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Abstract—A linear multiuser receiver for a particular user in  detectors has received considerable attention including decor-

a code-division multiple-access (CDMA) network gains potential relating receivers [7], [8] and the linear minimum-mean square
benefits from knowledge of the channels of all users in the system. oo, (LMMSE) receiver [9]-[12].

In fast multipath fading environments we cannot assume that Most of th l ks d t licitl id
the channel estimates are perfect and the inevitable channel OSL OTINESE EAMIEr WOrKS G0 NOtL explicity CONSIGer com=

estimation errors will limit this potential gain. In this paper, we ~ Munication over a multipath fading channel. Initial investiga-
study the impact of channel estimation errors on the performance tions of multiuser receivers in fading channels assumed that
of linear multiuser receivers, as well as the channel estimation the channel was perfectly known to the receiver (see [13] for
problem itself. Of particular interest are the scalability properties single-path fading and [14]-[16] for multipath fading). In these

of the channel and data estimation algorithms: what happens to the f tendi f h
the performance as the system bandwidth and the number of users papers, the focus was on extending periormance measures suc

(and hence channels to estimate) grows? Our main results involve 8S a;ymptotic efﬁCienCy _a.nd near—fa.r fe§i5tanC§, for applica-
asymptotic expressions for the signal-to-interference ratio of linear tion in time-varying conditions. Investigations which drop the

multiuser receivers in the limit of large processing gain, with the assumption that the fading channel is perfectly known can be
number of users divided by the processing gain held constant. roughly grouped into three classes:dBcorrelator-based re-

We employ a random model for the spreading sequences and the . that h tand d t - h Linf
limiting signal-to-interference ratio expressions are independent ceivers that are nonconherent and do not require channet infor-

of the actual signature sequences, depending only on the systemmation, although the signature sequences of all users are as-
loading and the channel statistics: background noise power, sumed known [17], [15], [18]; 2yoherent multiuser receivers

energy profile of resolvable multipaths, and channel coherence that incorporate channel estimates in addition to knowledge of

time. The effect of channel uncertainty on the performance of the signature sequences [19]-[23]; andf@y adaptive re-

multiuser receivers is succinctly captured by the notion o&ffective - L Y -
ceivers that do not explicitly estimate the channel nor require

interference
o _ ~ the knowledge of the signature sequences of the interferers [11],
Index Terms—Code-division multiple access (CDMA), effective [18], [21], [24]-[28].

interference, linear receivers, multipath fading channels, multiuser

detection, random spread- ing. At present, it is very difficult to obtain any clear engineering

insights on the performance comparison of these various ap-
proaches or to characterize performance limits of linear mul-
. INTRODUCTION tiuser receivers in fading environments. Performance analysis

IDE-BAND code-division multiple access (CDMA) hasleads to. expressions for signal—to-interferenc_e ratio (SIR) orav-
Wbeen selected for the air interface of third-generatidiage bit-error rate (BER) in terms of the particular set of signa-
wireless systems [1]-[3]. A significant thrust of research in this''e sequences employed. Channel estimation errors are often
area has focused on receiver design for signals contaminatedfigtressed in terms of the Kalman filter recursion for the error
only by background noise but also by structured interferenggvariance [29], [22]; a solution which does not readily lend it-
from other users of the multiaccess channel. This fundamer®§lf to an understanding of the scalability properties of the resul-
problem has led to an explosion of research activity over &Nt multiuser receivers. Simulations are relied upon to convey
past decade which can be grouped under the titimaitiuser SOmMe insight into the properties of the receivers and yet almost

detection[4]—[6]. In particular, the design of linear multiusera2/ways, the simulations are based on small-scale systems; it is
simply too computationally intensive to analyze the large-scale
systems we are interested in here, and which are perhaps more

. . . relevant to future wireless systems.
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relator and the conventional matched filter as a basis for com-

matched filter

output vector data data parson.
estimator . estimate A Summary of Results
The main results can be summarized through the notion of
channel estimate effective interferencdirst introduced in [30]. Suppose we have
and uncertainty a synchronous CDMA system with spreading gAinK users
. with received powersas |?, ..., lax|?, and background noise
data (training or 5 .
e powers~. In a large system (botlV and K large), with random
channel decision directed) spreading, the SIR attained by the LMMSE receiver for user 1,
estimator is approximately

SIR = |a1|*fa

wheref3, is the unique solution of the fixed point equation
—1

Fig. 1. Structure of multiuser receiver.

K
1
_ |2, * 2
loading, such is no longer the case in a highly loaded system Pa= 10"+ N ’;I(Iakl »a)

with multipaths and channel uncertainty. Thus for the problemﬁ1
. ; where
addressed here, these measures aréimeygrainedenough to
draw interesting conclusions. I(p, B) p

3) = .
In [30] one alternative approach is presented. In that paper, 1+pp

signature sequences were modeled as random sequeRgi§Sarve that the only term that involves ugeis I(|ax|?, Ba)
leading to expressions for SIR which were random quantitiegag that these terms simply add across interfering users. We call
In the asymptotic limit of a large number of users and s term the effective interference of ugeon user 1 when the
large spreading bandwidth, it was shown that the random SiB,malized SIR for user 1 8.

_expressiortonvergesin p_robgbility to a deterministic quantity,  Now consider a single (resolvable) path fading model where
independent of the realization of the random sequences. M@i@ channel gains of each user are not known perfectly to the
importantly, the resulting limit is shown to have a very nicaia estimator but rathet;, is specified by its estimate, and

form from which the concepts of effective interference angror variance2 (supplied by the channel estimator). In a large
effective bandwidth emerge (see [30] for details). The samgsiem the SIR for user 1 is approximately

modeling paradigm of random spreading and large systems was @28
extended to asynchronous systems in [31]. (Also see [32]—-[35] SIR= “1—2/‘1
for some parallel work based on random spreading sequences.) 1+ &5fa

In this paper we extend the philosophy and the techniqu\e@ere
of [30] to the situation where the channel is time-varying. We ) oo
drop the assumption that the channels of all users are perfectly fa= 0"+ N ZI(|ak| + & Ba)
known and assess receiver performance as a function of the un- i k=2 _
certainty in the channel estimates, although the signature Ygerferer & looks like an interferer in the perfectly known

. .. . i 2 2
quences are assumed to be known. For simplicity, we will focG8annel case with powex[” + &.
on a symbol-synchronous channel but extension to the asynNOW consider a multiple-path fading model where each user

chronous situation along the lines of [31] is possible. appears ad resolvable pgths or components at the _receiver. If
The (suboptimal) receiver structure shown in Fig. 1 is of ceff?€ 9ain for patfi of userk is characterized by the estimaig

tral importance. The receiver and corresponding analysis canfél €rror variance (we confirm later that this variance does

decoupled into two parts, the data estimator and the channel¥&-depend oAwhen the average power per path is equal), then

timator. The data estimator is a linear multiuser receiver whidh & large system, the SIR for the LMMSE receiver of user 1 is
obtains estimates of the data of each user based on obseRpRroximately

K -1

tion of the received signal over a single symbol interval, along L

with information supplied by the channel estimator. The data S Ja@u)?Bq
estimator is thus ane-shotinear estimator which incorporates SIR= =L
information from other symbol intervals only through the cou- 1+ &0

pling with the channel estimator. The design and analysis of thg ore
data estimator begins with the assumption that the channel is K
statistically characterized by the mean and covariance structyre— |,2 4 1 Z <(L — DI(E2,82)
supplied by the channel estimator. The performance of the re- N~

ceiver is examined through the SIR attained and emphasis is L
+ 1 <Z @] + 51%7/3(1))]

-1
placed on the LMMSE receiver which maximizes SIR over all
linear receivers, however, results are also derived for the decor- —
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The overall effect of interferek is given by the term The channel gain process for each path of each user is a cir-
cularly symmetric complex Gaussian random process and the
processes for each path are independent Wik, (m)] = 0

) and Efay:(m)a},(m)] = Pi,;. Our channel model can be con-
sidered conditioned on the much slower fading that effectively

which is the same as the interference that would result in t 8ts to determine the user powers. We assume that there is a

single-path fading case frof— 1 users with powe¢? and one Ime-scale separation in effect which makes it reasonable to as-

; L sume that eacp,,, is known perfectly and does not change over
user with poweElL:1 |aw|? 4+ £2. As the uncertainty increases Do P y g

. ke . . - “the time period of interest. For simplicity, we will assume that
an interferer moves from looking like a single high-power inter; P plctty

Lo ; X ver receiv wer of all paths of all rsis th m
ferer, to looking likeL separate interferers with power reduceHqe a e_age _ece ed power of all paths of all users is the same
so thatp,; = p/L.
by a factor ofL.

. 0,
In parallel with data estimation, we also analyze the perfor- Each data symbdl,(m) is assumed to be of the forn

L
(L= VI Ba) +1 <Z |anl* + &, Ba

=1

mance of channel estimators, which jointly estimate the channel®"®
parameters of all users conditioned on knowledge of the data of o 2(M — 1)r
all users for all symbols within the channel estimation window. 0; € {0, SRR i }

This model applies directly to systems employing training se-

quences and provides a bound on the performande@sion- \,ith every data symbol independent of all others. We are thus as-
_dwected_channel estimators (since we _do not account for €ITOSming that the transmitter usé&-ary phase shift keying (PSK)

in the bits fed back to the channel estimator). ~_modulation. We restrict ourselvesid-ary PSK modulation be-
_Comb|n|ng the results_ in data. and char_mel estimatiqnyse the property thélt (m)| = 1 greatly simplifies the per-

yields the performance limits of linear multiuser receiverg, mance analysis.

in fast-fading environments, as a function of key system The signature sequencey(m) is assumed to be an
parameters such as the length of the channel estimation yimensional column vector with independent and iden-

W'ndOV‘_” number of resolvable multipaths, apd System Ioadlnﬁ’cally distributed (i.i.d.) elements each being a circularly
Numerical examples based on the theoretical results prov metric complex Gaussian random variable with zero mean
interesting engineering insights and comparison of receiversamd variancel /N. The choice of this distribution allows a

different parameter regimes. . unified and compact treatment of many of the technical results,
(Al of the results in this paper are asymptotic in naturg,, yever aimost all the results we present are actually insen-
yielding limiting SIR and channel estimation error EXPressiOngyive to the distribution, requiring only that the elements are
which are independent of the particular realization of thg, o con and have variant&V. The random sequences are
random signature sequences. This abstraction is valuablejfenendent across users, paths, and symbols. Thus this model
obFa|n|ng|nS|ghts of general applicability. It is |.mportant at th'ﬁs directly applicable to systems usifgng pseudorandom
point to note that nowhere do we average with respect t0 €, e ces. However, some of our results go beyond this basic
sequences, rather, the SIR expression for finite-size systemMSya| and will also be extended to systems usiegeated
which is a func'Flon of th.e- seéquence reall|zat_|on, Converggéquencesi.e., each user repeats the same (random) signature
almost surely or in probability to a value which is independet,;,ence over different symbols. It should also be noted that
of the sequences. Just as in [30], the results obtained heregee, <, mption of independence across paths is an unrealistic
based on the analysis of the spectrum of large random matricgs, 55 the sequences along different paths are really shifted

replicas of the same transmitted sequence. The assumption is
Il. SIGNAL MODEL made here solely to simplify the analysis of our main results;
extensions of some of our results to the shifted case will be
Our starting point is the equation for the chip-matched f“teﬁresented.
output vector at timen The additive noise is a circularly symmetric complex white
Gaussian noise witE[n(m)] = 0 andE[n(m)n (m)] = 1.

y(m) = Z br.(m) Z ari(m)sgpi(m) + n(m) (1)

[ll. DATA ESTIMATION
wherek € {1,...,K} indexes the multiple users, ardde

{1,..., L} indexes the paths of each usen(m) is the channel ~ We consider the problem of forming an estimate of ithit

gain for pathl of userk over symbol periodn, b,(m) is the data symbol of user 1 based only on the complex vegtor).

data symbol of uset over periodn, sx:(m) is the signature se- We note immediately that basing an estimaté,¢fn) ony(m)
quence for patlh of userk over symbol periodn, andn(m) is alone is suboptimal since the channel fading process introduces
an additive noise. We assume throughout that the delay spreatheimory into the system (see [20]). The abowe-shoscheme

the channel is small compared to the symbol time so that intéias definite advantages in terms of computational complexity,
symbol interference can be neglected. Note that the assumptiamvever, and when the channel gains are kngm) is, in

that we knows;; means that we implicitly assume knowledgéact, a sufficient statistic for the estimation &f(n). Without

of the timing of resolvable pathof userk. loss of generality (within the confines of the one-shot scheme)
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we can drop the time index from the terms in (1) leading to ttie low). We do not assume that thg; are known perfectly

observation equation at the receiver, but instead assume that the channel estimator
K I provides the data estimator with channel estimates along with
Y= Zbkzaklskl +n. the mean-squared error (MSE) in these estimates. The data
1 1= estimator is thus conditioned on the belief that is a random

a/ariable with meana;; and variance&,fl. Note that in the
sr}andard situation when the channel is assumed to be known
perfectly,ax; = ax; andg“,%l = 0. All results we derive reduce

K to the perfectly known (slow-fading) case upon making these

y= bsi+n substitutions.

k=1 All expectations in this section should be seen as conditional
wheres;, = Elel arsi is the effective signature sequence foPn the information that is assumed known at the data estimator,
userk at the receiver. In this case, the problem is essentiaffjat is on the signature sequences, and the mean and variance
reduced to a single-path fading problem. The key point thougHpplied by the channel estimator. We use the notakigrto
is that knowledge of the effective signature sequences requié@ote expectation conditioned on this information.

We first note that if the channel gains are known, we ¢
replace the above model by

knowledge of the channel. Let si, = [sg1,...,skc] andag = [ag,. .., axg]” de-

In the single-path fading model, the direction/N+dimen- note the sequences and channel gains corresponding to user
sional space of each user at the receiver (the effective signattwelet S = [s1,...,sk], A = diag(as,...,ax), and
sequence) does not depend on the channel. The channel gaifi af= [b1,---,bx]". The signal model over the symbol of

fects only the energy in the direction of a user through scal@terest is then expressed compactly as
multiplication. This means that it is possible to design receivers — SAb+n
which null out the interfering users without knowledge of the v= ’
channel and this is precisely what the decorrelating multius@fe now look in turn at the LMMSE receiver, a decorrelating
detector does. There is clearly a complication in the multipagbceiver, and a single-user matched filter.
fading case because the signature sequence of a user at the re-
ceiver has both a direction and an energy which depend on the LMMSE Receiver
chanqel. If the channel is unknov_vn thgn all we can say is thatpirst we must calculateE, [yy#]. Using the fact that
a particular user I_|es somewhere medlmen_smnal supspace.n’ bi,...,bx and A are independent
Suppose that estimates of each channel gain are available along x L L
with a measure of the confidence in these estimates. How should H H 2
: . . E = E [aw, ayy s, sy I

we design a multiuser receiver for such a system? ™ =22 D D Edlow,ajy Jswska, +o

One approach suggested in the literature is the decorrelating,
multipath-combining detector [15], [16], [18]. The received-€ting
signal is initially procesged by a decorrelator V\_/hich treats p = E4[AAT] = diag (E4[a1al], ..., Eqlarall])
all KL sequences;,; as if they corresponded to interfering )
users. Thel. correlator outputs corresponding to each user af§¢ can write
then_ combined using techniques wgll knc_)wn for smglg—user EJ[yy™] = SDSH + 021
multipath channels. The problem with this approach is that
it is very wasteful of degrees of freedom. Whereas in thge also have
perfect knowledge case we know that each user takes up one L
degree of free_dom, each user now occup[esdirections_. Ey[biy] = Z Ejlay]sy = s1@
The decorrelating operation will thus become increasingly =1
?Il—condlitioned ask I approachesV. This receiver is analyzed g that the LMMSE receiver for user 1 is
in Section 111-B. . o1

An alternative approach is the multipath-combining, decorre- c=(SDS" +0°1)" s1a;.
lating detector which forms estimates of the received signature ) ) ) )
sequence of each USE} = Eleaklskl and then performs a Remark _1: A_n interesting special case arises wh(_an we as-
decorrelation operation. While such an approach makes miitne nothing is known about the channels of the interfering
more efficient use of the available degrees of freedom, it is é¢%ers other than theepriori statistical characterization and that
clear how channel uncertainty would impact the performandéser 1's channelis known perfectly. In this case, the LMMSE re-
This receiver does not make use of the confidence measures §@jer developed above is in fact the optimal multiuser receiver
plied with the estimates and, in this sense, cannot be considefed1e sense that the output is a sufficient statistidforThis is
robust to channel estimation errors. the Bayesian analog of a result for the decorrelator which says

In the sequel we present and analyze an LMMSE receid@t the decorrelator results from the joint maximum-likelihood
which combines the robustness properties of the decorrelatifgtimation of the data and the channel gains [7].
multipath-combining detector (when channel uncertainty is |f ywe write
high) with the superior performance of the multipath-com-
bining, decorrelating detector (when the channel uncertainty Ed[alaf’] :alaf’ + =1

k=1 l1=1 lx=1
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(sothatz; = E4[(a; — a1) (a1 — a;)"]) we can alternatively be case and instead we obtain directly from (2) that the SIR is
express: as afl s 77 5141 which converges in probability te!’ a; 3,. We
¢ = (S1D1SH 4+ 021 + si(@mal +21)s) " Hs1a1) see thafj, has an interpretation as the SIR for user 1 when its
" 9 — HN1, own channel is known perfectly and the total energy in all its
= constantx (510151 + o +s151s1) " (s171) paths isl. We call 3, the normalized SIR of user 1 although the

whereS; = [sz2,...,sx] and user index is unnecessary here because the normalized SIR will
Dy = diag (Eyfasall],..., Eqlarcall]). be e_qual for_all usersin the sy_stem. Observe/ﬂaaiont_ams all _

) . ) the information related to the interference suppression capabil-

The SIR for the estimate = ™y of b, is then ities of the receiver and that we have a separation of the effects

SIR, = alls" (S, D157 + 621 + 512151)"ts;@;  (2). of the estimate of, and uncertainty in, the channel of user 1 and

the corresponding quantities for interfering users. The normal-

ized SIR,j3,, thus provides a measure which isolates the effect

of other user channel uncertainty, and which fully captures the
SIRy =@l (Z1 — Zi(E[ ' + Z1) " Zy)as. multiuser properties of various receivers.

From this point on we will assume thag = ¢21 which means ~ Tosay more requires us to obtain information about the eigen-

that the error variances of all paths are equal and that the pg@iies ofD; . In this direction assume that

estimates are uncorrelated. This assumption will be supported Ey[ayall] = aall + 21

by the channel estimation results of the following section (see , )
also Lemma 2). whereay is the estimate of the channel gains for the paths of

5 . : :
To say more about the SIR expression requires an analysiéjﬁ?rk an(_jgk is a scalar representing the common \iarlance n
the L x L matrix Z, . Clearly, this term depends on the particula1€S€ estimates. We have assumed that the eprs aj, for

realization of the sequences and this makes it difficult to gifix€d  are uncorrelated and have equal variance and note briefly

any general measures of performance. The situation chandB@t this assumption will be supported by the channel estimation

however, if we consider a limiting regime wheie — o with analysis of the following section. With this assumption we see

K = aN (with L fixed). If almost surely the empirical distri- that2D1 has one eigenvalue@f@k+£z and(L—1) eigenv_alues
bution of the eigenvalues d@; converges to a fixed nonrandom@t &k for & = 2,.... K’ so that in a large system we will have

distribution (), then we have the following result. (See ApN€ approximate refation

Let Z; = sH(S.D;SH + 02I)~1s; and apply the matrix in-
version lemma to give

pendix | for the formal definition of almost sure convergence of , 1 LS y
empirical distributions.) Pa= 0"+ > [@ =01, 8a)
k=2
Theorem 1 (LMMSE Receiver: Data Estimatior§iR; con- I -1
verges to +I <Z [an|? + &2, /3d> )]
L =1
121 (@il Ba where
SIRF ==L
R 0. 0)= 5
almost surely a®&vn — oo whereg, is the unique solution to the ) o
equation The overall effect of interferek is given by the term
oo -1 L
Ba=|o? +al / P _ar@p)| . 3) (L= DI, Ba)+ 1| > [l + &3, Ba
o 14+pfa P

Proof: We have immediately from Theorem 7 in Ap-which is the same as the interference that would result in the
pendix | thatZ, converges almost surely elementwisedtd.  single-path fading casg. = 1) from L — 1 users with power

continuous function of the elements of thé x L) matrix emerge
O

Z.
_ « when the channel is known perfectlf? = 0) then

sult holds regardless of the shape of the distribution of the ele- ElL—l |an|2;
ments ofS. Convergence in probability of the SIR in the per- N
fectly known nonfading channel was proved for general signa-
ture sequences in [30, Theorem 3.1].

« when nothing is known of the channel agflis simply
thea priori average power in each resolvable path then an
interferer looks likeL interferers with powep, /L.

Remark 3: Equation (3) and all other fixed-point equation%

L : . . . Due to the convexity of the effective interference as a function
in this paper are easy to solve numerically by simple iteration . . : . X

o L of power, one high-power interferer is more benign thdnter-
Convergence to the solution is guaranteed from any initial p

— . Rrers with the same total power especially when the background
itive value, and usually happens very rapidly. . ; o . :
noise power is low and this is why there is so much potential
We have assumed thay is invertible (¢2 > 0), however, gain from obtaining accurate channel estimates. The extent to
if the channel of user 1 is known perfectly then this will notvhich the uncertainty in the estimates causes a single interferer
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to spill into L dimensions is captured very neatly in our framewhere the normalized SIR is given by
work. We note that similar conclusions have been obtained by 1—al o2 171
more heuristic dimensionality arguments in [26] and [36]. fa=—F—= [02 + ol 1 L} . (5)

To say more we will need statistical descriptions of the mean . g ] @ -
and variance information that is used by the data estimator so Proof: With the assumption that the signature sequences
that we can specify?(p), the limiting empirical distribution of th_e dlf_'ferent r_nultmath components are independent, this re-
function of the eigenvalues @b, . We leave this until Section V sult is fairly straightforward. The new aspect of the problem is

after we have looked at the channel estimation problem in S&g€ combining operation after decorrelation which means we

tion IV, have to worry about the off-diagonal elements(6f5)~L.
However, it can be shown (although it is not obvious) that the
B. Decorrelating, Multipath-Combining Receiver off-diagonal elements almost surely converge to zero softhat

In this section we consider a decorrelating receiver whidfPnVerges almost surely (e'eme”“’fse)ﬁ‘fa—mf- The con-
is variously known as the post-combining decorrelator [16yergence of=; + R)~! to (Z; + T2yl follows since the
the multipath decorrelating detector [15], and the decorrelements of the inverse matrix are continuous functions of the
lating multipath-combining detector [18]. (We also note [37¢lements of the origindlL x L) matrix. O
which looks at an LMMSE equivalent of these receivers.)
All reference to the decorrelator in this section refers to tl}g
decorrelating, multipath-combining receiver.

In this case, the SIR is independent of the powers of the inter-
rers, since each interferer is nulled out. The effective interfer-

. . . - alL > 1 (the pseudo-inverse is still well-defined) and leads to
the paths of a particular user e|t_her coherently, if channel Infoa[;'nonzero SIR. While the decorrelator still does not depend on
mation is available at the combiner, or noncoherently. Whet s powers of the interfering users, the SIR does depend on the
coherent or noncoherent combining is used it is clear that t Rerference distribution whenl, > 1 Asymptotic results can

receiver for user 1 does not require any |nf_orr_nat|on about_t & derived but in this paper we will give results for the decorre-
channels of the other users (apart from the timing of the vVariops, only whenalL < 1

resolvable multipath components).
The first stage of the decorrelator is based on processing the Single-User Matched Filter
received vector bys+ the Moore—Penrose generalized inverse
of the signature matri§. In the case, whef has full column
rank,S* = (SH8)~1SH and the output is given by

We now consider a receiver which is based only on informa-
tion about the desired user and which we call a matched filter.
The matched filter we consider is simply= ZIL=1 ayrsy; and

z=Ab+7n leads to the following result for large systems (the proof is rel-
wheren has covariance matrix?(SH §)~!. atively straightforward and is omitted):

The second stage (for user 1) takes the firsomponents of Proposition 2: (Single-User Matched Filter: Data Estima-

and combines them taking into account the covariance structyggy): The SIR for the matched filter converges almost surely
of the noise and of the channel estimate. Egtrepresent the {5 the value

vector consisting of thé: decorrelator outputs of user 1. Then

L
Zy =aib+m > laulBa
« _ I=1
wheren; has covariancé equal to the firstl x L sub-block SIR; = 1+ 8253

of 02(S#S)~1. Consider an LMMSE combiner for estimating _ o

b, fromz;. Note that such a combiner is optimal in the sense Yere the normalized SIR is given by
producing a scalar sufficient statistic for if a; — @, is a cir- 5 i

cularly symmetric complex Gaussian vector. Then the combiner fa = {U + O‘L/O p dF(p)} (6)
forms the decision statistic

-1

where agairF’ is the almost sure limiting empirical distribution

—H /= —1< . . . L
=M (EL+R)"'Z function of the eigenvalues ab; (assuming such a limiting
1+a(Z, + R)lay distribution exists).
with resultant SIRe! (Z; + R)~'a;. In a large system we will have the approximate relation
If oL = LK/N < 1 then we have the following result as L

N — oc. Ba =

1
2 2
S (T
Proposition 1: (Decorrelating, Multipath-Combining Re- -

i imation)- L -1
ceiver: Data Estimation):The SIR for the decorrelator con- n; <Z K +§f>>]

verges almost surely to the value —

ZL: @284 whereI(p) = p is the effective interference of usér Note
SIR" = =t 4 that for the matched filter, the effective interference is linear in
P14 &8 ) the interferer power which should be contrasted to the LMMSE
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receiver, for whichl(p) = HL@ at normalized SIR3. The training data (and estimating the channel over the training pe-
performance of the matched 'firter will become arbitrarily badod), = would typically be chosen to be a small fraction of the
as the power of an interferer is increased, while for fixed channel coherence time so that the training overhead is not too
the LMMSE effective interference for a high-power user agarge.

proachesl /3. For the matched filter. low-power interferers ~ Over the estimation window, we can thus drop the time de-
have exactly the same impact as one interferer with the sapendence of the channel gains leading to the model

total power. K L
y(m) =3 Y apbi(m)su(m) +n(m),  m=1,...,7
IV. CHANNEL ESTIMATION k=1 I=1

with E [a..a},] = 64657, Lettin
We now turn to the problem of estimating the channel fading [areai] t0sub g

- i y=[O" .y
process of each user in the system. Our eventual aim is to use AR
these estimates and their corresponding MSEs as inputsafs!
the LMMSE data estimator designed for the partially known n=Mn)L, ... n@"

channel. Note that our model assumes that the time delays,f ,ave

the resolvable multipath components of all users are known

and that we consider estimation of the path gains only. We y=1Y%Sa +n
will perform the channel estimation conditional on the data,

an assumption that is valid during a training period and théfhere
leads to performance bounds for the situation when the channel T 7_1/2[3(1)T ?(T)T]T
estimator is operating in a decision directed mode (since we Y '

assume that the data are perfectly known and do not allow f@le wish to estimate based on observation gfwhich we ob-
errors). serve to be a standard problem in Gaussian estimation. The re-

All expectations in this section should be seen as conditiongliting MMSE estimate (the conditional mean estimate) is given
on the information that is assumed known at the channel eg{

mator, that is, on the signature sequences, the data and the av- .

— — 2 -
erage powers of .the users. Vye_use the_ notalorto denote a2 Pon (Pgon 9 y 7
expectation conditioned on this information. L L T

To begin we recall the signal model under consideration _ _
and the error covariance is

K L _ o _ 5 -1
y(m) =3 balm) S aalm)sa(m) + n(m) =P, P gn (2 557 4 ”_z) . @
k=1 =1 L L2 L T
Let Now let
S(m) = [by(m)si1(m), ..., bi(m)s1z.(m), .. .. s =12V b(r)sia(m) ]
bK(m)sKl(m),...,bK(m)sKL(m)] and
and S = [512:-- 3510+, SK1,-- -, Sk
a(m) =[ar(m), ... ax(m)*]" The expression for the MSE af; (which is the(1, 1) element
of the covariance matri¥) can be written as
where 7/L
; Gill= 1oy /LN
ar(m) = [agr(m),...,ap(m)]". Where ¢

Then the observation vector can be expressed as - 2\ !
= gy =sH (255 12 1) 3
y(m) = S(m)a(m) +n(m). e Tru\rpTHTRT e

Note that conditional on the data and the signature sequUeNceSa now consider the asymptotic regime whafe— oo with
(i.e., conditional orf(m)), the problem of channel estimation isa — K/N fixed.

one of Gaussian estimation for which LMMSE estimation and

MMSE coincide (sincey(m) anda(m) are jointly circularly ~ Theorem 2: (MMSE Channel EstimationThe MSE for any

symmetric). Ifa is a Markov process then the MMSE estimat@ath of any user converges almost surelyMs— oo to the

of a(m) based omy(1), #(2), ..., y(m — 1) along with the error nonrandom

covariance can be recursively computed via the Kalman filter

equations. 2 =1 _
We will consider jointly estimating the channel parameters of 1+ 5.

all users over awestimation windovof 7 symbols and restrict \heres3, satisfies the equation

attention to the situation where the channel coherence time, l

=31

0? alL

T T 1+%/3€

sl

over which the channel is essentially constant, is greater than B. =
7 symbol intervals. In a system based on periodically sending

—1
] 9)
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from which 3. can be solved explicitly B. Extension of Results to Shifted Sequences

.= T—aL_£+ (1—aL)? (T+a) L_2 1/2 The fact that the multiple paths of each interferer look like
° 202 2p 404 2po? - 4p? separate interferers in Theorem 2 is a direct consequence of
Proof: The result follows immediately from Theorem 7 inthe assumption that the signature sequences along the different
Appendix | upon observing that the elementsSafemain i.i.d. paths are independent. What happens if they are shifted replicas

in the presence of the data modulation. O of the same transmitted sequence?

We see immediately from (9) that along with the reduction of Theorem 4: (MMSE Channel Estimation-Shifted Sequen-
background noise power by a factorgfthe number of degreesces): Theorem 2 holds even if for ea¢hand!, the signature
of freedom (the processing gain) is increased by a facter ofsequences,;(m) is a cyclic shifted replica of the random
(«v is reduced by a factor af). As 7 increases, the contribution sequence (m) by I — 1 chips.
of the interference t@. becomes negligible very quickly and Proof: See Appendix Ill. O

A : i 5
the limiting MSE is well approximated by*/, the value that The proof of the result in Appendix Il gives an explanation

WO_Il_Jr:d resnl_t flor atsr:nglia usehr_mtth;a abslen(l:(el_sf other Ufer_s.t of this curious phenomenon, again using the notion of freely
€ mulliple paths of ach interterer look ike separate in eﬁidependent random matrices. Basically, the shifting provides

ferers to the LMMSE channel estimator. A3s increased, \.N'th enough randomness even though there is sequence replication.
7 and the total power of each user constant, the system is equiv-

alent to a single-path system with a large number of low-power
interferers, and the performance of the LMMSE receiver would V. ESTIMATOR COUPLING

approach that of a matched-filter channel estimator. In this situ-, sections 11l and IV. we looked at the performance of data
ation, we have tha (3. is small compared to so that the ratio 5q channel estimation, respectively. In this section, we couple

the estimation error to the energy per path is close@0d we a6 results together based on the receiver structure of Fig. 1.
essentially know very little other than tlaepriori statistics of The theoretical result on which the coupling hinges, is the fol-
the channel. As an example, a system with= 0.5, L = 10, lowing result.

7 =1, andp/o? = 20 dB will have an MSE to power per path
ratio of0.8 and channel estimation would buy only minimal per- Theorem 5:When the channel estimates and error covari-
formance gain. (We also draw the readers attention to [38] whigRce are calculated using (7) and (8), respectively, then the em-
treats some similar issues in the context of single-user fadiptjical distribution of the eigenvalues @?, converges in prob-

channels from an information-theoretic point of view.) ability to the fixed disiribution
The con_dmon for other use_r mte_rferenc_e to be negllg_|ble is F(p) = w(p — 52) + = G(p) (10)
thataL /7 is small. If we consider increasing but now with L L

oL /7 held fixed at a value significantly smaller thanthen the whrereG(pQ) is t2he distribution function of the random variable
ratio of MSE to power per path is roughgf,l. If r/L=5and 2= [@]”+&7, where eachy, is a circularly symmetric, zero-

. . . . 2
/o2 = 20 dB then this ratio i§.002. mean, complex Gaussian random variable W|th varlagﬁe%_
andzi,. ..,z are independent. In the abovg,is as given in
A. Extension of Results to Repeated Sequences Theorem 2.

Proof. See Appendix Il, where the definition of conver-

While the effective increase in degrees of freedom friym . o . S :
T : ence in probability of (random) empirical distributions is also
to 7N is intuitively what one would expect when the S|gnatungiven 0

sequences are independently chosen from symbol to symbof, it
is notimmediately obvious that the effect would carry over to the To get some feel for this result we note that € — 1)L
case when the signature sequences are repeated. In some sggeavalues op; are made up of thé eigenvalues ofi,.al +
one would think that the sequence repetition would entail sorig for eachk = 2,..., K. We also know (see Lemma 2) that
loss in degrees of freedom. However, it turns out that sufficieRt, converges tat21 for eachk so that we would expect the
randomness in the data is adequate to render the performagigenvalues of,.a’’ 4=, to be close to those a@f.ai! +¢21, the
asymptotically equal in both cases. latter matrix havingl — 1 eigenvalues a2 and one eigenvalue

Theorem 3: (MMSE Channel Estimation-Repeated Sequ%a’rtw-afa.’“ +&2. Now itis not difficult to show that the limiting

o e
ces): Under the additional assumption that the data symbols meargmal) distribution o Gy is G(p) for every user. Theorem

zero-meart b (m)] = 0), the conclusions of Theorem 2 also goes further stating that the empirical distribution across users
- k = ]

; . : converges td7(p), a result which is not immediately obvious
hold in a system using repeated sequences,si&m) = sk due to the dependence between users
for all m. !

Proof: See Appendix I N We now want to combine this_with T_heqrem 1toyield the lim-

' ' iting SIR for user 1. One technical point is that Theorem 5 only

In Appendix Ill, we will give an explanation of this phenom-yields convergencim probability of the eigenvalue distribution

enon using the concept &kely independermandom matrices. of D; whereas Theorem 1 requires almost sure convergence of
Indeed, in the case of repeated sequences, the key random tima-eigenvalue distribution dp; to ensure almost sure conver-
trix S has dependent entries and this brings us beyond existgnce of the SIR for user 1. Corollary 2 in Appendix | shows that
random matrix results. Techniques from free probability theorye can prove an analogous result to Theorem 1 where conver-
are appropriate for tackling this problem. gence in probability of the eigenvalue distribution/®f implies
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Fig. 2. Histograms of normalized SIf82 o) for variousN. In each casé& = N/2,7 = 2, L = 2, andp/c? = 20 dB. ()N = 32. (b) N = 64. (c)

N = 128. (d) N = 256.

convergence in probability of the SIR. Hence we can concludeWe also have a coupling result for the matched filter which
that the limiting SIR (in probability) of user 1 is given by

L
> |aul?Ba

SIR, = =

andg, is a constant satisfying the fixed-point equation

52
|2
Ba= |0 +a(L_1)T£2/3d
00 1
+ 06/52 Tpﬁ(zg(p) dp} (12)
where
— 1 _e2\L-1 _P—52
g(p) = (%—52)L(L—1)!(p &) eXp< s
p2¢&

1
+ &34

(11)

)

(13)

follows directly from Theorem 5 and Proposition 2. The SIR for
the matched filter converges in probability to the value

ZL: @112 Ba
SIR; = lzllJrW (14)

where the normalized SIR is given by
Ba = [0? + o] . (15)

Note that there is no need for a coupling result for the decor-
relator as the SIR (as given in Proposition 1) is independent of
the channels of the interfering users.

VI. NUMERICAL EXAMPLES

In this section, we present some numerical examples to sup-
port the intuition gained from the preceding analysis. The main
conclusion will be that in frequency-selective fading, there is
much to be gained from knowledge of the channels of interfering
users. Similar conclusions were also reached in [26], [36].

and thea;,;'s are i.i.d. circularly symmetric, zero-mean complex We first focus on the interference suppression capabilities of
Gaussian random variables with variar{t:e £% (with £€% given the linear receivers and assume the channel of the user of in-
in Theorem 2). Thus the SIR is asymptotically chi-square-diterest (user 1) is known perfectlfi,( = a; and¢? = 0). We

tributed with21. degrees of freedom.

will compare receivers by the ratio of SIR/SNR where SNR
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(Zle la1|?)/c2. This measure is related to the previously de-

fined normalized SIR3,, through
SIR 9 2 7
SNR 7 s

and differs fromy, in that it depends op ands? only through 2 10
their ratio. In this section, we reserve the temormalizedSIR 2 15l
for the quantity3go2. E

To begin, we present some simulation results to give some =
idea of the rate of convergence of the SIR values to their asymp- -20r
totic limit. The results are presented in Fig. 2. The plots show
histograms of 500 realizations of normalized SIR as the pro- ‘250 02 0.4 0.6 0.8 1
cessing gaiV is increased. The normalized SIR values are ob- Number of Users per Degree of Freedom (K/N)
tained from (2) with channel gain means and covariances calcu- @)
lated from (7) and (8). All plots usg/o? = 20 dB,7 = 2,
o = 05 (K = N/2)andL = 2. The frequency axis has 0
been normalized by dividing by the number of realizations. Note
that the results were generated using repeated sequences with _ s}
multipath components modeled as cyclic-shifted versions of a @
common sequence. The asymptotic limit can be calculated from E_10
(12) with £2 calculated using Theorem 2 anddg = 0.38. E

From this point on all results will be based on our asymptotic = 15t
SIR expressions. All results for LMMSE receivers are obtained £
from (11)—(13), while results for the decorrelator use (4) and (5) 2_20_
and results for the matched filter use (14) and (15).
A. Frequency-Flat Fading (Fig. 3) 2% 0.2 0.4 0.6

0.8 1
. . i Number of Users per Degree of Freedom (K/N)
Let us start by considering the special case of frequency-flat

fading (L = 1). (b)

Fig. 3 shows plots of SIR/SNR versusat various level? of Fig. 3. Plots of normalized SIR3,5?) versus the number of users per degree
average SNR= p/o?. Plots are shown for LMMSE receiversof freedom(a) for the ideal LMMSE(o), the worst case LMMSE-+), the
with perfect channel estimatigig? = 0) and with no channel decorrelatotx), and the matched filter). (a) z = 10 dB. (b) 7 =20 dB.
estimation(¢? = p), the decorrelator (for which SIR/ISNR =
1—) and the matched filter (for which SIR/SNR1+a %) ). interest in the multipath fading channel results because this ob-

The key observation is that the ideal LMMSE and the worskrvation no longer holds: to throw away channel information is
case LMMSE show very little performance differeneeX dB)  very wasteful of degrees of freedom.
over the range ofv andp/o? covered with the performance  Fig. 4 shows plots of normalized SIR;02) versus number
gap increasing with botix andp/o%. One should be aware of paths(L) for the LMMSE receiver, the decorrelator, and the
that this observation is somewhat sensitive to the fading distfratched filter. For the LMMSE receiver, results are shown for
bution (Rayleigh in this case). The gap between the ideal ajgrious length estimation windows which translate to various
worst case LMMSE receivers could be made very significant Rijues of the path estimation errgx.
careful choice of the fading distribution. In particular, suppose The LMMSE receiver with worst performance corresponds to
that the channel gain of each user took two values, one wilie receiver which knows nothing of the channels other than the
large magnitude which occurs with small probability and ongverage power. In this case, each user with total pgweoks
that is zero occurring with high probability. The ideal LMMSHiike L users with powep/L. Note that even for higlp, asL
is based on the small number of high-power interferers whichig increased the power of each effective user decreases which
would simply null out, while the worst case LMMSE is basegbads the LMMSE performance to approach that of the matched
on a large number of interferers at the average power. Becagger. Note that unless the system is very lightly loaded (small

of the convexity of the effective interference as a function of thg), so thatwL is not too close td, the decorrelating, multipath-
power of the interferer, the ideal LMMSE would thus have Sigjombining receiver is Virtua”y useless.

nificantly better performance. We also observe that there is a significant difference between
) ) ) the ideal and worst case LMMSE receivers, even when there
B. Frequency-Selective Fading (Fig. 4) are only a few multipath components (10 dB fer= 0.5 and

In the frequency-flat fading channel we observed that, atledst= 3). The question is, how good do our channel estimates
in terms of interference suppression, the price of knowing onheed to be to achieve a significant improvement? For the pa-
the average power of other users or even knowing nothing at@meter values considered here, provided the channel estimation
about other users’ powers, did not result in a very dramatic losgndow (in symbols) is at least as large as the number of mul-
in performance relative to the ideal LMMSE receiver. The redipath components, then the loss from ideal is less than 2 dB.
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Fig. 4. Normalized SIR{%,02) for variousa. In each cas@/o? = 20 dB. . .
Results are shown for the matched filter), the decorrelatot x ), and the Fig. 5. Plots of performance loss for the LMMSE receiver versus the number
LMMSE receiver(o). In the latter case, curves are shown for estimation windo®f USers per degree of freedom)( In each casé = 1. R?SUItS are shoﬁwn for
lengths of (from the topy = oo (perfectly known channel = 10, 2, and channel est|m§torW|ndow lengths of (from the topy 1, 2, and5. (a) & =
finally for the case when nothing is known about the channels other than thd0 dB and (b)% = 20 dB.
priori average power. (a) = 0.2. (b)a = 0.5.
C. Frequency-Flat Fading (Fig. 5)

This does not seem to be an unreasonable assumption, the rgnr medium-to-high values gf/o2 we see that the perfor-
sult providing great motivation for acquiring and making use ghance loss is around 0.5 dB fer = 5, a value which does
the signature sequences of all users. ~ not seem unreasonable even in fast-fading environments (say,

These I‘esultS assume that the Channel Of the user Of |nte@gopp|er frequency times Symbo| rate(bt)l)_ We C0u|d, Of
is perfectly known. It is also of interest to examine the impagburse, use a differentially coherent scheme to remove the need
of including the uncertainty in the estimate of the path gaingr obtaining a channel estimate for user 1 but it should be re-
for user 1. To do this we compare the value of SIR obtaingfembered that the cost is on the order of 3 dB. We also remark
in the cases where the channel is perfectly known and wh@pt most of the performance loss is due to the uncertainty asso-
the channel estimates have some associated uncertainty. Thejeed with the estimate of the channel of user 1, not the uncer-

sults are shown in Fig. 5 (frequency-flat fading) and Fig. 6 (freainty about the channels of the other interferers, as should be
guency-selective fading). The vertical axis represents evident upon referring back to Fig. 3.

It may at first seem strange that the performance gap de-

1010g SIRy |ez=0 — 1010g SIR [¢2—¢2() creases in some casescamcreases. Surely? should increase

Where with « and result in performance degradation relative to the
ideal case? The key to understanding this behavior is that we
SR — p— L& really have different effective values affor channel and data
1= 24 8% estimation, namelyy/r ande«, respectively. For = 5, for ex-

ample, asy is increased fron®) to 1, the effective number of
with 3,4 given by (12). The average SIR values are obtained logers per degree of freedom for channel estimation increases
averaging the SIR over the channel estimates for user 1. ¥iem 0 to 0.2 only. The value of? increases only very slightly
have writter¢?(7) for the MSE in the channel estimate resultingver this range and the overall performance gap is dominated
when the estimator window length (over which we assume thg the impact of increasing on the data estimation which in
channel is constant) isas given in Theorem 2. contrast to channel estimation is very significant.
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» But under what conditions could we expect to obtain es-
timates of sufficient accuracy to allow the potential re-
wards to be reaped? For the numerical examples consid-
ered, we have seen that provided the channel estimator
window length (in symbol intervals) is at least as large as
the number of resolvable multipath components, estimates
of sufficient accuracy for near-optimal performance of the
data estimator could potentially be obtained from a linear
(optimal) channel estimator.

3
(=]

Performance Loss (dB)
ER-

L
T

An important observation is that these insights are totally scal-

0 able with system size, in the sense that they are obtained in the
Bmber 0f4Mu1tipath6ComDone§lts @ 10 limit as the spreading gain and the number of users grow large,
as long as the number of users per degree of freedom is fixed.
(a) On the theoretical side, addressing the questions in this paper
prompts us to prove new results in the spectral analysis of
20

random matrices, using techniques from free probability theory.

These new results manifested in the interesting phenomenon
that although there is repetition of random spreading sequences
due to multipaths and the use of repeated sequences, in cases
considered the asymptotic performance is exactly the same
as though all sequences were independently chosen. This
provides further evidence for the robustness and versatility of

the random spreading sequence model for the performance

—
i
T

Performance Loss (dB)
=

S analysis of multiuser receivers. While we have given rigorous
proofs only for LMMSE channel estimation (Theorems 3 and
o ; ‘ ‘ 4), we conjecture that all of our results hold when the repeated
2 4 6 8 10 ic-shi i i
Number of Multipath Components (L) and cyclic-shifted signature sequence model is used.
(b) APPENDIX |
Fig. 6. Performance loss of LMMSE receiver relative to perfect knowledge SOME KEY RESULTS FORLMMSE ESTIMATION
case. In each cage/c? = 20 dB. Results are shown for channel estimator . L
window lengths of (from the top) = 1,2, 5,and10. (@)a = 0.2. (b)a = 0.5. _Lemma 1 Let A be a deterministicV X' N complex ma-
trix with uniformly bounded spectral radius for aW.t Let
1 T I .- .
. . ) == ..., qn|* where they;’s are i.i.d. complex random
D. Frequency-Selective Fading (Fig. 6) 4 N 21, ax] 8 P

variables with zero mean, unit variance, and finite eighth mo-

Perhaps the main observation that should be made is th@int. Letr be a similar vector independent @f Then
again providedr is at least as large ak, the loss from ideal

performance is at most 3 to 4 dB for the range of parameters 1 4 ol Cy
covered. g Aq — N TrAl | < Nz and E[|¢7ArY < =
VII. CONCLUSIONS where the constants; andC, do not depend otV or A.

We have attempted in this paper to elucidate fundamental Proof: The first result follows directly from [39,
properties and limitations of linear multiuser receivers operatihgmma 2.7] while the second result can be proved in a similar
in fading channels. manner. U

Through a combination of theoretical results and numerical An immediate consequence of this lemma is that
examples, the main engineering insights to come to the surface
were as follows. Corollary 1:

« Insingle path fading, the penalty for not knowing the chan-
nels of interferers is not significant and the impact of a user
not knowing his own channel tends to be the dominant
fect.

1
qHAq—NTrA—M) and ¢"Ar —0

limost surely agv — oo.

Proof: We prove the second limiting result and note that
* In multipath fading, the situation is very different, as wehe first follows along similar lines. We have

might have guessed from the discussion on effective in-
terference. Receivers making use of accurate estimates of o El|l¢" Ar|Y]  Cie®
. T P(lg" Ar| > ¢) < <
the channels of interferers will significantly outperform et N2
rece've_rs designed to operate without channel knowledge 5 is, there exists a real number, independen¥ofwhich bounds the
or receivers that track only average power. magnitudes of the eigenvalues.ffor all .
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from Markov’s inequality and our lemma. Thus where3* is the unique positive solution to the fixed point equa-
oo tion
Z Pl Ar| > ¢) < , » -1
N=1 £ {U +04/ 1+ 3" (p)}

and the result follows from the first Borel-Cantelli lemma [40]. . .

(Note the implicit dependence of the summands\ap O Proof: To begin we use Corollary 1 to note
H H 27\—1,,

In the sequel, we will be dealing with the convergence of ¢ (XTX" +o° D)7

empirical distribution functions, so let us define things clearlyand

Definition 1: We say that a sequence of (deterministic) cu- qH(XTXH + 02])—1(1 1 Tr (XTXH + 02])—1
mulative distribution functions (cdfs);,, converges td" if for N )
every point of continuity: of F, lim,, _.o. F,(z) = F(z). lfwe converge almost surely to zero. To apply Corollary 1 we condi-

identify a cdf with a measure, this is equivalentieak conver- tionon.X andI”and rely on the fact thatandr are independent
genceon the space of measures. of X and7'. Note that the spectral radius @€ 77X ¥ + ¢21)~*

. S ) ) is uniformly bounded byt /2. The first part of the theorem is
Empirical distribution functions areandom cdfsfor which  3ready proved.

two notions of convergence can be defined. Next observe that
Definition 2: A sequence of random cdf€,, convergesal- 1 (XTXH 4 021) = / 1 AFXTX" ()
most surelyto F if almost all realizationd’,, converge tav. N A+ o?
Definition 3: A sequence of random cdf,, convergesn and that the right-hand side converges almost surely to
probability to a limit ' if for everye > 0 3 :/ 1 dG()
] A+ o?
nhféop[d(F"’F) > =0 since the integrand is bounded and continuous and according

XTxH
Hered is any metric which generates the weak topology on tﬁ% Theore&w. i’F dth allmost surelly converges @®. We have
space of measures to whiéh, andf’ belongs. thus established that, almost surely

We need the following theorem which is proved in [41]. For T (XTXH + 0% ) g — / ﬁ dG(X).
any square matrix with only real eigenvaluesf&t denote the 7
empirical distribution function of the eigenvalues 4f Note
that the Stieltjes transform of a distributighis defined as the

Since the support off is on the nonnegative real axis, the
Stieltjes transform of7 is continuous in the neighborhood of

analytic function 2z = —o? and it follows that
1
1 lim mz:/—dG)\zﬁ*
m(z) :/ T dG(N), zeCt={z€CImz >0} z——a? ) A+ o2 )

and by the continuity of the right-hand side of (16) as a function

Theorem 6:Let X be aK x N matrix of i.i.d. complex of m, it follows that

random variables with zero mean and variaht® and assume g = [0_2 n a/ D
thatlimy_,.. K/N = «. LetT be aK x K random Hermi- 1+ pp*
tian nonnegative-definite matrix independenfosuch that al-

most surelyF'? converges to a fixed distribution functidn as Now suppose thaf'” converges to a fixed distributiof in

N — oo. Then almost surerFXTXH converges, a&% — oo, Pprobability, rather than almost surely. Then we have the fol-
to a (nonrandom) distribution functiai whose Stieltjes trans- lowing corollary.

form m(z) (= € CT) satisfies

dF(p)} - . O

Corollary 2: ¢"(XTX" + o2I)~1q converges in proba-

P -1 bility to g*
m=— [2 - @/ 1 dF(p)} (16) Proof: SinceFT converges td in probability, for every
+pm .
subsequence there exists a further subsequence on WHich

in the sense that for every € CT, m = m(z) is the unique convergestd almostsurely. On this subsequence we have from
solution inC* to (16). the previous theorem that’ (X7 X " +o21)~!q converges al-

Most of our results on LMMSE estimation follow directlyrnOSt surely tq(i' and since the initial subsequence was arbi-

. trary, our result is established. O

from the following key theorem.

Theorem 7:Let X and? be as defined in Theorem 6 and let APPENDIX I
g andr be random vectors of lengtN, independent o and PROOF OFTHEOREM 5

T and as specified in Lemma 1. Then/s— oc, almost surely Recall that the channel estimate is given by (7)

HXTXH 452D~ =0

— — 2 —1
—_—12PsH (P g | 7
and qH(XTXH+O'QI)_1q—> /3+ a=T L S <L SS" + ” I) Y (17)
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with associated error covariance (8) almost surely. Using the diagonal method starting from any
P P (P aey 0 -1 initial surt,)sequence we can extract a further subsequence such
== EI— 7 S <f SSH 4 7]) S. (18) that FN ) (2 x) — Flamy) almost surely form > 1,
1 < k < m. But this implies thatD,(,]f) — 0 almost surely

Conditional on S, @ is a circularly symmetric, complex ang thys thatD™) — 0 almost surely. Since this is true for

Gaussian random vector with covariangé — =. each initial choice of subsequence, we have dY) — 0 in
We have the following result on the element&adsN — oo. probability as required. 0
Lemma 2: Now D, is a block-diagonal matrix with thék — 1)th di-

E(i,i) — & and Z(4,5) — 0, t£j agonal block equal to the x L matrixa,ail + Zj,. We need

to look at the empirical eigenvalue distribution Bf which is

whereé? is given in Theorem 1, and convergence is almost surﬁ. o L . .
] . . e empirical distribution function of the eigenvalues of the ma-
Proof: The result for diagonal elements is just Theorem

. . I;iCGSEQEH + Zs,... EKEH + Ek.
For off-diagonal elements we note the equations at the bottom ? Ny A .
9 d Let )\2 5 = [)\Eﬁ), cees )\iﬁ)]T denote the vector af eigen-

of this page. Now the denominator converges almost surely toI ; ltiolicities) of.af + = dered f
(14 2,)? following Theorem 1 and the numerator converge® “€3 (counting multiplicities) ofi.@;’ + =, ordered from

almost surely t® from Corollary 1 so thaE(z, j) converges to Iar\gljveslt( to srr;}allest. | el 6t
0 almost surely as required. 0 e know thaE, converges almost surely elementwisétd

and we would thus expect that for lar@é, the eigenvalues of
The following lemma will also be required. arail + = would be close to the eigenvaluesmfal! + ¢21
and we know what the eigenvalues of the latter matrix look like:
it has one eigenvalue af’a; + £2 and(L — 1) eigenvalues at
£2. To be precise, we have

Lemma 3: Suppose"") is the empirical distribution func-
tion for N random variables. I#\)(p) converges in proba-
bility to F'(p) for all p, whereF is a fixed distribution function,

then the empirical distributiod™) converges td’ in proba-  Lemma 4:
bility. N
Proof: Let )\S\) - )\S\) — 0
D) = sup |FWN)(2) — F(z)]. almost surely asv — oo, where
. r ’ . - . X(N) _ [aHa + 52 52 52]T
We will show thatD(Y) — 0 in probability from which the con- ko7 e Ok AR :
vergence of the empirical distributiod&™) to F' in probability Proof: The proof is a straightforward consequence of the
follows immediately. perturbation theory of eigenvalues as given in [42, Ch. 2] (see,
First define for example, the Wielandt—Hoffman Theorem), along with the
d(w) = infle: u < F(x)], 0O<u<l fact that=;, — 52._7 converges almost surely elementwise to the
L x L zero matrix (Lemma 2). O
and let ] ]
Let us select a fixed number of eigenvalues ofDq,
Tmi = P(k/m), m=11<k<m. A A
Let kilir 0 Dkl
(Ai ™) Lemma 5:
D,rn = lg}fginﬂF (x'nl,k) - F(-T'rn,k)|7 ‘F)()\é]l\rl)1 S )\17 s )\g:rl)ﬂ S )\n)
|F) (2 =) — Fm )|} = I - I o
It follows (see, for example, [40, Theorem 20.6 (Glivenko—Can- {7:1;>1} {7:1;=1}
telli)]) that whereu()\) is the unit step function an@(\) is as in Theorem 5.
Proof: Let

D) < DIV) =L,
" i =& rallmsn.

Now we know thatF"™) () — F(z) in probability for allz. (N) ~(V)
Then for each subsequen({e7<N‘)(ar)} there exists a fur- Lemma4 tells us that;, '—X;, ~ converges almost surely €@

.

ther subsequencgF (N« (z)} such thatF™u»)(z) — 0  Butthisimplies [40, Theorem 25.4] that" andeflv) have the
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same limit in distribution (if such a limit exists). The Cramér-Observing that the summands are exchangeable in the user in-
Wold device [40, Theorem 29.4] can tpen be usjiad to show thttes, the first sum is
the vectors[)\gf\l),.. )\(A) 1" and [/\fﬂ l)l,.. )\2 i1 have 1
o (1\) (N)
the same limit in dlstnbutlon ifR™. We can thus focus on <L2 Z Z P, <A <) — (A))

_ 1 2m
PON) <, 3 <) _
e kol which converges to zero, and the second sum is

) <1_—><L2;;

PO < AN <Ay — F“‘(A))

=1 m=1

which immediately factors as

I w-¢)p ( () (@ a, +& <N}

(5:;>1} (4:4;=1}

Recall thatz;,, when conditioned oRy, is a circular-symmetric
comple_x Gaussian random vector with covarigtﬁmL)I which also converges to zero due to Lemma 5. a
. It is relatively straightforward to show using Lemma 2
that in the limit, thea;, become independent circular- sym- The preceding theorem tells us that for akythe random
metric complex Gaussian random vectors with identical covawariable (¥)(\) converges in probability to the real constant
ance((p/L) — £2)1, the result following immediately. O F'(\). The statement that the random distribution funcitA’
converges to the fixed distribution functiénin probability fol-

Let lows directly from Lemma 3.

1 K L
=1

APPENDIX Il

be the empirical distribution function of the eigenvaluediaf PROOFS OFTHEOREMS3 AND 4

The proofs of these two theorems require results ffoe
probability theory Our treatment here is very brief; for more
details please consult [43] or [44].

Theorem 8: F(V)(\) converges in probability t&'( \) for all

A > €2 whereF()) is defined in Theorem 5.

Proof: We will show that the variance df(™(X) — F(\)
goes to zero a& — oo which implies convergence in proba- Definition 4: A noncommutative probability spaget, ¢) is
bility. an algebra4 overC with a unit elemenf and endowed with a

) ) linear functionaly: A — C, ¢(1) = 1. Elements of4 are called
E[|F*V(N)-FI (noncommutative) random variables. We shall also assume that

=E[(F™M )= F2(\) ¢ has thetrace property:o(XY) = (Y X) forall X, Y € A.

An important example is the following. Let = My be the

- mz Z algebra of complexy by N random matrices whose entries are
scalar random variables defined on some underlying common
probability space. For each random matkixe My, define

1
on(X) = NE[TrX].

=1
K ¢ 1 L L

= <_ Z Z Note that fortv = 1, M; is simply the algebra of (standard)
; =1 m=1 complex random variables, which are commutatiye(-) is

simply the expectation operator. F&F > 1, the elements of
- PO < AN <y - FQ()\)> . My are noncommutative.

Y7 m
) ) Definition 5: Thedistributionof X & 4 is specified by the
The sum is then broken up into momentsp( X*), for & > 1. Thejoint distribution of a collec-
tion of random variables(y, ..., X,, € A is specified by all

K
1 1 .
m E <ﬁ E E the joint momentsy(X;, ... X; ), p > 1.
=2 =t m=1 For any N by N random Hermitian matrixX € My with

P()‘(IN) < )\7)\@3 <A = F2()) random eigenyaluesl, e An, therth momenF ofX in the
K m noncommutative probability spa¢d/, ¢~ ) is given by

and

w(X’)— E[T X’]——E[ZX]

L L
1
(K —1)? z; ; <L_ ; ; If we let I'x(-) be the expected empirical distribution of the
eigenvalues ofX'

PO < AN <y - (A)> : Fx(N) = ~ E[[{i: A < A
N i 7> A
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then the moments of the distributidiy are precisely the mo- 1/N. Consider now an independent family of such random
ments ofX as a noncommutative random variable. matricesy;(N),i =1,....m,N =1,...[f d;(N)/N — «;

. . N N
Definition 6: A family of subalgebras containingl, for(igchz, th((a]e)the family of Supset@/l( N )}_,
(A;)ier in the noncommutative probability spacet,¢) is {Dﬁr ;---, D’} are asymptotically free. (The matrices
free if ¢(X1,...,X,n) = 0 wheneverp(X;) = 0 for all D,(c ) are as specified in Theorem 9.)

,]?k: 1’/,‘ }g"m and )g’.“ € A:’-(\kf) wr;eref cort;secut_ive indices  \ve now have the machinery to prove Theorems 3 and 4. First
i(k) # i(k + 1) are distinct. A family of subsets i04, ¢) is we need the following simple lemma.

freeif the subalgebras each one of them generates ividhe
free. Random variableXy, ..., X,, arefreeif the family of Lemma 6:Let {X} and {U;, W1,..., Uy, Wi} be free
subset§ X,},...,{X,,} is free. subsets of random variables(iA, ). If

One should think of the notion of freeness as the noncummu- UWph = WUy, =1
tative analog of the notion of independence of (commutative) .
random variables. For independent random variables, the joift &/l 7 and o(U;W;) = 6;;, then the random variables
distribution can be specified completely by the marginal distr/1-X W1:- - Une X W, are free.

butions. For free random variables, we have the analogous re- Froof: Consideranyn >1, and suppose for=1,...,m,
sult, which can be proved directly from definition. Zy is in the algebra generated by, X Wi and1 and sat-
isfies(Zy) = 0. The indices satisfy(k) # ¢(k+1) for all &.
Proposition 3: The joint distribution (i.e., moments) of freeSinceWim U;,. =1, it holds thatZy = U1 W, for some

random variables(y, ..., X,,, can be completely specified by}, in the algebra generated By and1 andy(7},) =0. Now
the moments of the individuat;’s. .
In particular, if X andY” are free, then the momengg(X + _ : ‘
Y)™) of X +Y can be completely specified by the moments of P21 Zm) = ¢ kl:[l Vit i Wiy
X and the moments df. m
The notion of freeness is important for us because in a lot of =@ <H in(k—l)Uvi(k)Tk> (19)
k=1

cases of interest, large random matrices becasyenptotically
free wherei(0) = i(m). This last step follows from the fact that

Definition 7: A sequence of random matrices!™) ... %(rA]f )>: f(frﬁ)é (NTO\)N by gsfso l:rr;fptfml(wl/]ﬁ’“ia)lgji;’g)i(:l)o
k it — . ? ? 1

XM e My is ;aid to be .a'LsymptoticaIIy free if there exist§hen o(Wioyliay) = 0 and by the freeness ofX} and
a n.oncommutatlve probability spa¢et, ¢) ap(_j free random {U17W17"' . UM,WM}, it follows that (19) equal@. If, on
variablesXy, ..., X,, € A such that all the joint moments ofthe other handi(m) = i(1), thenW;(Us o) = 1 and the same

(N) (N) o
Xy, X~ converge to the correspon_d!r!g joint momentts,onclusion follows from freeness. Hence, we conclude that
of Xi,...,X,, asN — oo. Analogous definition holds for a U, X W, Uy XWa, are free 0

family of subsets of random matrices.

The following is the first important result establishing thékepeated Sequences

connection between the asymptotic properties of large randoma/e now analyze the spectrum of the mait$i¥” wheres is
matrices and free probability theory. defined in Section IV. To simplify things we assume that 1.

Theorem 9 ([45], [46]): Let X\ € My be arandom Lemma7: Assume thatthe entries of signature sequences are
matrix whose entries are complex circular symmetric Gaussiadmplex circular symmetric Gaussian random variables. Then
random variables with variandg N for the off-diagonal terms jrrespective of whether long or repeated random sequences are
and2/N for the diagonal terms. The matriXi(N) is Hermi- used, the expected empirical eigenvalue distributiors 6"
tian but otherwise the entries are independent. Consider noanverges to the same limit 8 K — oo andK/N — «a.
an independent family of such random matriciééN), T = Proof: For the case of long sequences, it follows from the
L...om,N = 1,... Let {DI™ ... D™} be a subset of independence and circular symmetry of the signature sequence
constant Hermitian matrices iy such that for eacl, the entries that the entries ¢fare i.i.d. random variables with vari-
expected empirical eigenvalue distribution 8"’ converges ancel/(rN). By existing random matrix results [47]-[49], itis
asN — oo. Then the family of subsetSX]EN)}, o {Xrg{\’)}, known that the all the moments m‘ggH i.e,o-n([S S”]”),
{DgN),---,D,(CN)} are asymptotically free. converge asN — oc. Moreover, it is known that the lim-

This result was first proved for diagonal matric@éN) in iting moments are those of a distribution with bounded support.

[45] and then extended to general constant Hermitian matric‘(l;lgerefore, the convergence of the moments implies the conver-

in [46]. The following is a corollary which does not follow di- 9ence of the expected empirical eigenvalue distribufigr,

7

rectly but can be proved from Theorem 9. to a limit /™. .
; . . . Let us now consider the case when repeated sequences are
Corollary 3: Let Yim = ‘/;(A)‘/;(A)*7 whereVi(M is an used, i.e., for alk, s3(1) = --- = sx(7) = sp. In this case,

N by d;(N) random matrix whose entries are i.i.d. complethere are dependencies in the entries @ind existing random
circular symmetric Gaussian random variables with varianceatrix results cannot be used.
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Forallr > 1 Define
E[Tx (SSH)] = E[Tx (S79)"] , Sii=1[51,.,8i_1,%i41,+ -, 5K]
1 ” - - F:I [§1 §K]
=E|[<= ) Sm)"5(m T
ol
17 r pN =351(5,58 + w15 (20)
=E|<- Z B(m)# s%SB(m) _ i _
T which can be interpreted as the SIR achieved by userder
L the MMSE receiver, when the spreading sequences;aseln
hereS = ...,sx]and ;
where [s2, s Sl‘]_ an [50, Eq. (12)], a key equation relating thH¢"’s and the trace of
B(m) = diag (b1(m), ..., bx(m)). (§SH 4+ vI)~* was derived
Thus the problem is equivalent to computing the limiting eigen- 1 X BN v
value distribution of — ¢ =1 —Tr(SSH D)L
TN 1+ ¥ TN r( +ol)

3 Bm)" s B{m).

m=1

Rearranging terms and then taking expectation with respect to

. . the random sequences and information symbols, and observing
By Corollary 3, the two subse{ss™ 5} and{B(1), B(1)™, ..., that thes's are identically distributed, we get
B(r), B(m)"} are asymptotically free, i.e., there exis4, o)

and random variablesX,U;,W1,..., U, W, such that K 1 K v X 1
{X} and {U;,Wy,...,U, ,W_} are free subsets and the 7 [14_/3{\’} - T_N_1+E N Z AN o (1)
joint distribution of S¥ S, B(1), B(1),... B(r), B(r)# =t
converges to that ofX,U;,Wy,..., U, W, as N — oo. Where)) ... \Y, are the eigenvalues &fS*. Let us inves-
Now since E[b,(:)b5(j)] = 6;; for all k, it follows that tigate what happens @ — oc. Applying Lemma 7, we have
¢ (B(i)B(j)") = 6;;, and also N
1 1

(UiW;) = o(W;U;) = & E|l—~ 2; Wi
Hence, from Lemma 6, the random variables T e 1 <
Wi XUy,...,W.XU, are free. We can now conclude that —/ )\—HnggH()\) —>/ )\—JrvdF*()\) (22)
B(1)*SHSB(1),...,B(r)1S"SB(r) are asymptotically 0 0
free. ButifS(1),...,S(r) arei.i.d. copies of (corresponding 8N — oo, where F* is the limiting expected empirical
to the long sequence case), then eigenvalue distribution of S*. This convergence holds since

f(A) =1/(A+wv)is abounded continuous function ahd <,
BMLTSMTSM)B), ..., B(r)"S(r)" S(r)B(7) C(()nslerge/s( tal ™ )(in the weak topology). Sincé&™ is alsg)sthe
are asymptotically free as well, and moreover eadtmiting distribution for the case with long sequences, it can be

B(m)S(m)"S(m)B(m) has the same distribution asgiven as the solutiof¥* to the fixed point equation [47]-[49]

B(m)® S”SB(m). Hence, by Proposition 3, the matrix 0 1 1
1 T /3* = |:U + — —*:|
=Y Bm)" " S5B(m) T1+p
e or, equivalently,

has the same limiting distribution as «

(14 8%)
We observe that thig* is exactly the same as th#& in The-

It follows then that the limiting expected empirical eigenvalug 2 (with L = 1) for the long sequence case.
g exp b 9 From the facts that; is independent of ; and that the entries

distribution of S S¥ is the same regardless of whether long or, _ )
of 5; are uncorrelated, zero-mean, vanan%e, we get
repeated random sequences are used. O g

| :%—14—11/3*. (23)
- > B(m)"S(m)" S(m)B(m).

m=1

Lemma 7 is a crucial step in explaining why repeated and E[pN] = 1 E[Tr (S;SF +vD)™1 — p* (24)
long sequences make little difference asymptotically. Basically, TN
although there is statistical dependency in the repeated sequedfd — oo. Our goal now is to show from (21) that" in fact
case, the randomness in the information symbols makes the fglnverges t@* in probability asV — oc. To this end, let
evant component matrices asymptotically free. BN = 3" 4 Ay

We can now give a Proof of Theorem 3, which concerns the ! .
performance of the channel estimator when repeated sequeridesn, expanding abouit*

are used. 1 1

Proof of Theorem 3:To simplify notation, we takg = 1 148N T 145+ AN
and letv := o2 /7. The general result follows from a simple _ 1 An 1 A2
rescaling. T 148 (1+p9)2 N (I+&np— N
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for some¢ y in between3)¥ ands*. Substituting into (21) and  We can now give a Proof of Theorem 4.

taking limit as\ — oo, and using (22) and (24), we get Proof of Theorem 4:To simplify notation, we takg/L =

o + lim E [ 1 3A2,} _a_ 14 vf". 1 and .Ietv := o2 /7. The general result follows from a simple
T(146%)  Nooo  [(14&n) rescaling. B
Comparing this to (23), we see that Define Sy, as ther N by K L — 1 matrix obtained fromt by

1 removing the columm,; and let
Now Consider again the identity
1 .
0<f <~ 1 = B
T N 1i/3N= -y T ES en
. T : T
soéy falls in that bounded range as well. We thus conclude that i=1
ElNAN?] = El(BN _ 3%)2 0 Rearranging terms and then taking expectation with respect to
[(Ax) ] [ =577 = . N the random spreading sequences and information symbols, and
asN — oo. Henceg{¥ converges tg3* = /3 in probability, observing that for each 8Y, ..., 38X, have the same distribu-
same as in the long sequence case. O tion, we have
' KL __
Shifted Sequences SB[ ] = KB [ ]
We now turn to the Proof of Theorem 4 for the multipath caséN 1+7 TN TN
focusing onthe model defined in Section IV. We first analyze the (26)

spectrum ofS 7. .
Applying Lemma 8, we have

Lemma 8: Assume that the entries of the signature sequences oo
are i.i.d. complex circular symmetric Gaussian random vari- E | — Ty (3 52 +vI)*1} —>/ ——dF*(\)  (27)
ables with variancd /N and the sequences are independent T o At
across symbols and across users. Then the expected empifis& — oo, wherel[™ is the limiting expected empirical eigen-
eigenvalue distribution of S* converge to the same limit asvalue distribution ofS S¥. This limit is given as the solutios*
N — oo irrespective of whether sequences along different mup the fixed-point equation [47]-[49]

tipaths of the same user are independent or cyclic shift of each ol 1 -1
other. p* = [U +— ﬁ}

Proof: T 14/

L or, equivalently,
SSH =[511,...,5xL] [B11,....5x0)T =Y RFY
[511, ,Srr] [S11, - -5 SK1] Z g al _ % 1t (28)
(14 3%) T

whereF; := [s1y, ..., 35k]. For the model When the spreadin , N .
sequences are independent along different paths, the matﬁ%)égandmgl/(l + /) aboutss

Fy are independent, and by Corollary 3, the random matrices 1 1 B - 8
PR FpFH are asymptotically free. For the model whenl + 87y 14 3% (14 3*)?

the sequencgy; is a cyclic shifted version of;; by — 1 chips, 1 SN _ ey
we can write +—(1 _i_glN)g(/u - B%)
- for someg}Y a function of3]} and in betweers} and3*. Sub-
= Z PR stituting into (21) and taking limit a& — oo, and using (27),

=1 we get

where F; is the permutation matrix corresponding to a cyclic

shift by I — 1 chips. Observe thab, P/’ = I' and thatfodl # ___ % hm E [ ;(/31\’ e
1(mod 7N), Tr P, = 0, so for sufficiently largeV (14 /3*) Z (142

Te (PP =Tr (Pij) = 6. . 1 — (B - )

It then follows from the asymptotic freeness @fy 7/} and 1+&") o

{P, P, ..., Py, Pl"} and Lemma 6 that :;—14-11[3*.
PR FIPT . PLRFP]! Comparing this to (28), we see that

P,F,FEPH has the same distribution as that of the correlim Tﬂ*)?(ﬁ* — E[BY])
sponding matrix in the fully random model implies that the
expected empirical eigenvalue distributions are asymptotically

the same in both models. O

are asymptotic free. This together with the fact that each L { 1
o= | (

+E[( £l)(/s /3*)2”:0. (29)
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By matrix inversion lemma, fo§ # [, we have [8]
Bl = s11(SuSt +vl) sy 9]
= §{{l(511]’ S{{lj + UI)_1§11
|s11(S11;ST1; +vI)~1sy,2 [10]
14+ 5{{]» (glljg{{lj + UI)_1§1J' (1]
where_?llj is the matrix obtained by removing the colgmg
from S1;. We can then conclude that for all realization%f [12]
/3{\; < 35(?11]'?{{“ + UI)_lgll.
Repeating thid, — 2 times, we get [13]
/3{\; < §5(§1§{{ + UI)_1§11 [14]
where S, is the matrix obtained by removing all the columns
S11,---,817 from S. We observe that; is independent from [15]
51; and hence, as in (24) )
EER(S1ST +0D) ™15y = — Bl (S5 v —p" [16]
(30)
asN — oo. Hence [17]

limsup E[3)] < 8~
and combining this Wiﬁofzg), we can conclude that for every [18]
Jim E(BY) ="

and lim E|———— (8 — p*)?| =o0.
]\Tgrcl)o (1_’_51)3 ([ll [)
Now [20]
1
o<pN <=
_/11_U

[21]
so &)Y falls in that bounded range as well. We thus conclude
that E[(3Y — 8*)?] — 0asN — oco. Hences’; converges to 22]
* = B. in probability, same as for the fully random sequence
model. O

(23]
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