Lawrence Berkeley National Laboratory ## **Recent Work** #### **Title** Large sulfur isotope fractionations in Martian sediments at Gale crater #### **Permalink** https://escholarship.org/uc/item/5rh2p5q3 #### **Journal** Nature Geoscience, 10(9) #### **ISSN** 1752-0894 #### **Authors** Franz, HB McAdam, AC Ming, DW et al. #### **Publication Date** 2017-09-01 #### DOI 10.1038/ngeo3002 Peer reviewed # Large sulfur isotope fractionations in Martian sediments at Gale crater - H. B. Franz - , A. C. McAdam - [...] - B. Sutter Nature Geoscience volume10, pages658–662 (2017) | Download Citation ## **Abstract** Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluviolacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report *in situ* analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA's Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in ³⁴S. Measured values of δ^{34} S range from $-47 \pm 14\%$ to $28 \pm 7\%$, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods. Access provided by University of California - Berkeley ## Main Sedimentary strata on Mars preserve intriguing evidence for past shifts in climate and environmental conditions, including the fluvio-lacustrine system at Gale crater explored by the Mars Science Laboratory's Curiosity rover1. In addition, impacts such as the one that formed Gale crater would have imparted a significant amount of thermal energy, affecting regional hydrology and sulfur chemistry for periods lasting several hundred thousand years234. Both atmospheric and geologic processes may have produced isotopic variability in sulfur-bearing minerals that is visible today. Sulfur isotopic signatures are also interesting in astrobiological context, as depletion in heavy isotopes is characteristic of microbial sulfur metabolisms. Due to uncertainty regarding the stability and ultimate fate of organic compounds under the oxidizing and ionizing surface conditions on Mars₅, the potential of sulfur isotopes to record biosignatures is a key motivation for their measurement by Curiosity. ## Sample acquisition and analytical results From February 2013 to June 2016, Curiosity travelled ~13 km through sedimentary terrain within Gale crater, climbing ~100 m in elevation. Ten samples acquired by the rover's drill were processed by the Sample Analysis at Mars (SAM) suite, which employs pyrolysis to release volatile compounds from solid materials for analysis. Geologic context for these samples is summarized in the Supplementary Information and depicted in the stratigraphic column of Fig. 1, which also provides sample identities. Here we report highly variable sulfur isotopic compositions measured during the traverse and discuss implications for the ancient environment of Gale crater. Figure 1: Measured sulfur isotopic compositions for discrete SO₂peaks displayed in stratigraphic context. Error bars reflect 1σ uncertainties. Data plotted for the CB sample represent the weighted average of three sample aliquots. Stratigraphic column updated from ref. $\underline{1}$; Martian mantle composition from ref. $\underline{6}$. Full size image The evolved gas analysis (EGA) protocol used for SAM experiments and analytical procedures are described in the <u>Supplementary Information</u>. Sulfur isotope ratios (δ^{34} S) for these samples are reported in <u>Supplementary Table 1</u> and plotted in stratigraphic context in <u>Fig. 1</u>, while SO₂ release profiles are shown in <u>Supplementary Fig. 1</u>. For experiments in which the EGA profile suggests the possibility of more than one sulfur-bearing phase, compositions of multiple phases are reported if possible. Values of δ^{34} S computed for these samples range from $-47 \pm 14\%$ to $28 \pm 7\%$ (1σ) , representing statistically significant variability even with consideration of 2σ uncertainties. Notably, SO₂ peaks of the Cumberland (CB) and Oudam (OU) samples reveal significantly ³⁴S-depleted isotopic compositions, while all other samples are close to Vienna Cañon Diablo Troilite (V-CDT) (and Martian mantle sulfur₆) or enriched in ³⁴S. These new data reveal a much wider range of isotopic fractionation than seen in sulfur-bearing phases of Martian meteorites 6789101112. The igneous lithologies of meteorites have yielded an estimate of the juvenile Martian sulfur composition and glimpses of atmospherically processed sulfur incorporated into magmas or as secondary sulfates<u>67/89/10/11/12</u>. However, the lack of an efficient sulfur crustal recycling mechanism on Mars may have facilitated preservation of large isotopic heterogeneities at the planet's surface, reflecting effects of multiple processes occurring at different times. Curiosity's analyses of sedimentary sulfur broaden our perspective on the Martian sulfur cycle by providing direct evidence of reduction-oxidation processes in an environment not previously accessible for exploration. Sulfur observed at CB and OU, interpreted to derive from sedimentary sulfides, is depleted in ³⁴S by ~30–40% compared with Martian igneous sulfides and by 60–80% compared with the most enriched compositions observed in samples of the Murray and Stimson formations. Neither igneous processes nor oxidative weathering of igneous sulfides would cause appreciable fractionation of sulfur isotopes. However, both isotope exchange between oxidized and reduced forms of sulfur and atmospheric processes can generate large fractionations, as can kinetic processes associated with reduction and disproportionation of high- and mid-valence sulfur compounds 13. Observations by other Curiosity instruments constrain diagenesis of the Sheepbed mudstone to \sim 60–80 °C (ref. 14) with fluids of circumneutral pH (refs 14,15). Supplementary Fig. 2 shows the equilibrium sulfur isotopic fractionation expected between aqueous sulfate/sulfide, sulfite/sulfide and total bisulfite/sulfide based on theoretical calculations16 and indicates approximate times required to reach 90% sulfate/sulfide equilibrium at conditions relevant to Gale crater fluids17. Although the figure indicates that it is possible to achieve the full range of δ 34S observed through equilibrium sulfate/sulfide fractionation at 60–80 °C, kinetic inhibition of this abiotic process at low temperatures argues against its operation within the lakebed sediments as a viable explanation. Biological fractionation is a potential candidate to explain highly depleted δ^{34} S values by analogy to terrestrial processes. The range of δ^{34} S (-47 to 28%) between reduced and oxidized sulfur phases at Gale crater closely resembles that between sulfide and sulfate (-42 to 28%) of the Haughton impact structure in the Canadian High Arctic, interpreted to reflect biological sulfate reduction in an impact-generated hydrothermal system 18. Small amounts (nanomole scale) of OCS and CS₂ that co-evolved with SO₂ and H₂S from Sheepbed samples suggest reactions between sulfur- and carbon-bearing compounds during pyrolysis. The identification of chlorobenzene 19 and possibly sulfonic acids (see <u>Supplementary Information</u>) provides further evidence for the presence of organic compounds at CB, which could be of meteoritic or indigenous Martian origin. Results for the carbon isotopic composition of sulfur-associated carbon at CB are lacking at present. Thus, while sulfur isotopic signatures observed at Gale crater are broadly consistent with those produced by terrestrial microbes, biogenicity should be invoked as a serious possibility only after all potential abiogenic hypotheses have been discounted. This is not the case with our data set, discussed below. # A model for the sulfur isotopic variability at Gale crater Combined effects of equilibrium isotopic fractionation in groundwater warmed by impact and atmospheric chemical and photochemical processes could generate the observed range of sulfur isotopic compositions without biological activity (depicted in <u>Fig. 2</u>). Studies of terrestrial impact craters suggest that a crater the size of Gale could sustain an impact-driven hydrothermal system for several hundred thousand years 34. A melt sheet at the crater floor may have been impermeable immediately after impact, and once solidified and cooled, could have formed the base of a crater lake filled by water that discharged through fracture systems around the central uplift or within the crater rim 234. Depositional models for the stratigraphy encountered by Curiosity suggest that a fluvio-lacustrine system was active in Gale crater for at least 10^4 to 10^7 years, with individual ephemeral lakes potentially linked by a common groundwater table 1. This system deposited sediments of nominally basaltic composition 1:14. If reduced sulfur in clastic sediment were dominated by igneous sulfides, it would have δ^{34} S near zero. Depending on the source (for example, weathering of sulfides or SO_2 oxidation), sulfate or sulfite in this material would probably introduce variable 34 S enrichments to sediments. Figure 2: Conceptual diagram illustrating possible mechanisms for generating and preserving the range of sulfur isotopic fractionations observed. Fractionation can occur by both hydrothermal processes in the subsurface (blue) and atmospheric processes (green). Atmospheric chemistry shown is not comprehensive but indicates general mechanisms for producing ³⁴S enrichments preserved at the surface. Impact crater characteristics modelled after refs <u>3,4</u>. Full size image The cooling melt sheet would have formed fractures, allowing percolation of groundwater into overlying sediments 234. Pre-existing igneous pyrrhotite and other sulfides dissolved in warm groundwater would have contributed reduced sulfur that mixed with sulfate from surface sources in the hydrothermal system, with pH buffered by other minerals in the rock. Referring to Supplementary Fig. 2, sulfur isotopic equilibrium between sulfide and sulfate could have been reached within several thousand years at 100–150 °C to yield Δ^{34} S ~30 to 40%, offering a pathway for generation of isotopically depleted sulfides. A similar mechanism involving impact-driven hydrothermalism has been invoked to explain δ^{34} S of -9 to -10% in carbonateassociated pyrites of the ALH 84001 meteorite 11. Assuming that sulfide represented a minor phase compared with the more oxidized form of sulfur, the corresponding enrichment in the oxidized phase would be small. Upward migration of fluids that had interacted with this subsurface reservoir during infilling of the crater would introduce isotopically depleted sulfide to overlying sediments. To account for highly enriched sulfur observed in Gale crater and some meteorites 6789 10 11 12, we propose atmospheric processing of SO₂ and H₂S and subsequent incorporation of products into surface sulfate deposits. Broadband UV photolysis experiments with SO₂ have produced elemental sulfur carrying large enrichments in ³⁴S with simultaneous depletions of a few per mil in the residual SO₂ reservoir 20. Similar behaviour has been observed in products of H₂S photolysis experiments 21, suggesting that elemental sulfur produced from photolytic products of either gas would be enriched in ³⁴S. Studies of sulfate in terrestrial volcanic ash have shown that gas-phase oxidation of SO₂ can also produce large fractionations in sulfur isotopes through multiple pathways 22 23, including heterogeneous chemistry in atmospheric clouds or in SO₂ and H₂O adsorbed on dust or ash particles 22 24 as well as homogeneous oxidation of SO₂ by reaction with OH radicals 22 25. These oxidative processes could generate fractionations of tens of per mil in sulfate aerosols 26. The atmospheric lifetime of SO₂ is affected by total pressure, composition and redox state of the atmosphere. Modelling of a weakly reducing atmosphere that may have characterized the late Noachian to early Hesperian period (500 mb CO_2 , 100 mb N_2 , and initial SO_2 mixing ratio between 10^{-8} and 10^{-6}) predicted SO_2 lifetimes of hundreds of years or longer, depending on assumptions regarding annual precipitation3. The dominant removal pathway under ancient conditions was SO_2 rainout (almost 90%), with minor contributions from deposition of sulfate (~10%) and elemental sulfur aerosols (<1%)27. Regardless of aerosol speciation, some degree of enrichment in ^{34}S would probably have accompanied atmospheric aerosol formation. If SO_2 rainout occurred quickly enough, the SO_2 reservoir would have retained $\delta^{34}S$ close to zero, with little isotopic fractionation expected during subsequent formation of sulfite minerals. Sulfite and elemental sulfur may have been oxidized to sulfate during later diagenesis, consistent with the predominance of enriched isotopic signatures observed in Martian sulfite and sulfate minerals. Aerosol deposition and SO_2 rainout, followed by incorporation of some SO_2 into sulfite minerals, thus offers a potential mechanism for preserving the fingerprint of atmospheric chemistry in distinct $\delta^{34}S$ signatures among phases. The SO_2 evolution temperatures of CB indicate that a large fraction of sulfur in this sample is now oxidized, suggesting oxidation of sulfide by a later diagenetic event. Fluid from this event may have delivered additional sulfur bearing a more enriched isotopic composition, diluting the signal from the depleted sulfide. Differences between δ^3 at John Klein (JK) (\sim 0%) and CB (\sim -30%) could derive from local variations in composition of their respective diagenetic fluids or from overprint of an initially depleted signature at JK by isotopically enriched sulfur delivered during one or more later episodes. Differences in smectite structure and abundances of sulfate-filled veins and nodules between JK and CB suggest highly localized diagenetic conditions and greater influence of late-stage sulfate-bearing fluids at JK141528. A small, high-temperature SO_2 peak in OU, with δ^3 of -5 ± 17 %, also suggests a separate sulfate phase in this sample, possibly delivered in a later diagenetic event. As seen in Fig. 1, SO₂ evolved from other samples above Yellowknife Bay showed variable enrichments in 34 S, with δ^{34} S from 2 ± 7% to 28 ± 7%. Although we did not observe depleted isotopic signatures in these samples, it is possible that minor depleted sulfide delivered to some sediments was overwhelmed by a much larger amount of enriched sulfate or sulfite. This could explain the difference in shape and isotopic composition of the low- temperature peak of Mojave (MJ) compared with overlapping peaks at OU and CB. The large ³⁴S enrichments of 20 to 30% in several samples suggest a greater fraction of atmospherically processed sulfur in their diagenetic components, indicating influx of fluids compositionally distinct from those that affected CB and OU. # Supporting evidence from Curiosity's payload Several additional lines of evidence support a history involving multiple diagenetic episodes. Relative abundances of several key elements suggest a history of multiple diagenetic events, with some alteration fluids affecting both Yellowknife Bay and the Murray formation 29. Variations in textural properties among sulfates detected throughout Curiosity's traverse support their emplacement during different episodes. For example, Ca sulfates with nodular 'chicken-wire' texture are interpreted as an early diagenetic product in the Sheepbed mudstone that has not been observed in overlying sediments, while a later diagenetic episode produced gypsum, bassanite and anhydrite in veins at other locations 15. A multi-stage process for the diagenetic events at Yellowknife Bay is also suggested from a combination of modelling and analogue work investigating clay formation and the purity of sulfate veins 17. In addition, chlorine isotopic signatures of these samples reveal distinctive compositions for Sheepbed mudstone samples compared with overlying sediments<u>30</u>. Samples of JK and CB produced average δ^{37} Cl of $-11 \pm 7\%$, with those of the Kimberley and Pahrump Hills samples yielding a mean δ^{37} Cl of $-43 \pm 6\%$ (ref. 29). These signatures were interpreted to reflect variable inputs from atmospherically processed chlorine incorporated as oxychlorine or chloride compounds at the surface, similar to the mechanism we propose for producing variable 34S enrichments. With the context provided by Curiosity's payload suite, these observations offer unprecedented insight into the Martian sulfur cycle, providing evidence for rich hydrothermal sulfur chemistry overprinted by signatures of atmospheric chemistry. As Curiosity continues her journey, the ability to interrogate the Martian sulfur isotope record preserved in the stratigraphic sequence of Mount Sharp will enable evaluation of first-order hypotheses concerning the impact of the sulfur cycle on ancient global climate. ## **Methods** Samples of solid Martian materials, each with mass \sim 45 to \sim 135 mg, are analysed through evolved gas analysis (EGA), in which drilled rocks or surface fines are loaded into quartz sample cups for insertion into one of SAM's two pyrolysis ovens. All samples presented here were passed through a 150 µm sieve before loading into the sample cups. After insertion into the oven, samples are heated to ~850 °C at a rate of 35 °C min⁻¹ under 25 mb He pressure, with a model-derived flow rate of 0.8 standard cubic centimetres per minute (sccm). The bottom of each quartz cup contains a porous quartz frit, allowing the He carrier gas to sweep evolved gases from the oven efficiently. During heating, a small split of the gas is directed into the quadrupole mass spectrometer (QMS) for continuous monitoring. The QMS uses an electron impact ionization source and secondary electron multiplier detector, operated in pulse-counting mode 31. Although the QMS mass range extends from m/z 2 to 535, EGA experiments typically utilize a 'smart-scanning' algorithm designed to optimize dwell time at masses where signal is detected during each run31. All data are corrected for detector effects (see the 'Calibration' section of the <u>Supplementary Information</u>) and instrument background prior to quantitative analysis. The sulfur isotopic composition is nominally calculated from SO_2 produced by thermal degradation and/or oxidation of sulfur-bearing compounds present in the samples. Sulfur isotope ratios are reported with respect to the Vienna Cañon Diablo Troilite (V-CDT) reference $\underline{32}$ in delta notation, where $\delta^{34}S = 10^3[(^{34}S/^{32}S)_{sample}/(^{34}S/^{32}S)_{v-CDT} -1]$. An extended description of the $\underline{Methods}$ can be found in the $\underline{Supplementary Information}$. ## Data availability. All SAM data are available at the Geosciences Node of NASA's Planetary Data System: http://pds-geosciences.wustl.edu/missions/msl/sam.htm. ## **Additional Information** Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. ## References 1. 1. Grotzinger, J. P. *et al.* Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. *Science* **350**, AAC7575 (2015). o Show contextfor reference 1 0 - PubMed - Article - Google Scholar 2. 2. Schwenzer, S. P. *et al.* Gale Crater: formation and post-impact hydrous environments. *Planet. Space Sci.* **70**, 84–95 (2012). o Show contextfor reference 2 0 - <u>Article</u> - Google Scholar 3. 3. Abramov, O. & Kring, D. A. Impact-induced hydrothermal activity on early Mars. *J. Geophys. Res.* **110**, E12S09 (2005). Show contextfor reference 3 0 - Article - Google Scholar 4. 4. Osinski, G. R. *et al.* Impact-generated hydrothermal systems on Earth and Mars. *Icarus* **224**, 347–363 (2013). Show contextfor reference 4 0 Article Google Scholar 5. 5. Benner, S. A., Devine, K. G., Matveeva, L. N. & Powell, D. H. The missing organic molecules on Mars. *Proc. Natl Acad. Sci. USA* **97**, 2425–2430 (2000). #### o Show contextfor reference 5 0 - CAS - PubMed - Article - Google Scholar 6. 6. Franz, H. B. *et al.* Isotopic links between atmospheric chemistry and the deep sulphur cycle on Mars. *Nature* **508**, 364–368 (2014). #### o Show contextfor reference 6 0 - PubMed - Article - Google Scholar 7. 7. Farquhar, J., Savarino, J., Jackson, T. L. & Thiemens, M. H.Evidence of atmospheric sulphur in the Martian regolith from sulphur isotopes in meteorites. *Nature* **404**, 50–52 (2000). #### o Show contextfor reference 7 0 - CAS - PubMed - Article - Google Scholar - 8. 8. Farquhar, J., Kim, S.-T. & Masterson, A. Implications from sulfur isotopes of the Nakhla meteorite for the origin of sulfate on Mars. *Earth Planet. Sci. Lett.* **264**, 1–8 (2007). #### o Show contextfor reference 8 0 - CAS - Article - Google Scholar - 9. 9. Greenwood, J. P., Riciputi, L. R. & McSween, H. Y. Jr Sulfide isotopic compositions in shergottites and ALH 84001, and possible implications for life on Mars. *Geochim. Cosmochim. Acta***61**, 4449–4453 (1997). #### o Show contextfor reference 9 0 - CAS - Article - Google Scholar #### 10. 10. Greenwood, J. P., Riciputi, L. R., McSween, H. Y. Jr & Taylor, L. A.Modified sulfur isotopic compositions of sulfides in the nakhlites and Chassigny. *Geochim. Cosmochim. Acta* **64**, 1121–1131 (2000). #### o Show contextfor reference 10 0 - Article - Google Scholar #### 11. 11. Greenwood, J. P., Mojzsis, S. J. & Coath, C. D. Sulfur isotopic compositions of individual sulfides in Martian meteorites ALH 84001 and Nakhla: implications for crust-regolith exchange on Mars. *Earth Planet. Sci. Lett.* **184**, 23–35 (2000). #### o Show contextfor reference 11 0 - CAS - Article - Google Scholar #### 12. 12. Shearer, C. K., Layne, G. D., Papike, J. J. & Spilde, M. N. Sulfur isotopic systematics in alteration assemblages in Martian meteorite Allan Hills 84001. *Geochim. Cosmochim. Acta* **60**, 2921–2926 (1996). #### o Show contextfor reference 12 0 - CAS - Article - Google Scholar #### 13. 13. Seal, R. R. I. in *Sulfide Mineralogy and Geochemistry* Vol. 61 (ed. Vaughan, D. J.) 633–677 (Min. Soc. Amer., 2006). #### o Show contextfor reference 13 0 Google Scholar #### 14. 14. Vaniman, D. T. *et al.* Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars. *Science* **343**, 1243480 (2014). #### o Show contextfor reference 14 0 - PubMed - Article - Google Scholar #### 15. 15. Nachon, M. *et al.* Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars. *J. Geophys. Res.* **119**, 1991–2016 (2014). #### o Show contextfor reference 15 0 - Article - Google Scholar 16. 16. Eldridge, D. L., Guo, W. & Farquhar, J. Theoretical estimates of equilibrium sulfur isotope effects in aqueous sulfur systems: highlighting the role of isomers in the sulfite and sulfoxylate systems. *Geochim. Cosmochim. Acta* **195**, 171–200 (2016). #### o Show contextfor reference 16 0 - Article - Google Scholar 17. 17. Schwenzer, S. P. *et al.* Fluids during diagenesis and sulfate vein formation in sediments at Gale crater Mars. *Met. Planet. Sci.* **51**, 2175–2202 (2016). ## o Show contextfor reference 17 0 - Article - Google Scholar 18. 18. Parnell, J. et al. Sulfur isotope signatures for rapid colonization of an impact crater by thermophilic microbes. *Geology* **38**, 271–274 (2010). #### o Show contextfor reference 18 0 - CAS - Article - Google Scholar 19. 19. Freissinet, C. et al. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. J. Geophys. Res. 120, 495–514 (2015). #### o Show contextfor reference 19 0 - Article - Google Scholar #### 20. 20. Franz, H. B., Danielache, S. O., Farquhar, J. & Wing, B. A. Mass-independent fractionation of sulfur isotopes during broadband SO₂ photolysis: comparison between ¹⁶O- and ¹⁸O-rich SO₂. *Chem. Geol.* **362**, 56–65 (2013). #### o Show contextfor reference 20 0 - Article - Google Scholar #### 21. 21. Chakraborty, S., Jackson, T. L., Ahmed, M. & Thiemens, M. H.Sulfur isotopic fractionation in vacuum UV photodissociation of hydrogen sulfide and its potential relevance to meteorite analysis. *Proc. Natl Acad. Sci. USA* **110**, 17650–17655 (2013). #### Show contextfor reference 21 0 - PubMed - Article - Google Scholar #### 22. 22. Bindeman, I. N., Eiler, J. M., Wing, B. A. & Farquhar, J. Rare sulfur and triple oxygen isotope geochemistry of volcanogenic sulfate aerosols. *Geochim. Cosmochim. Acta* **71**, 2326–2343 (2007). #### o Show contextfor reference 22 0 - CAS - Article - Google Scholar 23. 23. Savarino, J. UV induced mass-independent sulfur isotope fractionation in stratospheric volcanic sulfate. *Geophys. Res. Lett.***30**, 2131 (2003). **Show contextfor reference 23** 0 0 CAS **Article Google Scholar** 24. 24. Halevy, I. & Head, J.W. I. Episodic warming of early Mars by punctutated volcanism. Nat. Geosci. 7, 865–868 (2014). **Show contextfor reference 24** 0 0 **Article Google Scholar** 25. 25. Leung, F.-Y., Colussi, A. J. & Hoffman, M. R. Sulfur isotopic fractionation in the gas-phase oxidation of sulfur dioxide initiated by hydroxyl radicals. *J. Phys. Chem. A* **105**, 8073–8076 (2001). **Show contextfor reference 25** 0 0 **Article Google Scholar** 26. 26. Ohmoto, H. & Rye, R. O. in *Geochemistry of Hydrothermal Ore Deposits* (ed. Barnes, H. L.) 509–567 (John Wiley, 1997). Show contextfor reference 26 0 0 27. 27. **Google Scholar** Johnson, S. S., Pavlov, A. A. & Mischna, M. A. Fate of SO₂ in the ancient Martian atmosphere: implications for transient greenhouse warming. *J. Geophys. Res.* **114**, E11011 (2009). #### o Show contextfor reference 27 0 - Article - Google Scholar - 28. 28. Stack, K. M. *et al.* Diagenetic origin of nodules in the Sheepbed member, Yellowknife Bay formation, Gale crater, Mars. *J. Geophys. Res.* **119**, 1637–1664 (2014). #### o Show contextfor reference 28 0 - Article - Google Scholar - 29. 29. Yen, A. S. *et al.* Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars. *Earth Planet. Sci. Lett.* **471**, 186–198 (2017). #### o Show contextfor reference 29 0 - Article - Google Scholar - 30. 30. Farley, K. A. *et al.* Light and variable ³⁷Cl/³⁵Cl ratios in rocks from Gale Crater, Mars: possible signature of perchlorate. *Earth Planet. Sci. Lett.* **438**, 14–24 (2016). #### o Show contextfor reference 30 0 - Article - Google Scholar - 31. 31. Franz, H. B. *et al.* Analytical techniques for retrieval of atmospheric composition with the quadrupole mass spectrometer of the Sample Analysis at Mars instrument suite on Mars Science Laboratory. *Planet. Space Sci.* **96**, 99–113 (2014). # o Show contextfor reference 31 0 - Article - Google Scholar #### 32. 32. Ding, T. *et al.* Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. *Geochim. Cosmochim. Acta* **65**, 2433–2437 (2001). #### o Show contextfor reference 32 0 - CAS - Article - Google Scholar **Download references** # Acknowledgements This work was funded by NASA's Mars Exploration Program. The authors thank T. B. Griswold for assistance with figure preparation, B. Franz for editorial support, J. Farquhar for manuscript review, J. Farquhar and A. J. Kaufman for facilitating isotopic analyses of calibrants, and the technical team at the NASA GSFC Planetary Environments Laboratory for laboratory support. ## **Author information** ## **Affiliations** - 1. NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA - o H. B. Franz - o, A. C. McAdam - o , C. Freissinet - **o** , P. R. Mahaffy - o , P. G. Conrad - o , J. L. Eigenbrode - o, D. P. Glavin - o , C. A. Knudson - **o** , A. A. Pavlov - o & J. C. Stern - 2. NASA Johnson Space Center, Houston, Texas 77058, USA - o D. W. Ming - o , P. D. Archer Jr - o, R. V. Morris - o, E. B. Rampe - o & B. Sutter - 3. Center for Space Science and Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA - o C. Freissinet - 4. Department of Geology, University of Maryland, College Park, Maryland 20742, USA - o D. L. Eldridge - o , J. W. Dottin III - **o** & R. Plummer - 5. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA - o W. W. Fischer - **o** , J. P. Grotzinger - **o** & K. A. Farley - 6. Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA - o C. H. House - 7. Department of Geosciences, Stony Brook University, Stony Brook, New York 11794, USA - **o** J. A. Hurowitz - **o** & S. M. McLennan - 8. Department of Environment, Earth and Ecosystems, The Open University, Milton Keynes MK7 6AA, UK - **o** S. P. Schwenzer - 9. Planetary Science Institute, Tucson, Arizona 85719, USA - **o** D. T. Vaniman - 10. Jacobs Technology, Houston, Texas 77058, USA - o P. D. Archer Jr - **o** & B. Sutter - 11. Department of Climate and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA - **o** S. K. Atreya - 12. Department of Biology/STIA, Georgetown University, Washington DC 20057, USA - **o** S. S. Johnson - 13. Department of Astronomy, University of Maryland, College Park, Maryland 20742, USA - **o** C. A. Knudson - 14. Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Cuidad Universitaria, Mexico City 04510, Mexico - **o** R. Navarro-González - 15. Aerodyne Industries, Houston, Texas 77058, USA - o E. B. Rampe - 16. Geophysical Laboratory, Carnegie Institute of Washington, Washington DC 20015, USA - **o** A. Steele - 17. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA - **o** R. E. Summons #### **Contributions** H.B.F. developed analytical methods, calculated and interpreted sulfur isotope ratios, performed calibration experiments, and wrote the manuscript and most of the <u>Supplementary Information</u>. A.C.M. wrote the mineralogy section of the <u>Supplementary Information</u>. H.B.F., A.C.M. and C.A.K. performed supporting laboratory EGA studies. C.F. contributed to analysis of calibration data. D.L.E. calculated theoretical equilibrium fractionation factors for relevant sulfur-bearing species. H.B.F., J.W.D. and R.P. performed ground-truth isotopic analyses of calibrants. All authors participated in discussion of results and/or editing of the manuscript. ## **Competing interests** The authors declare no competing financial interests. # Corresponding author Correspondence to H. B. Franz.