t1(λ, ε) can be zero for λ close to λjf (see

also Section 4.1). Since the technical details are very similar to the corresponding
results in [13, 7], we omit the details here. ❐

Note that Lemmas 3.5 and 3.6 have natural counterparts that describe the
existence of the unique solution ϕ4(ξ;λ, ε) and its behavior for ξ → ∞ and ξ →
−∞.

Lemma 3.7. Let λ ∈ Cδ be such that t1(λ, ε) ≠ 0. There is a uniquely deter-
mined solution ϕ2(ξ;λ, ε) ∈ Φ−(ξ;λ, ε) such that

Φ−(ξ;λ, ε) = span{ϕ1(ξ;λ, ε),ϕ2(ξ;λ, ε)},

lim
ξ→−∞

ϕ2(ξ;λ, ε)e−Λ2(λ,ε)ξ = E2(λ, ε),(3.18)

and
lim
ξ→∞

ϕ2(ξ;λ, ε)e−Λ1(λ)ξ = (0,0,0,0)t.(3.19)



Large Stable Pulse Solutions in Reaction-diffusion Equations 471

Proof. Define the three-dimensional space Φs,+(ξ) of solutionsϕ(ξ) to (3.3)
by

lim
ξ→∞

ϕ(ξ)e−Λ1(λ)ξ = (0,0,0,0)t

(Φs,+(ξ) is three-dimensional by [1, Lemma 3.3], as in Lemmas 3.4, 3.5). Thus,
by a dimension count, the intersection Φ−(ξ;λ, ε)∩ Φs,+(ξ) exists and is at least
one-dimensional. Lemma 3.5 establishes the existence of the solutionϕ1(ξ;λ, ε) ∈Φ−(ξ;λ, ε) that cannot be an element of Φs,+(ξ) by Lemma 3.6, since t1(λ, ε) ≠
0. Hence, Φ−(ξ;λ, ε) intersects Φs,+(ξ) transversally and the intersection is one-
dimensional. The solutionϕ2(ξ;λ, ε) is now uniquely determined by the ‘bound-
ary conditions’ (3.18), (3.19). ❐

The definition (3.11) of the Evans function D(λ, ε) is based on the func-
tions ϕ1(ξ;λ, ε),ϕ2(ξ;λ, ε) constructed above, and their natural counterparts
ϕ3(ξ;λ, ε),ϕ4(ξ;λ, ε). The above results also yield a natural fast-slow decom-
position of D(λ, ε). This decomposition can be obtained by noticing that, by
(3.19) and the limit behavior of A(ξ) (3.6), there must be a transmission function
t2(λ, ε) such that

lim
ξ→∞

ϕ2(ξ;λ, ε)e−Λ2(λ,ε)ξ = t2(λ, ε)E2(λ, ε).(3.20)

for all λ ∈ Cδ such that t1(λ, ε) ≠ 0. Thus, since D does not depend on ξ and∑4
i=1Λi(λ) ≡ 0, we have:

D(λ, ε) = lim
ξ→∞

det[ϕ1(ξ),ϕ2(ξ),ϕ3(ξ),ϕ4(ξ)](3.21)

= lim
ξ→∞

det[ϕ1(ξ)e−Λ1ξ,ϕ2(ξ)e−Λ2ξ,ϕ3(ξ)e−Λ3ξ,ϕ4(ξ)e−Λ4ξ]

= det[t1E1, t2E2, E3, E4]

= 4εt1(λ, ε)t2(λ, ε)
√
(µ + λ)(1+ λ),

where t1(λ, ε), t2(λ, ε) have been defined in (3.17), (3.20).

Corollary 3.8. The eigenvalues of (3.3) in the region Cδ coincide with the roots
of D(λ, ε), counting multiplicities. Furthermore, the set of eigenvalues in this region
lies in the union of the roots of the coefficients t1(λ, ε) and t2(λ, ε) defined in (3.17)
and (3.20), respectively.

The first statement is a consequence of a general theorem in [1]. The sec-
ond statement is obvious from (3.21). However, we will see below that a zero of
t1(λ, ε) does not necessarily imply that D(λ, ε) = 0. A similar ‘NLEP paradox’
has been studied in [7] in the analysis of pulses in the Gray-Scott model.
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The fast reduced Evans function Df (λ) (3.15) can also be transformed as
D(λ, ε) in (3.21), using the obvious fact that there must exist an analytic (trans-
mission) function tf (λ) such that ψ1(ξ)e−Λ1(λ) → tf (λ)(1,

√
1+ λ)t as ξ →∞:

Df (λ) = lim
ξ→∞

det[ψ1(ξ),ψ4(ξ)](3.22)

= det[tf (λ)(1,
√

1+ λ)t, (1,−
√

1+ λ)t]
= −2tf (λ)

√
1+ λ.

4. THE NLEP APPROACH

4.1. The NLEP paradox and its resolution. The fast-slow decomposition
of D(λ, ε) obtained in the previous section has become quite standard in singu-
larly perturbed systems (see [1], [13], [19], [7] and the references cited there).
However, here this decomposition of D(λ, ε) exhibits the singular behavior iden-
tified above as ‘the NLEP paradox’ (see also [7]). This behavior is closely related
to the fact that the ‘elephant trunk’ procedure might fail near eigenvalues of the
eigenvalue problem (3.14) associated to the homoclinic solution vh(ξ) of the fast
reduced limit (3.13) – see the proof of Lemma 3.6. As was already noted there:
(3.17) holds for any λ ∈ Cδ, and t1(λ) = 0 when λ is such that ϕ1(ξ) does
not grow as eΛ1ξ for ξ → ∞. This is exactly what happens near λ∗f (the unstable
eigenvalue of the fast reduced limit).

Lemma 4.1. There is a unique λ∗(ε) ∈ R such that limε→0 λ∗(ε) = λ∗f > 0
and t1(λ∗(ε), ε) = 0 (with multiplicity 1).

Proof. Consider a contour Kδ ∈ Cδ around λ∗f such that Kδ is independent
of ε, has the disk Bλ∗f ,δ in its interior, and encloses no other eigenvalues of (3.14).
Since t1(λ, ε) is analytic in λ ∈ Kδ (Lemma 3.6), we can define the winding
number W(t1;Kδ) of t1(λ) with respect to Kδ. Likewise, we define W(Df ;Kδ),
the winding number over Kδ of the Evans function Df (λ) (3.15) associated to
the fast reduced problem (3.14). Since Df (λ∗f ) = 0 with multiplicity 1 (see also
Proposition 5.6), we know thatW(Df ;Kδ) = 1. By construction 2t1(λ, ε)

√
1+ λ

approaches 2tf (λ)
√

1+ λ = −Df (λ) (3.22) in the limit ε → 0 (see [1], [13],
[7] for the technical details). Thus, since the winding number is a topological
invariant, W(t1(λ, ε);Kδ) = W(Df (λ);Kδ) = 1 for all possible Kδ and ε small
enough. The zero λ∗(ε) must be real since t1(λ, ε) is defined in terms of real
expressions (and a pair of complex conjugate zeroes would give W(t1(λ, ε);Kδ) =
2). ❐

The NLEP paradox, where NLEP stands for NonLocal Eigenvalue Problem (see
below), can now be formulated as follows.
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A homoclinic solution (U0(ξ), V0(ξ)) to (1.7) that corresponds to an
unstable solution with an O(1) positive eigenvalue λ∗f of the fast re-
duced scalar equation (3.13) can be stable (with O(1) eigenvalues λ with
Re(λ) < 0).

Or, in more technical terms:
AlthoughD(λ, ε) = 4εt1(λ, ε)t2(λ, ε)

√
(µ + λ)(1+ λ) and there exists

a λ∗(ε) such that t1(λ∗(ε), ε) = 0, D(λ∗(ε), ε) ≠ 0.
The resolution of this ‘paradox’ lies in the definition ofϕ2(ξ;λ, ε). It follows from
Lemma 3.7 that t2(λ, ε) can be defined for all λ ∈ Cδ such that t1(λ, ε) ≠ 0, but
it is a priori not clear what happens at (or near) λ∗(ε): we need to determine an
expression for t2(λ, ε) so that we can study the behavior of t2(λ, ε) near λ∗(ε).
This is done by the so-called NLEP approach, as was originally developed in [6]
for the Gray-Scott model. Like in [7] (for the Gray-Scott model), we will find
that t2(λ, ε) has a pole of order 1 at λ = λ∗(ε) which yields the resolution to
the NLEP paradox. Note that since both D(λ, ε) and t1(λ, ε) are analytic in Cδ
([1] and Lemma 3.6), it follows by (3.21) that t2(λ, ε) is at least meromorphic as
function of λ in Cδ.

Apart from the necessity to understand the behavior of D(λ, ε) near λ∗(ε),
there is another reason to search for a more explicit expression of t2(λ, ε). It
follows from Lemma 3.6 that t1(λ) can only be zero near an eigenvalue of the fast
reduced limit system (3.14). Therefore, all possible eigenvalues of (3.3) that are
not close to a reduced fast eigenvalue must be zeroes of t2(λ, ε). We will even find
that all ‘dangerous’ eigenvalues of (3.3) correspond to zeroes of t2.

We first need to derive an approximation ofϕ2(ξ). The leading order behav-
ior of ϕ2(ξ) for algebraically large |ξ| is described by the following lemma.

Lemma 4.2. Suppose that (2.5) and (2.6) hold. Fix λ ∈ Cδ (3.16) such that
t1(λ, ε) ≠ 0 and let ϕ2(ξ) = (u2(ξ), p2(ξ), v2(ξ), q2(ξ)) be defined by Lemma
3.7. Define the interval It by

It =
[
− 1√
ε
,

1√
ε

]
.(4.1)

(a) There exists an O(1) constant C− > 0 such that

ϕ2(ξ;λ, ε) = E2(λ, ε)eΛ2(λ,ε)ξ +O(eC−ξ) for ξ < −1/
√
ε.(4.2)

(b) There exists an O(1) constant Ct > 0 such that ‖ϕ2(ξ)‖ ≤ Ct for ξ ∈ It and

u2(ξ) = 1+O(ε̂,√ε) for ξ ∈ It.(4.3)

(c) Let t2(λ, ε) be defined as in (3.20). There exists a meromorphic function t3(λ, ε)
and an O(1) constant C+ > 0, such that

t2(λ, ε)+ t3(λ, ε) = 1+O(ε̂,√ε) for ξ ∈ It,(4.4)
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and

(4.5) ϕ2(ξ;λ, ε) = t2(λ, ε)E2(λ, ε)eΛ2(λ,ε)ξ + t3(λ, ε)E3(λ, ε)eΛ3(λ,ε)ξ

+ O(e−C+ξ) for ξ > 1/
√
ε.

The constants C± and Ct depend only on the distance of λ to the roots of the
analytic function t1(λ, ε). In fact, these constants might become unbounded as λ
approaches a root of t1(λ, ε). However, for small but fixed ε, they are uniformly
bounded in any compact subdomain of Cδ that is disjoint from the set of roots of
t1(λ, ε). This uniform boundedness is the essential property for the results here
and below.

Proof. The conditions on Gi(V) and βi (i = 1, 2) are required in order to
ensure that the coefficients of A(ξ) are uniformly bounded as ε → 0 (see also
Remark 3.2). The proof of Lemma 4.2 is lengthy. The main points are to first
track the behavior of ϕ2(ξ) over both the left and the right slow fields, |ξ| ≥
1/
√
ε, and then, to use this information to determine its behavior over the fast

field It , to leading order (note that the boundary between the fast and the slow
fields is not uniquely determined, the length of It could be O(ε−σ ) for some
σ > 0). The details are similar to and simpler than those presented in in [7,
Lemmas 4.4-4.7] for the Gray-Scott model, and for brevity’s sake they will be
omitted here. There is however one important difference between the approach
used here and that used in [7]. For those readers interested in referring to [7], we
briefly outline the differences. It is then an easy matter to see how the estimates in
[7] apply to the present situation.

Here, the transmission coefficients t1, t2 are defined in terms of the limiting
behavior of ϕ1,2 at ξ = +∞. This is no longer possible inside the essential spec-
trum of the wave, and in the Gray-Scott model the essential spectrum is asymptot-
ically close to the origin (see also Remark 3.3). In order to work in a fixed region
including {λ = 0} in its interior, it was therefore necessary to obtain estimates in-
side the essential spectrum and to use the Gap Lemma to analytically continue the
Evans function into this region [14], [23]. The slow transmission coefficient t2
must then be defined in a different manner. In [7], this coefficient is determined
by the ϕ2 solution immediately after it emerges from the fast field at ξ = +1/ξσ
(for some σ > 0), not at ξ = +∞. Indeed, the latter definition would give the
wrong result inside the essential spectrum. Nevertheless, outside the essential spec-
trum the difference between the transmission coefficients obtained from these two
distinct definitions is exponentially small in ε and can therefore be neglected. ❐

The next task is to determine the leading order behavior of t2. From the
above, it suffices to determine the leading order behavior of the components of
ϕ2 as the solution emerges from the fast field at 1/

√
ε. To this end, we consider

the linearized problem (3.3) once again as the coupled system of two second or-
der equations (3.1). We know by Lemma 4.2 that u2(ξ) = 1 to leading order
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(4.3). This means that the v-equation in (3.1) decouples from the u-equation (to
leading order):

vξξ + [β2h2U
α2
0 V

β2−1
0 − (1+ λ)]v = −α2h2U

α2−1
0 Vβ2

0 for ξ ∈ It,(4.6)

where the right hand side is now an explicitly known inhomogeneous term. Fur-
thermore, U0(ξ) can be approximated by the constant uh,1 (2.45) in It , V0 by
the homoclinic solution vh(ξ;uh,1) (2.41) of the fast reduced limit (3.13) and, It
by R due to the exponential decay. These approximations can also be inserted in
(4.6). We thus recover on the left hand side the linear operator associated to the
fast reduced system (3.14). Note that the leading order corrections are O(√ε, ε̂).

The O(1) problem is of Sturm-Liouville type:

(Lf (ξ)− λ)v = vξξ + [β2h2(uh,1)α2(vh(ξ))β2−1 − (1+ λ)]v(4.7)

= −α2h2(uh,1)α2−1(vh(ξ))β2 .

Therefore, there exists a unique bounded solution vin(ξ;λ) for λ ∈ Cδ (3.16) and
λ ≠ λjf , an eigenvalue of (3.14), see [40], and also Section 5.2, Appendix B on
page 502) that is the leading order approximation of v2(ξ, λ) (by construction, see
also [7]). The leading order (slow) behavior of u2(ξ) through It is thus governed
by

uξξ = −ε2[α1h1(uh,1)α1−1(vh(ξ))β1

+ β1h1(uh,1)α1(vh(ξ))β1−1vin(ξ)]
(4.8)

(recall that u2 = 1 to leading order (4.3)). We can thus obtain an approximation
for the total change in uξ through It:

(4.9) ∆fastuξ = −ε2
∫∞
−∞

[
α1h1(uh,1)α1−1(vh(ξ))β1

+ β1h1(uh,1)α1(vh(ξ))β1−1vin(ξ)
]
dξ.

Note that the integration should be over It ⊂ (−∞,∞), however this does not
have a leading order effect. This expression should be equal to the change (or
‘jump’) in uξ over It as is described by the slow evolution outside It . Lemma 4.2
yields, to leading order,

∆slowuξ = uξ
(

1√
ε

)
−uξ

(
− 1√
ε

)
(4.10)

= [Λ2(λ, ε)t2(λ, ε)+Λ3(λ, ε)t3(λ, ε)]−Λ2(λ, ε).
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By the combination of the condition ∆fastuξ = ∆slowuξ with (4.4) we obtain an
explicit nonlocal (leading order) expression for the transmission function t2(λ, ε)
in terms of the solution vin of the singular Sturm-Liouville problem (4.7):

(4.11) t2(λ,0) = 1− 1
2
√
µ + λ

∫∞
−∞

[
α1h1(uh,1)α1−1(vh(ξ))β1

+ β1h1(uh,1)α1(vh(ξ))β1−1vin(ξ)
]
dξ.

Note that the first order approximation term to (4.11) is O(ε̂,√ε).
Since t1(λ, ε) is an analytic function of λ for each fixed but small ε in the

region Cδ and has isolated roots there, it follows that the function t2(λ, ε) is a
meromorphic function of λ in this region for each fixed but small ε. This is be-
cause the constants C± and Ct in Lemma 4.2 depend only on the distance between
λ and a root of t1(λ, ε), and this distance is uniform in ε for all sufficiently small
ε, as stated above.

The calculation of t2(λ) is valid away from the eigenvalues λjf of the fast re-
duced problem (3.14) inside Cδ. In order to complete the description of t2(λ),
the behavior of t2(λ) near these eigenvalues must be determined. The inhomo-
geneous problem (4.7) can, in general, not be solved at an eigenvalue, since then
the operator Lf (ξ) − λ is not invertible. The eigenfunction v∗f (ξ) of (3.14) at
λ = λ∗f is positive and even ([40, Appendix B]), like vh(ξ). Thus, the solvability
condition for the inhomogeneous problem at λ∗f ,

∫∞
−∞
(vh(ξ))β2v∗f (ξ)dξ = 0,

cannot be satisfied, which yields that vin has a simple pole as function of λ at
λ∗f (the Wronskian in the denominator of the Green’s function associated to the
operator Lf − λ has a simple zero at λ∗f , see (B.4) for an explicit expression).
Therefore, t2(λ, ε) must have a simple pole at λ∗p(ε), with limε→0 λ∗p(ε) = λ∗f .
SinceD(λ, ε) is analytic in Cδ, it follows by (3.21) that λ∗p(ε) = λ∗(ε).

The transmission function t2(λ, ε) does not have a pole at the eigenvalue
λ1
f = 0 of (3.14) in Cδ, since the fast reduced eigenfunction at λ = 0, v̇h,1, is odd

so that ∫∞
−∞
(vh(ξ))β2 v̇h,1 dξ = 0,

i.e., vin exists at λ = 0 but is not uniquely determined. Nevertheless, t2(λ, ε)
is well-defined and analytic at λ = 0, see the proof of the more general result,
Corollary 4.4.

We summarize the above results in the following lemma.
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Lemma 4.3. The transmission function t2(λ, ε) is meromorphic as function of
λ for λ ∈ Cδ. It has a pole of order 1 at the point λ∗(ε), and is analytic for all
λ with Re(λ) > −δ, λ ≠ λ∗(ε). The leading order behavior of t2(λ) is given by
the expression in (4.11), where vin(ξ) is the unique bounded solution of (4.7). This
approximation is accurate to O(ε̂,√ε).

This yields the resolution to the NLEP paradox: D(λ, ε) = Ct1(λ, ε)t2(λ, ε)
≠ 0 at λ∗(ε) for a certain positive constant C. The solution (U0(ξ), V0(ξ)) is
not necessarily unstable. Moreover, D(0, ε) ≡ 0, as it should be. We will see in
Section 4.2 on the next page that t2(0, ε) ≠ 0: λ = 0 is always a simple eigenvalue
of (3.3).

Transmission function t1(λ, ε) has been defined for all λ ∈ Cδ (3.17), trans-
mission function t2(λ, ε) has been defined for all λ ∈ Cδ such that t1(λ, ε) ≠ 0
(3.20). The above observed behavior of t2(λ; ε) near the eigenvalues λ∗f and 0
occurs at every eigenvalue of the fast reduced eigenvalue equation (3.14). Recall
that λjf , j = 0, 1, . . . , J, with λ0

f = λ∗f , λ1
f = 0 and −1 < λjf < λ

j−1
f ≤ 0 for

J ≥ j ≥ 2, denote the set of all eigenvalues of (3.14) (see Proposition 5.6). The
associated eigenfunctions vjf (ξ) are even functions of ξ when j is even and odd
when j is odd ((3.14) is symmetric with respect to ξ → −ξ, see Remark B.4 in
Appendix B). Thus, the above observations can be generalized by the following
corollary.

Corollary 4.4. Let λjf > max(−1,−µ) be an eigenvalue of (3.14). There exists

a λj(ε) such that t1(λj(ε), ε) = 0 and limε→0 λj(ε) = λjf . If j is even, then t2(λ, ε)
has a pole of order 1 at λj(ε), so that D(λj(ε), ε) ≠ 0. If j is odd, then t2(λ, ε)
is analytic at λj(ε), and λj(ε) is an eigenvalue of (3.3). The transmission function
t2(λ, ε) is analytic as function of λ for all λ ∈ Cδ \ {

⋃
j=even λj(ε)}.

Note that the condition λjf > max(−1,−µ) is crucial: if not, λ is in the
essential spectrum of (3.3), (3.9).

Proof. It follows by the winding number arguments of the proof of Lemma
4.1 that there exists λj(ε) such that t1(λj(ε), ε) = 0 and λj(ε) → λjf as ε → 0.

The proof of the singular behavior of t2(λ, ε) near λjf for j even is identical to
that of Lemma 4.3. When j is odd, (4.7) can be solved, but the solution is not
uniquely determined: vin(ξ) = vpin(ξ) + Cv

j
f (ξ) for any C ∈ R. Yet, t2(λ

j
f ,0),

and thus t2(λj(ε), ε) is well-defined since vjf (ξ) is odd: the term Cvjf (ξ) does
not give a contribution to (4.11). Since bothD(λ, ε) and t1(λ, ε) are analytic for
λ ∈ Cδ, we conclude by (3.21) and Lemma 4.2 that t2(λ, ε) is analytic as function
of λ (for ε fixed, and small enough) for all λ ∈ Cδ such that λ ≠ λj(ε) with j
even. ❐
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Since λ0
f = λ∗f is the only non-zero eigenvalue of (3.14) with real part ≥ −δ

(Proposition 5.6), we can conclude that all possible unstable eigenvalues of (3.3)
correspond to zeroes of t2(λ, ε). Thus, the stability of (U0(ξ), V0(ξ)) can be
established by (4.7) and (4.11).

4.2. The NLEP equation. The function vh = vh(ξ;uh,1) is given by (2.41)
and (2.45). Inserting (2.41) in the equation for vin(ξ) (4.7) yields

vξξ + [β2(wh(ξ))β2−1 − (1+ λ)]v(4.12)

= −α2h
−1/(β2−1)
2 (uh,1)(1−α2−β2)/(β2−1)(wh(ξ))β2 ,

where wh(ξ;β2) is the positive homoclinic solution of (2.40). Likewise, (4.11)
becomes

(4.13) t2(λ,0)

= 1− 1
2
√
µ + λ

[
α1h1h

−β1/(β2−1)
2 (uh,1)[(α1−1)(β2−1)−α2β1]/(β2−1)W(β1, β2)

+ β1h1h
−(β1−1)/(β2−1)
2 (uh,1)[α1(β2−1)−α2(β1−1)]/(β2−1)

·
∫∞
−∞
vin(ξ)(wh(ξ))β1−1 dξ

]
,

where W(β1, β2) was defined in (2.43). We now define win(ξ;λ,β2) as the
unique bounded solution of

wξξ + [β2(wh(ξ))β2−1 − (1+ λ)]w = (wh(ξ))β2(4.14)

(for λ ∈ Cδ, λ ≠ λjf , j = 0, . . . , J) so that by (4.12)

vin(ξ) = −α2h
−1/(β2−1)
2 (uh,1)(1−α2−β2)/(β2−1)win(ξ;λ,β2).

Next, we use (2.10) and (2.45) to derive a considerable simplification of (4.13):

t2(λ,0) = 1−
√µ√
µ + λ

[
α1 − α2β1

W(β1, β2)

∫∞
−∞
win(ξ)(wh(ξ))β1−1 dξ

]
.(4.15)

Since the leading order approximation of an eigenvalue λ of (3.3) (with Re(λ) >
−δ for some ε� δ� 1) must correspond to a zero of t2(λ,0), we can now write
down the NonLocal Eigenvalue Problem:

wξξ + [β2(wh(ξ))β2−1 − (1+ λ)]w = (wh(ξ))β2

α1 − α2β1

W(β1, β2)

∫∞
−∞
w(ξ)(wh(ξ))β1−1 dξ =

√
1+ λ

µ

(4.16)
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for µ > 0 and Gi(V), hi, αi, βi (i = 1, 2) as in (2.5), (2.6). This equation
determines w(ξ;λ) uniquely, which is not usual in eigenvalue problems. A more
standard equation can be obtained by introducing w̃(ξ;λ) = Cw(ξ;λ) for some
C ≠ 0 into (4.16) and eliminating C. This gives the following, more compact
version of the NLEP problem,

(4.17) wξξ + [β2(wh(ξ))β2−1 − (1+ λ)]w

= α2β1

(α1 −
√

1+ λ/µ)W(β1, β2)
(wh(ξ))β2

∫∞
−∞
w(ξ)(wh(ξ))β1−1 dξ,

where we have dropped the tilde on w. The NLEP problem was originally in-
troduced in [6] (for the Gray-Scott model) in this form. Note that neither (4.16)
nor (4.17) depends explicitly on h1 and h2 (but h1,2 must satisfy h1,2 > 0 by
Theorem 2.1).

The explicit expression (4.11) can also be used to compute the leading order
expression for t2(λ, ε) at λ = 0. It is a straightforward calculation to check that
the solution win(ξ) of (4.14) at λ = 0 is given by

win(ξ; 0, β2) =
1

β2 − 1
wh(ξ)+ Cẇh(ξ),(4.18)

where C may be any real number, since win(ξ) is not uniquely determined in
λ = 0. The extra contribution of the kernel to win disappears from (4.15) since
ẇh(ξ) is odd: ∫∞

−∞
win(ξ; 0)(wh(ξ))β1−1 dξ = W(β1, β2)

β2 − 1
(4.19)

(see (2.43)). Therefore, by (2.10),

t2(0,0) = 1−
√µ√µ

[
α1 − α2β1

W(β1, β2)
W(β1, β2)
β2 − 1

]
= − D

β2 − 1
< 0.(4.20)

Thus, t1(0) = 0 (with multiplicity 1) and t2(0) < 0 so that the eigenvalue λ = 0
is always simple with the obvious eigenfunction (V̇0(ξ), U̇0(ξ)), the derivative of
the ‘wave’ (V0(ξ),U0(ξ)).

Corollary 4.5. The homoclinic pattern (V0(ξ),U0(ξ)) can only lose or gain
stability when a pair of complex conjugate eigenvalues (with non-zero imaginary parts)
crosses the imaginary axis: the associated bifurcation is of Hopf type.

5. THE STABILITY OF THE 1-CIRCUIT HOMOCLINIC PATTERNS

In this section we first obtain a number of general instability results using topolog-
ical winding number arguments (Section 5.1 below). It is shown that all 1-circuit
homoclinic patterns must be unstable for µ > 0 small enough (Theorem 5.1).
The 1-pulse patterns can gain stability by increasing µ, as we shall show in Section
5.3.
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5.1. Asymptotic results. The combination of the explicit leading order ap-
proximation (4.15) for t2(λ, ε) and the fact that t2(λ, ε) has a pole near λ∗f
(Lemma 4.3) yields a number of results on the instability of the homoclinic 1-
pulse pattern (U0(ξ), V0(ξ)).

Theorem 5.1. Let Gi(V), hi, αi, βi (i = 1, 2) satisfy (2.5), (2.6) and let
(U0(ξ), V0(ξ)) correspond to the homoclinic orbit γ1

h(ξ) defined in Theorem 2.1.
Then there exists a µU = µU(α1, α2, β1, β2) > 0 such that (3.3) has an unstable
eigenvalue 0 < λ0

s−f (ε) ∈ R for all 0 < µ < µU .

This ‘new’ eigenvalue λ0
s−f (ε) that exists due to the slow-fast interaction

should not be confused with the pole λ∗(ε) = λ0(ε) (Lemma 4.3 and Corol-
lary 4.4).

Proof. Consider δ with 0 < ε � δ � 1 and the contour Kλ∗f ,δ, a circle
around λ∗f with radius δ. Thus, the pole λ∗(ε) of t2(λ, ε) is in the interior of
Kλ∗f ,δ for all ε small enough. By the analyticity of t2(λ, ε) on Kλ∗f ,δ there must be
constants C∗1,2(δ) such that

∣∣∣∣∫∞−∞win(ξ)(wh(ξ))β1−1 dξ
∣∣∣∣ < C∗1 (δ),

∣∣∣∣ ddλ
∫∞
−∞
win(ξ)(wh(ξ))β1−1 dξ

∣∣∣∣ < C∗2 (δ)
(5.1)

for all λ ∈ Kλ∗f ,δ. Since |√µ + λ| > 1
2

√
λ∗f for λ ∈ Kλ∗f ,δ and δ small enough, we

have, for 0 < µ small enough

|t2(λ)| ≥ 1− 2
√
µ
λ∗f

(
|α1| + |α2|β1

W(β1, β2)
C∗1 (δ)

)

>
1
2
,

∣∣∣∣ ddλt2(λ)
∣∣∣∣ ≤ 2

√
µ
λ∗f

[
2
λ∗f

(
|α1| + |α2|β1

W(β1, β2)
C∗1 (δ)

)
+ |α2|β1

W(β1, β2)
C∗2 (δ)

]

<
1

3δ
,

for all λ ∈ Kλ∗f ,δ. Thus, we obtain for the winding number W(t2;Kλ∗f ,δ) of t2(λ)
over Kλ∗f ,δ:

|W(t2;Kλ∗f ,δ)| =
∣∣∣∣ 1

2πi

∮
K

(d/dλ)t2(λ)
t2(λ)

dλ
∣∣∣∣ ≤ 1

2π

(
2

3δ

)
(2πδ) = 2

3
,
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(withK = Kλ∗f ,δ) for µ small enough. Then, since the winding numberW(t2;Kλ∗f ,δ)
must be an integer, we see that

W(t2;Kλ∗f ,δ) = 0.

Hence, because the simple pole of t2(λ, ε) at λ∗(ε) gives a contribution of −1 to
W(t2;Kλ∗f ,δ), t2(λ; ε) must have one simple zero λ0

s−f (ε) inside Kλ∗f ,δ. Finally,
since complex eigenvalues can only occur in pairs ((3.3) is real), we have λ0

s−f (ε) ∈
R. ❐

This method cannot give information on the ordering of λ∗f and λ0
s−f . We

will see in Corollary 5.10 that stability can only be recovered by increasing µ when
λ0
s−f < λ

∗
f for all µ small enough.

Although µ can be considered to be the main parameter in (1.2) and/or (1.7),
we can also formulate a similar result in terms of the parameters α1 and α2.

Theorem 5.2. Let µ > 0 and Gi(V), hi, αi, βi (i = 1, 2) as in (2.5), (2.6)
and let (U0(ξ), V0(ξ)) correspond to the homoclinic orbit γ1

h(ξ) defined in Theorem
2.1. Then there exists a αU1 = αU1 (µ,α2, β1, β2) > 0 such that (3.3) has an unstable
eigenvalue 0 < λ1(ε) ∈ R for all α1 > αU1 . Analogously, there exists a αU2 =
αU2 (µ,α2, β1, β2) < 0 such that (3.3) has an unstable eigenvalue 0 < λ1(ε) ∈ R for
all αU2 < α2 < 0.

Proof. The proof is again based on a winding number calculation over Kλ∗f ,δ
using the uniform estimates (5.1). It follows from (4.15) that |[dt2(λ)/dλ]/t2(λ)|
can again be made as small as necessary (either for α1 large enough or α2 < 0 close
enough to zero), so that W(t2;Kλ∗f ,δ) = 0 again. ❐

These arguments can also be applied near each of the other possible poles of
t2(λ, ε). Recall from Corollary 4.4 that λjf is associated to a pole λj(ε) of t2(λ, ε)
when j ≥ 2 even:

Corollary 5.3. Let µ > 0 and Gi(V), hi, αi, βi (i = 1, 2) as in (2.5), (2.6).
Let λjf be an eigenvalue of (3.14) such that −µ < λjf < 0, with j ≥ 2 and j

even. Then there exists a αU,j1 = αU,j1 (µ,α2, β1, β2) > 0 such that (3.3) has a stable
eigenvalue 0 > λjs−f (ε) ∈ R for all α1 > α

U,j
1 .

A similar result can once again be formulated in terms ofα2 < 0, close enough
to 0. However, the equivalent to Theorem 5.1 will in general not be true: the
condition −µ < λjf < 0 prohibits us from taking µ ‘small enough’. Nevertheless,
an estimate like (5.1) can also be used to establish the existence of another positive
eigenvalue λ1

s−f (ε) near λ1
f = 0 for µ small enough:
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Lemma 5.4. There exists a value µU,1 = µU,1(α1, α2, β1, β2) > 0 such that
(3.3) has an uniquely determined second positive eigenvalue 0 < λ1

s−f (ε) < λ
0
s−f (ε)

that satisfies limµ→0 λ1
s−f (ε) = 0 for all µ < µU,1 (with µU,1).

Proof. It follows from the smoothness of t2 as function of λ and (4.19) that
for µ small enough

∫∞
−∞
win(ξ;λ)(wh(ξ))β1−1 dξ < 2

W(β1, β2)
β2 − 1

for all λ ∈ (0,√µ).

Since
√µ/√µ +√µ can be made as small as necessary by decreasing µ, it follows

from (4.15) that t2(
√µ,0) > 0 (recall that α2 < 0). Then, since t2(0,0) <

0 by (4.20), we see that t2(λ) must have a zero in (0,√µ). An estimate (for
small λ) like in (5.1) on the derivative of the integral shows that λ1

s−f is uniquely
determined. ❐

For asymptotically small µ, it is even possible to derive a leading order approx-
imation of λ1

s−f (ε):

λ1
s−f (0) =

D2 + 2(β2 − 1)D
(β2 − 1)2

µ +O(µ2),(5.2)

since (4.19) only has an O(µ) correction for λ = O(µ) (and µ asymptotically
small). Finally we note that t2(λ, ε) = 1 to leading order for µ asymptotically
small and λ not too close to either 0 or the pole λ∗(ε). Therefore, (3.3) will only
have 3 eigenvalues for µ small enough: λ1

f = 0 < λ1
s−f < λ

0
s−f (to conclude

this one needs an estimate of the type (5.1) that is uniform in λ ∈ C\(the union
of O(δ) neighborhoods of λ∗, 0 and the negative Re(λ)-axis), which is a mostly
technical affair). However, when µ increases the essential spectrum moves away
from λ = 0 and poles and zeroes of t2(λ, ε)might bifurcate out of the ‘edge’ of the
essential spectrum at λ = −µ (Corollaries 4.4 and 5.3, and Section 5.2: this will
only happen for β2 < 3). We will see in Section 5.3 that such an edge bifurcation
exists in the classical Gierer-Meinhardt problem.

Remark 5.5. The situation described here (and in Lemma 5.4, Theorem 5.1)
is in essence the same as in the Gray-Scott model in the ‘strongly unstable regime’
[6, 7]. In the Gray-Scott problem there are two unstable eigenvalues, one near
0 and one near λ∗f = 5

4 (Proposition 5.6 with β2 = 2), in the strongly unstable
regime. The pattern (U0(ξ), V0(ξ)) becomes stable in the Gray-Scott model when
these two eigenvalues merge and become a pair of complex conjugate eigenvalues
that can cross through the Re(λ) = 0 axis. We will see in Section 5.3 that the same
happens when µ is increased in the classical Gierer-Meinhardt problem (note that
this agrees with Corollary 4.5).
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5.2. A reduction to hypergeometric functions. An inhomogeneous second
order ODE can of course be solved as soon as one knows two independent solu-
tions of the homogeneous problem. Therefore, we first study the homogeneous
problem associated to (4.14):

wξξ + [β2(wh(ξ))β2−1 − (1+ λ)]w = 0.(5.3)

It can be checked by (2.41) and (2.45) that this is equal to the fast reduced linear
stability problem (3.14). In the Gray-Scott model β2 = 2, so that this equation
can be transformed to the hypergeometric differential equation using the explicit
expression for the homoclinic solution of (2.40), wh(ξ) = 3/(2 cosh2(ξ/2)) [6].
Such an expression does not exist for general β2 > 1, however, the classical pro-
cedure to transform (5.3) to the hypergeometric differential equation for β2 = 2
[26] can be modified so that it can be applied for all β2 > 1, without using an
explicit formula for wh(ξ). We first introduce P by

P = +
√

1+ λ ∈ C,(5.4)

i.e., Re(P) > 0 for λ ∈ {Re(λ) > −1} ⊂ Ce. Sincew(ξ)must remain bounded as
ξ → −∞, or ξ →∞, it will decay as e−P |ξ|, therefore we introduce F = F(ξ;P,β2)
by

w(ξ) = F(ξ)(wh(ξ))P ,(5.5)

so that F(ξ) approaches a constant when w(ξ) → 0 for ξ → ±∞. Using (2.40)
and the integral relation

1
2
ẇ2
h =

1
2
w2
h −

1
β2 + 1

wβ2+1
h ,(5.6)

it follows that F(ξ) satisfies

F̈ + 2P
ẇh
wh
Ḟ + (β2 − P)(β2 + 1)− 2P(P − 1)

β2 + 1
wβ2−1
h F = 0,(5.7)

where the ‘dots’ denote differentiation with respect to ξ. Next, we introduce the
new independent variable z by

z = 1
2

(
1− ẇh(ξ)

wh(ξ)

)
.(5.8)

Note that z = 1
2 corresponds to ξ = 0: the axis of symmetry for wh = wh(ξ).

The relation (5.6) implies that limξ→±∞ ẇh(ξ)/wh(ξ) = ∓1. Thus, (5.8) defines
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a one-to-one map from ξ ∈ (−∞,∞) onto z ∈ (0,1). Moreover, (2.40) and (5.6)
imply that

(5.9)
ẇh
wh

= 1− 2z, wβ2−1
h = 2(β2 + 1)z(1− z),

d
dξ
= (β2 − 1)z(1− z) d

dz
.

This yields the following equation for F as function of z:

(5.10) z(1− z)F ′′ + (1− 2z)
β2 + 2P − 1
β2 − 1

F ′

+ 2
(β2 − P)(β2 + 1)− 2P(P − 1)

(β2 − 1)2
F = 0.

Equation (5.10) is a special form of the hypergeometric differential equation

z(1− z)F ′′ + [c − (a+ b + 1)z]F ′ − abF = 0,

with

a = 2P + 2β2

β2 − 1
, b = 2P − β2 − 1

β2 − 1
, c = 2P + β2 − 1

β2 − 1
.(5.11)

Thus, the following two hypergeometric functions span the solution space of
(5.10)

F(a , b | c | z) and z1−cF(a−c+1 , b−c+1 | 2−c | z),(5.12)

with a, b, c as in (5.11) [26]. However, since (5.7) is symmetric with respect
to z → 1 − z, we will use a different set of independent solutions that exploit
this symmetry (see Appendix B on page 502). Note that the symmetry around
z = 1

2 is a transformation of the reversibility symmetry ξ → −ξ in (5.3) and in
the underlying PDE.

The reduction of the eigenvalue problem to a hypergeometric differential
equation can be used to determine the eigenvalues λjf and the associated eigen-
functions of the fast reduced system. This result will be necessary for the analysis
of the inhomogeneous problem.

Proposition 5.6. Let J = J(β2) ∈ N be such that J < (β2 + 1)/(β2 − 1) ≤
J + 1. The eigenvalue problem (5.3) has J + 1 eigenvalues given by

λjf =
1
4
[(β2 + 1)− j(β2 − 1)]2 − 1, for j = 0,1, . . . , J.(5.13)
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The eigenfunctions wjf (ξ) are polynomial solutions of degree j (in z) of the associated
problem (5.7) and can be explicitly expressed in terms of wh(ξ) and ẇh(ξ) (through
(5.5) and (5.8)).

Proof. A solution of (5.3) that decays for ξ → ±∞ corresponds to a solution
F(z) of (5.10) that is regular at both z = 0 and z = 1 (5.5). Since (5.3) is self-
adjoint, we know that the eigenvalues λ must be real; moreover, λ > −1, thus
P > 0. It follows from 1 − c = −2P/(β2 − 1) < 0 (5.4) that z1−cF(a−c+1 ,
b−c+1 | 2−c | z) is singular at z = 0 whereas F(a , b | c | z) is by construction
regular at z = 0, but has a singularity in z = 1 in general [26]:

lim
z→1
(1− z)−(c−a−b)F(a , b | c | z) = Γ(c)Γ(a + b − c)Γ(a)Γ(b) ,(5.14)

since c − a − b = 1 − c < 0 by (5.11); Γ(z) is the Gamma function. Hence, a
solution of (5.10) that is regular at both z = 0, 1 can only exist at the poles ofΓ(a) or Γ(b): a, b = 0, −1, −2, . . . . It follows by (5.11) and the fact that P > 0,
β2 > 1 that a > 0, hence only the Γ(b) term can have a pole:

Pj = 1
2
(β2 + 1)− 1

2
(β2 − 1)j, for j = 0,1,2, . . . ,(5.15)

which transforms into (5.13) by (5.4). Note that the superscripts are indices, not
powers. Since b = −j at P = Pj , it follows that the power series expansion of
F(a , b | c | z) has finite length: it is a polynomial of degree j [26]. ❐

Remark 5.7. Note that λjf ∈ (−1,0) for j ≥ 2 and that J(β2) ≡ 1 for
β2 ≥ 3 (i.e., there are no ‘stable’ eigenvalues for β2 ≥ 3). On the other hand,
limβ2↓1 J(β2) = ∞: the number of stable eigenvalues becomes unbounded as β2
decreases to 1. The new eigenvalues that appear as β2 decreases from β2 = 3
are generated as so-called ‘edge bifurcations’ at the endpoint −1 of the essential
spectrum associated to (5.3). Furthermore, we observe that

λ∗f = λ0
f =

1
4
(β2 + 1)2 − 1 > 0, with w∗f (ξ) = w0

f (ξ) = (wh(ξ))1/2(β2+1),

(5.16)

since F(z) ≡ 1 is the zeroth order polynomial solution of (5.7) at P = P0. More-
over, we confirm that λ1

f ≡ 0 with w1
f (ξ) = ẇh(ξ). In Section 5.3 we will study

the special case corresponding to the classical Gierer-Meinhardt problem, where
β2 = 2 (1.9). In this case there are 3 eigenvalues (J = 2): λ∗f = λ0

f = 5
4 , λ1

f = 0,
and λ2

f = − 3
4 .
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The inhomogeneous problem (4.14) can be transformed in precisely the same
fashion as (5.3). Introducing G(z) by

F(z;P,β2) =
[2(β2 + 1)](β2−P)/(β2−1)

(β2 − 1)2
G(z;P,β2),(5.17)

we obtain the inhomogeneous hypergeometric equation

(5.18) z(1− z)G′′ + (1− 2z)
β2 + 2P − 1
β2 − 1

G′

+ 2
(β2 − P)(β2 + 1)− 2P(P − 1)

(β2 − 1)2
G

= [z(1− z)](1−P)/(β2−1).

Using the independent solutions of the homogeneous problem (5.10), we can
determine the unique solution G(z;P,β2) of this equation by a classical variation
of constants (or Green’s function) approach. The details of this analysis are given
in Appendix B on page 502. In Section 5.3, we will apply the general procedure
to a special case, the classical Gierer-Meinhardt equation (see also [6]). However,
the procedure works in general, for all possible parameter combinations.

Remark 5.8. The right hand side of (5.18) is a polynomial in z when
(1 − P)/(β2 − 1) = k or P = 1 − k(β2 − 1), k = 0, 1, 2, . . . . This corresponds
to j = 2k + 1 in (5.15). Therefore, we can determine the solution G(z;P,β2)
as a polynomial in z when P = Pj with j odd. By Corollary 4.4 we know that
there is an eigenvalue of the full problem (3.3) near λjf for odd values of j (for

all µ when j = 1, for µ > −λjf when j ≥ 3). For such values we can thus deter-

mine G(z;Pj, β2) explicitly (but not uniquely) and calculate t2(λ
j
f ,0). We have

already done this in Section 4.2 for k = 0 (i.e., j = 1, (4.18)) without using
the transformation to a hypergeometric differential equation. It also follows from
the analysis in Section 4 that G(z;P,β2) does not exist for P = Pj with j even
(P = Pj corresponds to the pole of t2(λ,0) at λ = λjf in this case, see Corollary
4.4).

The leading order expressions for the eigenvalues of (3.3) are now determined
by imposing t2(λ,0) = 0, where we recall that t2(λ,0) is given by (4.15). We
introduce

R(P ;β1, β2) =
∫ 1

0
G(z;P,β2)[z(1− z)](P+β1−β2)/(β2−1) dz,(5.19)

and

B(β1, β2) =
(β2 − 1)2

2β1(β2 + 1)

∫ 1

0
[z(1− z)](β1−β2+1)/(β2−1) dz.(5.20)
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The integral in the definition of B(β1, β2) comes from the termW(β1, β2) (2.43).
It is a beta-function and can thus be written as an expression in Gamma functions
[26]. It follows from the expression for t2(λ,0) (4.15) and (5.4), (5.5), (5.8),
(5.17), (5.19), (5.20) that

t2(P,0) = 1−
[
α1 − α2

B(β1, β2)
R(P ;β1, β2)

]√
µ

µ + P2 − 1
.(5.21)

Although the expression R(P ;β1, β2) is explicitly known (B.6), it is almost im-
possible to handle R(P ;β1, β2) (5.19) by hand: here a program like Mathemat-
ica is indispensable, especially when P is complex valued. With the use of such
a program R(P ;β1, β2), and thus t2(P,0), can be considered as known func-
tions: an eigenvalue λ = λ(µ,α1, α2, β1, β2) of (3.3) corresponds to a solution
P(µ,α1, α2, β1, β2) of the equation t2(P,0) = 0,

√
µ + P2 − 1 =

[
α1 −

α2

B(β1, β2)
R(P ;β1, β2)

]
√
µ.(5.22)

If one is interested in real eigenvalues of (3.3) (for a given value of µ), one can de-
termine the (non-)existence ‘graphically’ by solving t2(P,0) = 0 for µ = µreal(P):

(5.23) µreal(P ;α1, α2, β1, β2) = P2 − 1[
α1 − α2

B(β1, β2)
R(P ;β1, β2)

]2

− 1

,

if α1 − α2

B(β1, β2)
R(P ;β1, β2) ≥ 0,

by (5.22); µreal(P) is not defined when the right hand side of (5.22) is negative.
Thus, if µ > 0 is given and there is a P ∈ (P1,∞) = (1,∞) such that µreal(P) = µ,
then the 1-pulse solution of (1.7) is unstable, with (at least one) real positive
eigenvalue. Note that there can still be complex valued unstable eigenvalues if this
is not the case (see Section 5.3 on the next page).

The asymptotic results of the previous sections give some insight in the graphs
of µreal(P ;α1, α2, β1, β2) andR(P ;β1, β2). Such insight can serve as an extremely
useful check of the calculations in Appendix B on page 502 and their implemen-
tation in a Mathematica code (see Figures 5.1 on page 489 and 5.2 on page 490).

Corollary 5.9. Let P > 0 and k be such that 2k = j = 0, 2, · · · ≤ J (defined
in Proposition 5.6):

(i) R(P ;β1, β2) → Rk/(P − P2k) as P → P2k for some Rk = Rk(β1, β2) ≠ 0;
R(P ;β1, β2) is well-defined for all P ≠ P2k;

(ii) R(1;β1, β2) = β1B(β1, β2)/(β2−1) > 0; α1−(α2/B(β1, β2))R(1;β1, β2) >
1;
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(iii) µreal(P2k) = 0 and µreal(1) = 0; the graph of µreal(P) is tangent to the P -axis
at P = P2k; µreal(P) ≠ 0 for P ≠ P2k, 1;

(iv) Let P ∈ V 2k, a (small enough) neighborhood of P2k: µreal is only defined either
for P < P2k or for P > P2k;

(v) µreal(P) > 0 for P ∈ (1, P̂1) and for P ∈ (P̂0
` , P̂

0
r ), for some P̂ > 0 and

P̂0
` < P̂

0
r with either P̂0

` = P0 or P̂0
r = P0.

Proof. Corollary 4.4 yields thatG(P ;β2) only has poles of order one at P = Pj
for j even; it follows from the behavior of G(z) near z = 0, 1 and (5.19) that the
same is true for R(P ;β1, β2), see Remark B.1 in Appendix B. This proves (i)
and, by (5.23) it also establishes parts (iii) (since the denominator vanishes) and
(iv) (since µ must be positive). Then, part (ii) is a consequence of (5.21) and
(4.20), or equivalently (5.2), and the fact that β1/(β2 − 1) > (α1 − 1)/α2, i.e.,
D > 0 (2.10). Finally, it follows from Theorem 5.1 and Lemma 5.4 that the
graph of µreal(P) intersects the line µ = δ for some δ small enough at two points:
P1
s−f near (and larger than) P1 (that corresponds to λ1

s−f ) and P0
s−f near P0 (that

corresponds to λ0
s−f ); this implies (v). ❐

Note that the position of the interval (P̂0
` , P̂

0
r ) with respect to P0 is determined

by the sign of R0 (see (i), (v)) and that R0 thus also determines the relative position
of λ0

s−f with respect to λ0; Rk determines the domain of definition of µreal in (iv).
Finally, we observe by (5.23) that µreal(P) can have singularities if

R(P ;β1, β2) = (α1 − 1)B(β1, β2)/α2 (see Figure 5.2 on page 490 in the next
section). If there are singularities in the interval (1, P0), then it follows from
Corollary 5.9 that (0,∞) ⊂ {µ = µreal(P) : P ≥ 1}: there is at least one unstable
(real) eigenvalue for any µ > 0. This observation immediately yields an instability
result.

Corollary 5.10. If λ0
s−f > λ

∗
f for µ < δ (for some δ small enough), then there

exists at least one unstable eigenvalue to (3.3) for any µ > 0.

Proof. It follows from Corollary 5.9 that µreal(P) must have a singularity in
(1, P0) (note that, in this case, µreal(P) is not defined for P < P0 and close to
P0). ❐

We will see in the next section thatR(P ;β1, β2) is monotonically increasing as
function of P for P ∈ (1, P0) in the special case of the classical Gierer-Meinhardt
problem (1.9). This implies by Corollary 5.9 that λs−f < λ∗f and that µreal(P)
cannot have singularities in (1, P0): µreal(P) must have a maximum µcomplex in-
side (1, P0). Thus, there are no unstable real eigenvalues for µ > µcomplex in this
case. See Figures 5.1 on the facing page and 5.2 on page 490.

5.3. An application: the classical Gierer-Meinhardt equation. The choice
(1.9) of (α1, α2, β1, β2) corresponds to the original biological values of the expo-
nents of F1(U), F2(U), G1(V), G2(V) in (1.2) by Gierer and Meinhardt [20],
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[28], [29], [30]. Recall, however, that the theory developed in this paper is valid
for a much wider class than the functions considered in [20], [28], [29]: there
F1(U) = Uα1 , F2(U) = Uα2 , G1(V) = Vβ1 , G2(V) = Vβ2 . In this paper the
exponents (α1, α2, β1, β2) are only determined by the leading order behavior of
F1(U), F2(U), G1(V), and G2(V) for large U , V – see (1.4). Note that this case is
not covered by the stability results in [30] (see Section 7 on page 498).

1 2
P

-0.2

-0.1

0.1

0.2
R(P)

FIGURE 5.1. The functionR(P ; 2,2) for P ∈ (0,2). The (sim-
ple) poles are located at P0 = 3

2 and P2 = 1
2 ; R(P ; 2,2) > 0 for

P ∈ (0, Pedge)∪ ( 1
2 ,

3
2) where Pedge = 0.47 . . .+O(ε).

In Figure 5.1, R(P ; 2,2) is plotted for P ∈ (0,2), i.e., λ ∈ (−1,3). We see
thatR(1; 2,2) = 1

36 ((5.20) and Corollary 5.9). The behavior of µreal(P) as func-
tion of P > 0 is shown in Figure 5.2 on the following page. It follows from Fig-
ure 5.1 that µreal(P) can only be used to find real eigenvalues for P ∈ ( 1

2 ,
3
2) and

P < Pedge = 0.47 . . . (to leading order), becauseR(P ; 2,2) ≤ 0 for all other values
of P (see (5.23), and recall that α1 = 0, α2 = −1). At the critical value P = Pedge,
R(P ; 2,2) = 0 and the graph of µreal(P) is tangent to the ‘edge’ of the essential
spectrum given by P = √

1− µ (for 0 < µ ≤ 1, (5.4), (3.9)). Thus, it follows
that there is an edge bifurcation at µ = µedge = µreal(Pedge) = 0.77 . . . (+O(ε)). A
fourth (stable) eigenvalue appears from the edge of the essential spectrum at this
value of µ. This eigenvalue remains real and negative for all µ > µedge. Inside the
interval ( 1

2 ,
3
3), µreal(P) has a maximum at P = Pcomplex = 1.17 . . .+O(ε) (corre-

sponding to λcomplex = 0.38 . . .+O(ε)). Hence, µ = µcomplex = µreal(Pcomplex) =
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1 1.5 2
P

-0.5

0.5

1

1.5

2
mu(P)

FIGURE 5.2. The function µreal(P ; 0,−1,2,2) for P ∈ (0,2).
This graph only has meaning when R(P ; 2,2) > 0 (5.23), i.e.,
for P ∈ (0, Pedge)∪( 1

2 ,
3
2). The maximum of µreal(P ; 0,−1,2,2)

inside ( 1
2 ,

3
2) defines the value µcomplex = 0.053 . . . + O(ε):

there are no real unstable eigenvalues for µ > µcomplex. The
parabola connecting (0,1) to (1,0) represents the edge of the
essential spectrum (3.9), (5.4); µreal(P ; 0,−1,2,2) is tangent to
this parabola at Pedge = 0.47 . . . + O(ε), the zero of R(P ; 2,2).
A new eigenvalue bifurcates from the edge of the essential spec-
trum at µ = µedge = µreal(Pedge) = 0.77 . . . + O(ε). Note
that µreal(P ; 0,−1,2,2) is tangent to the P -axis at P = P0 = 3

2 ,
P = P2 = 1

2 (Corollary 5.9, (iii)).

0.053 . . . + O(ε). Thus, there are two unstable real eigenvalues, λ1
s−f /P1

s−f and
λ0
s−f /P0

s−f , for all µ ∈ (0, µcomplex), as was already established qualitatively by
Theorem 5.1 and Lemma 5.4 (see also Corollary 5.9). These eigenvalues merge at
µ = µcomplex.

In Figure 5.3 on the facing page the ‘orbit’ (as function of µ) of the pair of
complex conjugate eigenvalues that is created at µcomplex is shown in the complex
λ-plane. This orbit is determined by solving (5.22) for complex values of P . The
complex eigenvalues cross the imaginary axis at µ = µHopf = 0.36 . . .+O(ε). Note
that this agrees with Corollary 4.5. Finally, the pair of complex eigenvalues does
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Re

-0.86
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Im

FIGURE 5.3. The ‘orbits’ of the eigenvalues through the com-
plex plane as functions of µ > 0 (with parameters as in (1.9)).
The eigenvalues λ1

s−f and λ0
s−f approach 0 and 5

4 as µ ↓ 0
and merge at µ = µcomplex = 0.053 . . . + O(ε), where λ1

s−f =
λ0
s−f = 0.38 . . . + O(ε); λ1

s−f and λ0
s−f are complex for all

µ > µcomplex and cross the imaginary axis at µ = µHopf =
0.36 . . . + O(ε) where λ1

s−f = −λ0
s−f = 0.86 . . . i + O(ε); they

limit at −0.99 . . . ± 0.14 . . . i + O(ε) as µ → ∞. The eigen-
value that bifurcates from the edge of the essential spectrum at
µ = µedge = 0.77 . . .+O(ε) decreases monotonically as function
of µ to λ = −1, the edge of the essential spectrum for µ > 1
(3.9).

not return to the unstable half plane (λ1
s−f , λ0

s−f → −0.99 . . .± 0.14 . . . i+O(ε)
as µ →∞). Hence, we have shown:

Theorem 5.11. Let equation (1.7) be given with the parameters fixed by (1.9).
Let (U0(ξ), V0(ξ)) be the homoclinic 1-pulse solution given by Theorem 2.1. Then,
(U0(ξ), V0(ξ)) is an unstable solution of (1.7) if 0 < µ < µHopf = 0.36 . . .+O(ε),
and (U0(ξ), V0(ξ)) is spectrally stable as solution to (1.7) for all µ > µHopf .

It has been checked by direct numerical integration of (1.7) that the Hopf
bifurcation occurs at µ ≈ 0.37 (see Figure 1.1 on page 444: (U0(ξ), V0(ξ)) can be
observed as an asymptotically stable pattern at µ = 0.38, and for µ > 0.38). This
agrees completely with the leading order result given by the NLEP approach.
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-0.77
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1.25
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FIGURE 5.4. The real parts of the three non-trivial eigenvalues
as functions of µ (with parameters as in (1.9)). The dashed line
represents the edge of the essential spectrum (3.9).

In Figure 5.4 the graphs of the real parts of the 3 non-trivial eigenvalues of
the linear problem (3.1) associated to the stability of (U0(ξ), V0(ξ)) have been
plotted as functions of µ.

Remark 5.12. For the special case of (1.9), the inhomogeneous problem
(5.18) is identical to the corresponding NLEP problem for the Gray-Scott model
[6]. Moreover, by coincidence, the choice β1 = 2 leads to the same hypergeomet-
ric NLEP analysis as in the Gray-Scott model. The exponents in the integrand of
R(P ; 2,2) (5.19) are identical to those in the corresponding term in [6]! (Note
that P2

G−S = 4(1+ λ) in [6]: PG−S = 2P .)

6. THE INSTABILITY OF THE N-CIRCUIT HOMOCLINIC PATTERNS
(N ≥ 2)

The formulation of the linearized stability problem (3.1), or equivalently (3.3), is
valid for any homoclinic N-pulse solution (U0(ξ), V0(ξ)) associated to an orbit
γNh (ξ) (Theorem 2.1). As we noted in Section 3.2: one has to distinguish between
the case N = 1 and the case N ≥ 2 as soon as the structure of the stability problem
in the fast reduced limit becomes important (i.e., as soon as one wants to define
the component ϕ2(ξ) of the Evans function). Equation (3.13) is still the fast
reduced scalar equation when N ≥ 2. However, the equivalent of the fast reduced
linearized problem (3.14) is now determined by linearizing around the full multi-
pulse solution V0(ξ) instead of around the leading order approximation of V0(ξ),
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which we recall is the homoclinic solution vh(ξ) of (2.7) (with u = uh,1 (2.45)).
It is necessary to work with V0 = V0(ξ; ε), since its leading order approximation
is not an exact solution of (3.13). Moreover, one cannot take the limit ε → 0 in
V0(ξ) (for N ≥ 2), since the distance between its N pulses becomes unbounded in
this limit (see Lemma 6.1 below). Therefore, we need a precise description, and
thus approximation, of V0(ξ) in the forthcoming analysis.

Lemma 6.1. Let V0(ξ) be the v-component of the homoclinic orbit γNh (ξ) de-
scribed in Theorem 2.1. There exist −∞ = ξ0 < ξ1 < · · · < ξ2N−1 < ξ2N = +∞
such that:

(i) ∂V0(ξ)/∂ξ = 0 if and only if ξ = ξj , j = 0, 1, . . . , 2N.
(ii) V0(ξj) = O(1) for 1 ≤ j ≤ 2N−1 odd, and V0(ξj) = O(

√
ε) for 0 ≤ j ≤ 2N

even.
(iii) |ξj − ξk| = O(| log ε|) for j, k = 1, 2, . . . , 2N − 1, and j ≠ k.
(iv) ξj = −ξ2N−j for j = 0, 1, . . . , 2N (in particular: ξN = 0).

Moreover, there exists a ρ > 0 such that the following estimate holds:

sup
ξ∈(ξ2k−2,ξ2k)

|V0(ξ)− vh(ξ − ξ2k−1;uh,N)| = O(ερ) for k = 1,2, . . . , N,(6.1)

where vh(ξ;uh,N) is defined by (2.40), (2.41), (2.45).

Proof. This Lemma is just a technical formulation of results obtained in Sec-
tion 2 on page 451; (i), (ii), (iii), (iv), and the estimate follow immediately from
the definition of the ξj ’s by γNh (ξj) ∈ Ij(M)∩I−2N+j(M) and the leading order
perturbation results. Note that ρ will in general depend on α1, α2, β1, β2 through
ε̂ (1.5). ❐

The homogeneous linearized stability eigenvalue problem associated to the
fast reduced limit reads

(LNf (ξ; ε)− λ)v = vξξ + [β2h2(uh,N)α2(V0(ξ; ε))β2−1 − (1+ λ)]v = 0.(6.2)

Note that this operator can be identified with the leading order approximation of
the lower diagonal 2× 2 block of A(ξ;λ, ε) (3.4), as is the case with Af in (3.14)
for N = 1 (see Section 3.2). Thus, replacing the linear operator Af in (3.14)
by LNf − λ (in matrix notation), we can proceed in the same manner as we did
for the case N = 1 in Sections 3 and 4: we can define the functions ϕNj (ξ;λ, ε)
(j = 1, 2, 3, 4), the Evans functionDN(λ, ε), and the decomposition ofDN(λ, ε)
into a product of transmission functions tN1 (λ, ε) and tN2 (λ, ε) (see (3.21)). By
construction, we again have that the transmission function tNf (λ, ε) associated to
the Evans function for the fast reduced limit problem (see (3.22)) is a leading order
approximation of tN1 (λ, ε). Therefore, as in Lemma 4.1 and Corollary 4.4, we find
that the zeroes of tN1 (λ, ε) are to leading order given by the eigenvalues of the fast
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reduced limit problem (6.2). However, it should be noted that the proof of this
result is based on a topological winding number argument over a contour Kδ that
must be independent of ε: the argument in the proof of Lemma 4.1 implies that
the number of zeroes of tN1 (λ, ε) inside Kδ is equal to the number of eigenvalues
of (6.2) inside Kδ. We shall see that this number is greater than 1 for N > 1.

Eigenvalue problem (6.2) is of singular Sturm-Liouville type [40]. The essen-
tial spectrum is identical to that of the corresponding problem for N = 1, (5.3),
since V0(ξ) decays exponentially to 0 as |ξ| → ∞. In general one expects that
every eigenvalue of the associated 1-pulse potential Schrödinger problem will split
into N nearby eigenvalues in the N-pulse potential Schrödinger problem (6.2), see
also [35], [36]. We do not need a result as general as this here (see Remark 6.5).
Note, however, that we know by the general theory on Sturm-Liouville problems
[40] that the eigenvalues of (6.2) can be ordered

λN,0f > λN,1f > · · · > λN,Jf

(for some finite number J = JN) and that the eigenfunction associated to λN,jf
must have exactly j zeroes. The application of this result to (6.2) immediately
implies that JN ≥ 2N − 1 (independent of β2). This can be seen as follows. The
derivative of the wave ∂V0/∂ξ is an eigenfunction of the full problem (3.1) at
λ = 0. There must be an eigenvalue and an eigenfunction of reduced problem
(6.2) associated to it (∂V0/∂ξ is only an approximation of the eigenfunction of
(6.2) since V0(ξ) is not an exact solution of (3.13)). Just like the function ∂V0/∂ξ,
this eigenfunction will have 2N − 1 zeroes (Lemma 6.1(i)), thus, there must be
2N − 1 eigenvalues λN,jf > λN,2N−1

f = 0+h.o.t. of (6.2). This yields that the
number of eigenvalues is at least N times that of the 1-pulse pattern for β2 ≥ 3
(Remark 5.7). It is natural to expect that

JN = (J + 1)N − 1,

with J = J(β2) as defined in Proposition 5.6 (see Remark 6.5).
The same classical result on the eigenvalues and their eigenfunctions of Sturm-

Liouville problems also implies that all eigenfunctions of (6.2) must be either even
or odd as functions of ξ, as in the case N = 1. V0(ξ) is even, thus, an eigenfunc-
tion that is neither even nor odd transforms by ξ → −ξ into another, indepen-
dent, eigenfunction with the same (finite) number of zeroes, which is not possible.
Thus, we conclude that the eigenfunction vN,jf (ξ) of (6.2) that corresponds to the

eigenvalue λN,jf is even for even j and odd for odd j. This enables us to formulate
explicit expressions for the first two eigenvalues

λN,0f and λN,1f .
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Let L2(R; e), respectively L2(R; o), denote the space of all even (resp. odd) L2

functions on R: λN,0f is the critical eigenvalue of (6.2) for v restricted to L2(R; e)
and λN,1f is the critical eigenvalue of (6.2) for v restricted to L2(R; o). Hence,

λN,0f = sup
v∈L2(R;e)
v≠0

(LNf (ξ; ε)v,v)
‖v‖2 ,

λN,1f = sup
v∈L2(R;o)
v≠0

(LNf (ξ; ε)v,v)
‖v‖2 ,

(6.3)

with the standard L2 inner product and norm, see for instance [16]. Using Lemma
6.1 we obtain the following result.

Lemma 6.2. There exists a ρ > 0 such that

λ∗f +O(ερ) = λ
N,0
f > λN,1f = λ∗f +O(ερ),

where λ∗f > 0 is the critical eigenvalue of the 1-pulse eigenvalue problem (5.3).

Proof. Define v`(ξ) ∈ L2(R) by

v`(ξ) = `kv∗f (ξ − ξ2k−1;uh,N) for ξ ∈ (ξ2k−2, ξ2k), k = 1,2, . . . , N,(6.4)

with `k ∈ R and ξj as defined in Lemma 6.1; v∗f (ξ;uh,N) is the eigenfunction
corresponding to the critical eigenvalue λ∗f of the 1-pulse eigenvalue problem

(6.5) (Lf (ξ;uh,N)− λ)v = vξξ
+ [β2h2(uh,N)α2(vh(ξ;uh,N))β2−1 − (1+ λ)]v = 0.

Note that for N = 1, Lf (ξ;uh,1) = Lf (ξ) as defined in (4.7). The operator
LNf (ξ; ε), defined by (6.2), can be approximated by N translated copies of Lf ,
Lf (ξ − ξ2k−1;uh,N) (k = 1, . . . , N), by Lemma 6.1:

(LNf v`, v`) =
N∑
k=1

∫ ξ2k

ξ2k−2

`2
kLNf (ξ)[v∗f (ξ − ξ2k−1;uh,N)]v∗f (ξ − ξ2k−1;uh,N)dξ

=
N∑
k=1

`2
k

∫ ξ2k

ξ2k−2

Lf (ξ − ξ2k−1;uh,N)[v∗f (ξ − ξ2k−1;uh,N)]

· v∗f (ξ − ξ2k−1;uh,N)dξ + RN1 =
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= λ∗f
N∑
k=1

`2
k

∫ ξ2k

ξ2k−2

(v∗f (ξ − ξ2k−1;uh,N))2 dξ + RN1

= λ∗f ‖v`‖2 + RN1 ,

where, by (6.2) and (6.5),

|RN1 | ≤ β2h2(uh,N)α2

N∑
k=1

`2
k

∫ ξ2k

ξ2k−2

|(V0(ξ))β2−1 − (vh(ξ − ξ2k−1))β2−1|

· (v∗f (ξ − ξ2k−1))2 dξ

= O(ερ),

by estimate (6.1). Thus, we have that (LNf v`, v`)/‖v`‖2 = λ∗f + O(ερ) for any
(`1, . . . , `N) ∈ RN . Since, v`(ξ) ∈ L2(R; e), respectively v`(ξ) ∈ L2(R; o),
for `k = `N−k, resp. `k = −`N−k (Lemma 6.1 (iv)) we know by (6.3) that
λN,0f > λN,1f ≥ λ∗f +O(ερ).

A similar decomposition of (LNf v,v) for a general v ∈ L2(R) shows that

the critical eigenvalue λN,0f of (6.2) must approach λ∗f as ερ for some ρ > 0 in

the limit ε → 0 (λN,0f is the supremum of (LNf v,v)/‖v‖2 over all v ∈ L2(R)
(v ≠ 0); it follows from the decomposition of R into the (ξ2k−2, ξ2k)-intervals
(k = 1, . . . , N) that (LNf v,v)/‖v‖2 ≤ (Lfv∗f , v∗f )/‖v∗f ‖2+O(ερ) = λ∗f +O(ερ)
for all v ∈ L2(R)). Hence, the statement of the Lemma follows. ❐

As we already observed above, this result on the eigenvalues of the fast re-
duced limit problem implies that the component tN1 (λ, ε) of the Evans function
DN(λ, ε) has at least two zeroes, λN,0(ε) and λN,1(ε), that both approach λ∗f as
ε → 0. A zero of tN1 (λ, ε) corresponds to a zero of DN(λ, ε) when tN2 (λ, ε) is
non-singular at this value of λ. We can now, once again, follow the arguments
developed for the case N = 1 in Section 4 in order to derive a leading order ap-
proximation of tN2 (λ, ε).

By Lemma 6.1 we know that we can approximate ϕN2 (ξ) as in Lemma 4.2.
Thus, since the u-component of ϕN2 (ξ) is equal to a constant (= 1) to leading
order on It (4.1), the leading order equation for the v-component ofϕN2 (ξ) reads

(LNf (ξ; ε)− λ)v = −α2h2(uh,N)α2−1Vβ2
0(6.6)

(see also (4.6)), where we can extend the ξ-interval It to R without altering the
leading order effect. Instead of proceeding along the lines of Section 4.1 and de-
riving an explicit expression for tN2 (λ, ε), we immediately establish the equivalent
of Corollary 4.4.
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Lemma 6.3. Let λN,jf be an eigenvalue of (6.2) and let λN,j(ε) denote the cor-
responding zero of tN1 (λ, ε): t

N
2 (λ, ε) has a pole (of order one) at λN,j(ε) when j is

even, tN2 (λ, ε) is regular at λN,j(ε) when j is odd.

Proof. The operator LNf − λ is not invertible at an eigenvalue λ = λN,jf . The

solvability condition for the inhomogeneous equation (6.6) at λ = λN,jf reads∫∞
−∞
(V0(ξ))β2vN,jf (ξ)dξ = 0,

where vN,jf (ξ) is the eigenfunction of (6.2) associated to λN,jf . As was already

observed: it follows from classical results [40] that vN,jf (ξ) is even, respectively
odd, as function of ξ, for j even, resp. odd. Since V0(ξ) is even, we find that
(6.6) has no solutions for j even, and a 1-parameter family of solutions for j odd.
Hence, tN2 (λ, ε) has a simple pole at λ = λN,j(ε) for j even (by the argument in
the proof of Lemma 4.3), and tN2 (λ, ε) is well-defined at λ = λN,j(ε) for j odd
(by the argument in the proof of Corollary 4.4). ❐

The combination of Lemmas 6.2 and 6.3 yields the following result.

Theorem 6.4. Let µ > 0 and Gi(V), hi, αi, βi (i = 1, 2) as in (2.5), (2.6).
For N ≥ 2, the eigenvalue problem (3.1) has at least one eigenvalue λ = λN,1(ε) > 0
that approaches the critical eigenvalue λ∗f > 0 of (5.3) in the limit ε → 0.

Thus, the N-pulse solutions (U0(ξ), V0(ξ)) described by Theorem 2.1 are
unstable for N ≥ 2. The NLEP procedure might be able to eliminate the critical
eigenvalue λN,0f of (6.2) by a zero-pole cancellation, but it does not have a leading
order influence on the eigenvalues associated to odd eigenfunctions. This is no
problem forN = 1, since there are no positive eigenvalues of the reduced linearized
stability problem associated to an odd eigenfunction, but, Lemma 6.2 shows that
this feature of the NLEP procedure yields the above instability result for all N ≥ 2.

Remark 6.5. It is possible to obtain explicit approximations of all N eigen-
values of (6.2) in an O(ερ) neighborhood of the eigenvalues λjf of the 1-pulse
problem (5.3) for j = 1, 2, . . . , J (Proposition 5.6). One can do this using the
equivalent of the N-dimensional linear space spanned by the functions v`, as was
defined in the proof of Lemma 6.2 for λ near λ0

f (6.4). For general λjf , the func-

tions vj` consist ofN independent copies of the eigenfunction `kv
j
f of (6.5) on the

intervals (ξ2k−2, ξ2k), k = 1, 2, . . . , N. The space {vj`}`∈RN is the leading order
approximation of the N-dimensional space spanned by the N eigenfunctions of
(6.2) associated to the N eigenvalues near λjf . It is necessary to compute the next
order approximations of V0(ξ) (Lemma 6.1 only gives the leading order approxi-
mation) and use these results to obtain the next order corrections to {vj`}; this is a
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computationally cumbersome, but straightforward procedure. The N eigenvalues
and eigenfunctions can then be obtained by maximizing variational expressions as
(6.3) with respect to (`1, . . . , `N). Note, however, that one has to be extra careful
as β2 decreases through a value at which a new eigenvalue λJf of (5.3) appears from
the essential spectrum (Proposition 5.6, Remark 5.7): it is a priori not clear how
the N eigenvalues of (6.2) that will accompany λJf are created.

Remark 6.6. In principle it is possible to keep track of all eigenvalues of (3.1)
for N ≥ 2, just as was done for N = 1 in the previous sections. One can compute
leading order expressions for tN2 (λ, ε) comparable to (4.11). Here, one has to take
for instance into account that γNh (ξ) spirals N-times through phase space when
one computes ∆fastuξ (see (4.9)). It is also possible to derive asymptotic results
on tN2 (λ, ε) and explicit formulae for the eigenvalues in terms of hypergeometric
functions, as was done in Section 5 on page 479 for N = 1.

7. DISCUSSION

In this section we discuss the relation between this paper and (part of ) the litera-
ture on related subjects.

The Gray-Scott model. The analysis in this paper can be seen as an extension
and a generalization of the results in [9] (existence of homoclinic patterns) and [6],
[7] (stability) on pattern formation in the Gray-Scott model. We have shown here
that the ‘NLEP paradox’, i.e., the zero/pole cancellation in the decomposition of
the Evans function encountered in the analysis of the Gray-Scott model, is not a
special feature of this model. This zero/pole cancellation occurs in a large family
(1.1) of singularly perturbed reaction-diffusion equations. Moreover, we have ex-
tended the NLEP approach so that it also is possible to study homoclinic N-pulse
patterns. Without going into the details, we can state here that the methods de-
veloped in Section 6 on page 492 immediately yield that all N-pulse patterns in
the Gray-Scott model [9] are unstable for N ≥ 2.

Another relevant extension of the ideas developed in [6] is the transformation
of the inhomogeneous problem that is essential to the NLEP approach into an
inhomogeneous hypergeometric differential equation by a method that does not
depend on an explicit formula for the ‘potential’ wh(ξ) of the Schrödinger prob-
lem (5.3). This transformation can also be applied to other nonlocal eigenvalue
problems that appear in the literature, including those in [41] where a generalized
Gray-Scott model has been studied by the shadow system approach (see below).

The shadow system approach. The shadow system approach can be applied
to systems of the type (1.1) with 0 < dv � 1 � du on a bounded domainΩ ⊂ Rn. As a consequence of these assumptions, one finds that U(x, t) ≡ a con-
stant, to leading order. This constant can be expressed in terms of an integral over
V by solving the U equation. Hence, one obtains a scalar equation for V with a
nonlocal term as leading order approximation, and this equation is known as the
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shadow system (see also [2] and [3] for more examples of reaction-diffusion equa-
tions with nonlocal terms). The shadow system can then be studied by variational
techniques, and the results can be extended to the full system. This has been done
in [28], [29], [30] for the generalized Gierer-Meinhardt problem, and in [41] for
a generalized Gray-Scott model.

The main difference with the analysis in this paper is that here we cannot
assume (or derive) that U(x, t) is constant (to leading order): U(x, t) varies slowly
as a function of x, but it certainly has an O(1) range (Figure 1.1 on page 444).
This has a significant effect on both the existence and the stability problem for the
homoclinic pulse patterns: the results obtained in [41] for the Gray-Scott model
on the bounded domain cannot be extended to results on an unbounded domain
(see [6], [7], [4], [5]).

Nevertheless, both in the NLEP approach and in the shadow system approach
one obtains an eigenvalue equation with a nonlocal term that is associated to the
stability of the 1-pulse pattern (only 1-pulse patterns are considered in [28], [29],
[30], [41]). These equations can all be studied by the transformation into hy-
pergeometric form presented in this paper. Thus, for instance, the (in)stability
results on pulses in the generalized Gierer-Meinhardt problem in [28], [29], [30]
can be extended to cases where the parameter α does not satisfy the condition ‘α
is small enough’. Here, α corresponds to D/(β2 − 1) in our notation. Note that
this implies that the original Gierer-Meinhardt problem considered in Section 5.3
has not been covered by [28], [29], [30] (since α = 1 here (1.9)); and, the appli-
cation of the hypergeometric functions analysis to the shadow system approach of
[28], [29], [30] will yield a stability result similar to that of Section 5.3. A similar
observation can be made about [41], since the stability analysis presented there is
also only valid in special (small) regions of the (α1, α2, β1, β2)-parameter space.

However, it should also be noted that many of the results obtained in [28],
[29], [30], [41] are valid in spatial domains of dimension greater than 1. Such
results cannot be obtained by the more geometrical/dynamical systems methods of
this paper. Furthermore, many of the more general results obtained by the shadow
system approach that establish stability properties in the spirit of Corollary 4.5 and
Theorems 5.1, 5.2 cover regions of the parameter space that are not considered
explicitly here; these results are often also more specific than Corollary 4.5 and
Theorems 5.1, 5.2.

Thus, one can conclude that the NLEP approach and the shadow system
approach are truly complementary. It will be the subject of future research to find
out the details of the relation between the two methods, with special focus on the
relation between the different nonlocal eigenvalue problems.

The stability of homoclinic multi-pulse patterns. There is an essential dif-
ference between the homoclinic multi-pulses studied in this paper and those in
[35], [36]. The N-circuit orbits that are homoclinic to a hyperbolic point S̃ stud-
ied in [35], [36], and related papers (see the references in [35]) can be ‘built’ from
N-copies of a basic 1-circuit homoclinic orbit. As a consequence, the N-circuit
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orbits return N − 1 times to a small neighborhood of S̃. This is not the case for
the N-circuit homoclinic orbits constructed in this paper: these orbits approach
the slow manifold M N − 1 times, but remain an O(1) distance away from the
saddle S during these approaches. Moreover, the N-circuit orbits (N ≥ 2) are not
at all close to the 1-circuit orbit in the 4-dimensional phase space (see Figure 2.1
on page 464).

As a consequence, the general theory developed in [35] cannot be applied to
the N-circuit orbits in this paper. In contrast to the results in [35], we find in
this paper that the discrete part of the spectrum of the linear problem associated
to the stability of the N-pulse pattern is not at all close to that of the 1-pulse
pattern. The multi-pulse solutions in [35], [36] can be stable, while we have
found that the multi-pulse solutions are always unstable. In a sense one can say
that the multi-pulse patterns studied in this paper are ‘strongly interacting’, since
the U-components of the patterns do not approach U ≡ 0 in between the fast
excursions. The multi-pulse patterns considered in [35] are in this sense ‘weakly
interacting’ and can thus be treated, to leading order, as N copies of the original
1-pulse pattern (see also [4] for a similar distinction between strongly and weakly
interacting pulses).

The stability properties of the N-pulse patterns studied in this paper (N ≥ 2)
are similar to those of the N-pulse patterns in scalar equations with a nonlocal term
studied in [2], [3]. The spectrum of the problem associated to the stability of the
N-pulse patterns (N ≥ 2) in [2], [3] has a number of features in common with the
spectrum for the N-pulse patterns in this paper. However, in the problems studied
in [2], [3], the eigenvalues cannot have non-zero imaginary parts.

The SLEP method. The NLEP approach developed in this paper is in spirit
(and in name) very similar to the SLEP method developed in [32], [33], [31].
Both methods exploit the slow-fast structure of the linear problem associated to
the stability of a ‘localized’ pattern. However, while the SLEP method has been de-
veloped to study the stability of heteroclinic patterns (traveling waves) in bi-stable
reaction-diffusion equations, the NLEP approach has been developed to study ho-
moclinic (stationary) patterns that are biasymptotic to a single stable homogeneous
state. Moreover, while the patterns studied here by the NLEP approach possess
unstable O(1) eigenvalues in the fast reduced limit, leading to the ‘NLEP para-
dox’, the traveling waves studied by the SLEP method do not have such unstable
O(1) eigenvalues in the fast reduced limit. Thus, there is no ‘NLEP paradox’ for
these waves. Moreover, in contrast to the analysis in this paper, the ‘full’ (non-
reduced) eigenvalue problem for the traveling waves in a bi-stable system studied
by the SLEP method has no O(1) unstable eigenvalues.

Both methods reduce the 4-dimensional linear eigenvalue problem to a 2-
dimensional limit problem. In the SLEP method this is done, in essence, by
solving the fast (v) equation and substituting this solution into the slow (u) equa-
tion. By taking the limit ε → 0, a 2-dimensional eigenvalue problem is obtained
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in which the fast components are represented by a Dirac delta-function. By con-
trast, we have seen that in the NLEP approach, the 4-dimensional linear eigen-
value problem is reduced to the 2-dimensional problem associated to the fast (v)
components in which the slow components are represented by the nonlocal term.
In this sense, the SLEP method and the NLEP approach can be interpreted as
the two opposite limits of a singularly perturbed eigenvalue problem. A priori, it
seems that the nature of this eigenvalue problem determines which one of the two
limits (SLEP or NLEP) is the most appropriate. At this point, the relation between
both methods has not been investigated in detail. This is an important issue for
the understanding of singularly perturbed eigenvalue problems and thus for the
theory of pattern formation in (singular) reaction-diffusion equations. Therefore,
this will be the topic of future research. Finally, we note that the SLEP method
has also been linked to the Evans function [19].

APPENDIX A. THE DERIVATION OF THE SCALED SYSTEM

The substitution of (1.3) into (1.2) yields, by (1.4) and (1.5): Ũt = Ũxx − µŨ + ε
−(α1−1)r−β1sŨα1 Ṽ β1(h1 + ε̂H̃1(Ũ, Ṽ ; ε))

Ṽt = ε2Ṽxx − Ṽ + ε−α2r−(β2−1)sŨα2Ṽ β2(h2 + ε̂H̃2(Ũ, Ṽ ; ε)).
(A.1)

Homoclinic solutions in the fast variable Ṽ can be constructed if the linear and
nonlinear terms in the Ṽ -equation are of the same magnitude (with respect to ε),
therefore we impose α2r + (β2 − 1)s = 0 as a first condition on r and s. By
introducing the new spatial scale x̃ = ε−(1/2)((α1−1)r+β1s)x we can rewrite (A.1)
as 

ε(α1−1)r+β1sŨt = Ũx̃x̃ − ε(α1−1)r+β1sµŨ

+ Ũα1 Ṽ β1(h1 + ε̂H̃1(Ũ, Ṽ ))

Ṽt = ε2−((α1−1)r+β1s)Ṽx̃x̃ − Ṽ
+ Ũα2 Ṽ β2(h2 + ε̂H̃2(Ũ, Ṽ )).

(A.2)

The parameters r and s are now determined by the second condition (α1−1)r +
β1s = 1 so that (1.6) follows (see also [20]). Introducing ε̃ = √ε in (A.2) yields
(1.7) (after dropping the tildes). A related rescaling for a generalized Gierer-
Meinhardt model has been performed in [20], [28], [29], [30].

Note that the second condition on r and s is motivated by the existence
analysis in Section 2 on page 451: the balance in the magnitudes of the linear term
in the Ũ or U equation and the diffusivity in the Ṽ or V equation is necessary for
the construction of the homoclinic solutions described in Theorem 2.1. Moreover,
since the coefficient of the Ut term is of exactly the same order in ε, the homoclinic
solutions can be stabilized by the NLEP mechanism.
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Generically, it is also possible to reduce a more general model as (1.1) to
‘normal form’ (1.7). This can be done by including the linear coupling terms a12V
and a21U in the definitions of respectively H1(U,V) and H2(U,V) in (1.1), and
determining the leading order behavior of the ‘new’ Hi(Ũ/εr , Ṽ/εs) as functions
of s and r . Once again, it has to be assumed that both functions Hi(Ũ/εr , Ṽ/εs)
(i = 1, 2) have a leading order behavior that is algebraic in Ũ and Ṽ . Unlike the
separable caseHi(Ũ/εr , Ṽ/εs) = Fi(Ũ/εr )Gi(Ṽ/εs), the leading order exponents
αi and βi will in general depend on r and s (consider for example H1(U,V) =
a12V+b1U2+b2UV 3). Thus, determining (1.7) will now require a bit more ‘book
keeping’. Moreover, one has to impose a non-degeneracy condition now, since
it cannot be excluded in general that the critical values of r and s (determined
by (1.6)) are on the set of co-dimension 1, where the leading order behavior of
Hi(Ũ/εr , Ṽ/εs) is given by εγ(h1

i Ũ
α1
i Ṽ β

1
i + h2

i Ũ
α2
i Ṽ β

2
i ), for some γ, (α1

i , β
1
i ) ≠

(α2
i , β

2
i ), and h1,2

i ≠ 0. Since we do not want to go into the details of formulating
an exact non-degeneracy condition, and since it is rather straightforward to apply
the above procedure to a given pair of non-separable nonlinearities Hi(U,V), we
decided to focus on model problem (1.2) in this paper.

Remark A.1. The above procedure can be applied without any modifications
when one is interested in small solutions, i.e., when r , s < 0 in (1.3). For ‘mixed’
solutions (rs ≤ 0) one encounters the same problems in (1.2) as for large solutions
in (1.1): the leading orders αi and βi will depend on r and s. Again, this is no
more than a small technical complication.

Remark A.2. Note that one has to be extra careful in reducing the general
problem (1.1) to a normal form of the type (1.7) when a11 > 0 (which is possible,
see Remark 1.2). In this case one cannot automatically replace ‘−µU ’ by ‘+a11U ’
in (1.7) since this will imply that the basic pattern (0,0) is no longer asymptoti-
cally stable. Thus, one cannot scale the linear coupling terms ‘a12V ’ and ‘a21U ’
into higher order effects. As a consequence, the scaling analysis will produce a
‘normal form’ that differs slightly from (1.7). Nevertheless, the analysis can be
developed along the same lines as for (1.7). We do not go further into the details
here.

APPENDIX B. THE INHOMOGENEOUS HYPERGEOMETRIC
DIFFERENTIAL EQUATION

Since (5.7) is symmetric with respect to z → 1−z we know by (5.12) that the pair

F(a , b | c | 1−z) and (1− z)1−cF(a−c+1 , b−c+1 | 2−c | 1−z)
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also spans the solution space of (5.7). We exploit the symmetrical nature of the
problem by introducing

H1(z;P,β2) = F(a , b | c | z),

H2(z;P,β2) = H1(1− z;P,β2) = F(a , b | c | 1−z),
(B.1)

with a, b, c as in (5.11). By (5.14), we observe that

(B.2) F(a , b | c | 1−z) = L(P ;β2)F(a , b | c | z)
+ M(P ;β2)z1−cF(a−c+1 , b−c+1 | 2−c | z),

with

L(P ;β2) = −
Γ(2− c)Γ(a+ b − c)Γ(a− c + 1)Γ(b − c + 1)

and

M(P ;β2) = Γ(c)Γ(a+ b − c)Γ(a)Γ(b) ,

(B.3)

with a, b, c as in (5.11). Note that M(P ;β2) already appeared in the right hand
side of (5.14). Thus, the pair {H1(z;P,β2), H2(z;P,β2)} spans the solutions
space of (5.7) when M(P ;β2) ≠ 0, or equivalently, when P ≠ Pj (see the proof
of Proposition 5.6). The linear operator of (5.7), or equivalently of (5.3), is non-
invertible at these (eigen)values of P , therefore, (5.18) has to be studied in an
independent way at P = Pj , see Remark 5.8 and Remark B.4.

We define the Wronskian W(z) = H1(z)H′2(z) − H′1(z)H2(z) so that, by
(5.7), W(z) = CW(z(1− z))−c for some constant

CW = lim
z→0
(z(1− z))cW(z) = lim

z→0
zc(H1(z)H′2(z)−H′1(z)H2(z)).

It follows from (B.1) and (5.14) that

lim
z→0
zcH′2(z) = (1− c)M(P ;β2),

hence, by (5.11),

W(z;P,β2) = −
2P
β2 − 1

M(P ;β2)(z(1− z))2P/(β2−1),(B.4)

where M(P ;β2) is given by (B.3). To solve the inhomogeneous problem (5.18),
we introduce the functions g1(z) and g2(z) by:

G(z;P,β2) = g1(z)H1(z)+ g2(z)H2(z).(B.5)
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Since (5.18) is also symmetrical with respect to z → 1 − z and since H2(z) =
H1(1 − z) (B.1), we can set g2(z) = g1(1 − z). By the classical variation of
constants method we obtain (using (B.4)) that

g1(z) = g2(1− z) = β2 − 1
2PM(P ;β2)

[∫ z
0
[ζ(1− ζ)](1+P)/(β2−1)H1(1− ζ)dζ + g0

]
,

where g0 is a constant that has to be determined by the conditions on the behavior
of G(z) near z = 0 and z = 1. We observe by (5.14) and (B.5) that

lim
z→1
(1− z)c−1G(z) = β2 − 1

2P

[∫ 1

0
[ζ(1− ζ)](1+P)/(β2−1)H1(1− ζ)dζ + g0

]
,

i.e., near z = 1, G(z) has for general g0 the same singular behavior as H1(z);
G(z) behaves similarly near z = 0, due to the symmetry. Therefore, we set

g0 = −
∫ 1

0
[ζ(1− ζ)](1+P)/(β2−1)H1(1− ζ)dζ,

which determines G(z;P,β2) uniquely. By (5.19) we thus finally arrive at

(B.6) R(P ;β1, β2) = − β2 − 1
PM(P ;β2)

·
∫ 1

0

∫ 1

z
[ζ(1− ζ)](1+P)/(β2−1)

· [z(1− z)](P+β1−β2)/(β2−1)H1(1− ζ)H1(z)dζ dz.

Remark B.1. The function G(z;P,β2) is the uniquely determined bounded
solution of (5.18) as long as the inhomogeneous term in (5.18) is bounded. How-
ever, this term is singular at z = 0 and z = 1 when Re(P) > 1. For these values of
P , G(z;P,β2) is still uniquely determined by the above procedure, but not neces-
sarily bounded. The leading order behavior of G(z;P,β2) can be obtained from
the above explicit expressions: G(z;P,β2) ∼ z(β2−P)/(β2−1) as z → 0 (and, by the
symmetry, G(z;P,β2) ∼ (1 − z)(β2−P)/(β2−1) as z → 1). This singular behavior
does not cause problems in the evaluation ofR(P ;β1, β2) (5.19):

G(z;P,β2)[z(1− z)](P+β1−β2)/(β2−1) ∼ zβ1/(β2−1) as z → 0.

Thus, R(P ;β1, β2) is a non-singular integral for all P ≠ Pj with j even (see
Remark 5.8).

Remark B.2. Note that, by (B.3) and (5.11),

M(P ;β2) =
2P
β2 − 1

(Γ ( 2P
β2 − 1

))2

Γ ( 2P
β2 − 1

+ 2β2

β2 − 1

)Γ ( 2P
β2 − 1

− β2 + 1
β2 − 1

) .(B.7)
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Thus, the sign of M(P ;β2) is determined by the sign of Γ(Q(P)) with Q(P) =
2P/(β2 − 1) − (β2 + 1)/(β2 − 1) (for P > 0). For instance, Q ∈ (−1,0) when
P ∈ (P1, P0) (5.15), hence M(P ;β2) < 0 for P ∈ (P1, P0). Combined with
the minus sign in front of the right hand side of (B.6), it follows that R(P) can
certainly be positive in this interval, see Corollary 5.9 and Figure 5.1 on page 489.

Remark B.3. Note by (5.11) and (B.3) that L(P ;β2) ≡ 0 when (β2 + 1)/
(β2 − 1) = k = 2, 3, . . . , i.e., H2(z) = Mz1−cF(a−c+1 , b−c+1 | 2−c | z)
(B.1) for these values of β2. Moreover, F(a−c+1 , b−c+1 | 2−c | z) is a k-th
order polynomial in z in these cases (since b − c + 1 = −k). Thus, in the special
case β2 = 2, i.e., k = 3, of the classical Gierer-Meinhardt problem (Section 5.3)
and the Gray-Scott model [6], we have that H1(z;P,2) = M(P ; 2)(1 − z)1−c ×
(a cubic polynomial in z), see [6]. Furthermore, by (B.7), M(P ; 2) =
((2P − 3)(2P − 2)(2P − 1))/((2P + 3)(2P + 2)(2P + 1)): a quotient of cubic
polynomials in P . This expression was called L(P) in [6] (recall that PG−S = 2P ,
see Remark 5.12). This yields by (B.6) thatR(P, β1, β2) can be expressed without
the use of hypergeometric or Gamma functions for β2 = 2 [6].

Remark B.4. It follows from (B.3), (5.11), and (5.15) that

L(Pj ;β2) = −
Γ ((1+ j)− β2 + 1

β2 − 1

)Γ (β2 + 1
β2 − 1

− j
)

Γ (β2 + 1
β2 − 1

+ 1

)Γ (−β2 + 1
β2 − 1

) = (−1)j,

hence, since M(Pj ;β2) = 0,

H2(z;Pj, β2) = H1(1− z;Pj, β2) = (−1)jH1(z;Pj, β2) (B.1).

Thus, H1(z;Pj, β2) is either symmetric or anti-symmetric under the transforma-
tion z → 1−z. Since H1(z;Pj, β2) is regular at both z = 0 and z = 1 we observe
that {H1(z;Pj, β2), H2(z;Pj, β2)} spans the one-dimensional eigenspace associ-
ated to the eigenvalue P = Pj of (5.7). We thus confirm by (5.8) that the eigen-
functions of the homogeneous eigenvalue problem (5.3) are even as functions of
ξ for j even and odd for j odd.
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