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Abstract—A linear multiuser receiver for a particular user in
a code-division multiple-access (CDMA) network gains potential
benefits from knowledge of the channels of all users in the system.
In fast multipath fading environments we cannot assume that
the channel estimates are perfect and the inevitable channel
estimation errors will limit this potential gain. In this paper, we
study the impact of channel estimation errors on the performance
of linear multiuser receivers, as well as the channel estimation
problem itself. Of particular interest are the scalability properties
of the channel and data estimation algorithms: what happens to
the performance as the system bandwidth and the number of users
(and hence channels to estimate) grows? Our main results involve
asymptotic expressions for the signal-to-interference ratio of linear
multiuser receivers in the limit of large processing gain, with the
number of users divided by the processing gain held constant.
We employ a random model for the spreading sequences and the
limiting signal-to-interference ratio expressions are independent
of the actual signature sequences, depending only on the system
loading and the channel statistics: background noise power,
energy profile of resolvable multipaths, and channel coherence
time. The effect of channel uncertainty on the performance of
multiuser receivers is succinctly captured by the notion ofeffective
interference.

Index Terms—Code-division multiple access (CDMA), effective
interference, linear receivers, multipath fading channels, multiuser
detection, random spread- ing.

I. INTRODUCTION

W IDE-BAND code-division multiple access (CDMA) has
been selected for the air interface of third-generation

wireless systems [1]–[3]. A significant thrust of research in this
area has focused on receiver design for signals contaminated not
only by background noise but also by structured interference
from other users of the multiaccess channel. This fundamental
problem has led to an explosion of research activity over the
past decade which can be grouped under the title ofmultiuser
detection[4]–[6]. In particular, the design of linear multiuser
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detectors has received considerable attention including decor-
relating receivers [7], [8] and the linear minimum-mean square
error (LMMSE) receiver [9]–[12].

Most of these earlier works do not explicitly consider com-
munication over a multipath fading channel. Initial investiga-
tions of multiuser receivers in fading channels assumed that
the channel was perfectly known to the receiver (see [13] for
single-path fading and [14]–[16] for multipath fading). In these
papers, the focus was on extending performance measures such
as asymptotic efficiency and near–far resistance, for applica-
tion in time-varying conditions. Investigations which drop the
assumption that the fading channel is perfectly known can be
roughly grouped into three classes: 1)decorrelator-based re-
ceivers, that are noncoherent and do not require channel infor-
mation, although the signature sequences of all users are as-
sumed known [17], [15], [18]; 2)coherent multiuser receivers,
that incorporate channel estimates in addition to knowledge of
the signature sequences [19]–[23]; and 3)fully adaptive re-
ceivers, that do not explicitly estimate the channel nor require
the knowledge of the signature sequences of the interferers [11],
[18], [21], [24]–[28].

At present, it is very difficult to obtain any clear engineering
insights on the performance comparison of these various ap-
proaches or to characterize performance limits of linear mul-
tiuser receivers in fading environments. Performance analysis
leads to expressions for signal-to-interference ratio (SIR) or av-
erage bit-error rate (BER) in terms of the particular set of signa-
ture sequences employed. Channel estimation errors are often
expressed in terms of the Kalman filter recursion for the error
covariance [29], [22]; a solution which does not readily lend it-
self to an understanding of the scalability properties of the resul-
tant multiuser receivers. Simulations are relied upon to convey
some insight into the properties of the receivers and yet almost
always, the simulations are based on small-scale systems; it is
simply too computationally intensive to analyze the large-scale
systems we are interested in here, and which are perhaps more
relevant to future wireless systems.

One solution, upon which much of the multiuser detection
literature has focused, is to employ simpler performance
measures such as asymptotic efficiency and near–far resistance.
While these measures have been very useful for understanding
and comparing multiuser receiver structures, especially with
regard to performance under worst case conditions, they are
often too crude to provide insights. As an example, we note
that the asymptotic efficiency and near–far resistance of the
decorrelator and LMMSE receiver are equal [4]. While the
difference in performance between these linear receivers is
usually small under ideal channel conditions and low system
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Fig. 1. Structure of multiuser receiver.

loading, such is no longer the case in a highly loaded system
with multipaths and channel uncertainty. Thus for the problems
addressed here, these measures are notfine-grainedenough to
draw interesting conclusions.

In [30] one alternative approach is presented. In that paper,
signature sequences were modeled as random sequences
leading to expressions for SIR which were random quantities.
In the asymptotic limit of a large number of users and a
large spreading bandwidth, it was shown that the random SIR
expressionconvergesin probability to a deterministic quantity,
independent of the realization of the random sequences. More
importantly, the resulting limit is shown to have a very nice
form from which the concepts of effective interference and
effective bandwidth emerge (see [30] for details). The same
modeling paradigm of random spreading and large systems was
extended to asynchronous systems in [31]. (Also see [32]–[35]
for some parallel work based on random spreading sequences.)

In this paper we extend the philosophy and the techniques
of [30] to the situation where the channel is time-varying. We
drop the assumption that the channels of all users are perfectly
known and assess receiver performance as a function of the un-
certainty in the channel estimates, although the signature se-
quences are assumed to be known. For simplicity, we will focus
on a symbol-synchronous channel but extension to the asyn-
chronous situation along the lines of [31] is possible.

The (suboptimal) receiver structure shown in Fig. 1 is of cen-
tral importance. The receiver and corresponding analysis can be
decoupled into two parts, the data estimator and the channel es-
timator. The data estimator is a linear multiuser receiver which
obtains estimates of the data of each user based on observa-
tion of the received signal over a single symbol interval, along
with information supplied by the channel estimator. The data
estimator is thus aone-shotlinear estimator which incorporates
information from other symbol intervals only through the cou-
pling with the channel estimator. The design and analysis of the
data estimator begins with the assumption that the channel is
statistically characterized by the mean and covariance structure
supplied by the channel estimator. The performance of the re-
ceiver is examined through the SIR attained and emphasis is
placed on the LMMSE receiver which maximizes SIR over all
linear receivers, however, results are also derived for the decor-

relator and the conventional matched filter as a basis for com-
parison.

A. Summary of Results

The main results can be summarized through the notion of
effective interference, first introduced in [30]. Suppose we have
a synchronous CDMA system with spreading gain, users
with received powers , and background noise
power . In a large system (both and large), with random
spreading, the SIR attained by the LMMSE receiver for user 1,
is approximately

SIR

where is the unique solution of the fixed point equation

where

Observe that the only term that involves useris
and that these terms simply add across interfering users. We call
this term the effective interference of useron user 1 when the
normalized SIR for user 1 is .

Now consider a single (resolvable) path fading model where
the channel gains of each user are not known perfectly to the
data estimator but rather, is specified by its estimate and
error variance (supplied by the channel estimator). In a large
system the SIR for user 1 is approximately

SIR

where

Interferer looks like an interferer in the perfectly known
channel case with power .

Now consider a multiple-path fading model where each user
appears as resolvable paths or components at the receiver. If
the gain for path of user is characterized by the estimate
and error variance (we confirm later that this variance does
not depend onwhen the average power per path is equal), then
in a large system, the SIR for the LMMSE receiver of user 1 is
approximately

SIR

where
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The overall effect of interferer is given by the term

which is the same as the interference that would result in the
single-path fading case from users with power and one
user with power . As the uncertainty increases,
an interferer moves from looking like a single high-power inter-
ferer, to looking like separate interferers with power reduced
by a factor of .

In parallel with data estimation, we also analyze the perfor-
mance of channel estimators, which jointly estimate the channel
parameters of all users conditioned on knowledge of the data of
all users for all symbols within the channel estimation window.
This model applies directly to systems employing training se-
quences and provides a bound on the performance ofdecision-
directedchannel estimators (since we do not account for errors
in the bits fed back to the channel estimator).

Combining the results in data and channel estimation
yields the performance limits of linear multiuser receivers
in fast-fading environments, as a function of key system
parameters such as the length of the channel estimation
window, number of resolvable multipaths, and system loading.
Numerical examples based on the theoretical results provide
interesting engineering insights and comparison of receivers in
different parameter regimes.

All of the results in this paper are asymptotic in nature,
yielding limiting SIR and channel estimation error expressions
which are independent of the particular realization of the
random signature sequences. This abstraction is valuable in
obtaining insights of general applicability. It is important at this
point to note that nowhere do we average with respect to the
sequences, rather, the SIR expression for finite-size systems
which is a function of the sequence realization, converges
almost surely or in probability to a value which is independent
of the sequences. Just as in [30], the results obtained here are
based on the analysis of the spectrum of large random matrices.

II. SIGNAL MODEL

Our starting point is the equation for the chip-matched filter
output vector at time

(1)

where indexes the multiple users, and
indexes the paths of each user, is the channel

gain for path of user over symbol period , is the
data symbol of user over period , is the signature se-
quence for path of user over symbol period , and is
an additive noise. We assume throughout that the delay spread of
the channel is small compared to the symbol time so that inter-
symbol interference can be neglected. Note that the assumption
that we know means that we implicitly assume knowledge
of the timing of resolvable pathof user .

The channel gain process for each path of each user is a cir-
cularly symmetric complex Gaussian random process and the
processes for each path are independent with
and . Our channel model can be con-
sidered conditioned on the much slower fading that effectively
acts to determine the user powers. We assume that there is a
time-scale separation in effect which makes it reasonable to as-
sume that each is known perfectly and does not change over
the time period of interest. For simplicity, we will assume that
the average received power of all paths of all users is the same
so that .

Each data symbol is assumed to be of the form
where

with every data symbol independent of all others. We are thus as-
suming that the transmitter uses-ary phase shift keying (PSK)
modulation. We restrict ourselves to-ary PSK modulation be-
cause the property that greatly simplifies the per-
formance analysis.

The signature sequence is assumed to be an
–dimensional column vector with independent and iden-

tically distributed (i.i.d.) elements each being a circularly
symmetric complex Gaussian random variable with zero mean
and variance . The choice of this distribution allows a
unified and compact treatment of many of the technical results,
however almost all the results we present are actually insen-
sitive to the distribution, requiring only that the elements are
zero-mean and have variance . The random sequences are
independent across users, paths, and symbols. Thus this model
is directly applicable to systems usinglong pseudorandom
sequences. However, some of our results go beyond this basic
model and will also be extended to systems usingrepeated
sequences, i.e., each user repeats the same (random) signature
sequence over different symbols. It should also be noted that
the assumption of independence across paths is an unrealistic
one, as the sequences along different paths are really shifted
replicas of the same transmitted sequence. The assumption is
made here solely to simplify the analysis of our main results;
extensions of some of our results to the shifted case will be
presented.

The additive noise is a circularly symmetric complex white
Gaussian noise with and .

III. D ATA ESTIMATION

We consider the problem of forming an estimate of theth
data symbol of user 1 based only on the complex vector .
We note immediately that basing an estimate of on
alone is suboptimal since the channel fading process introduces
memory into the system (see [20]). The aboveone-shotscheme
has definite advantages in terms of computational complexity,
however, and when the channel gains are known is, in
fact, a sufficient statistic for the estimation of . Without
loss of generality (within the confines of the one-shot scheme)
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we can drop the time index from the terms in (1) leading to the
observation equation

We first note that if the channel gains are known, we can
replace the above model by

where is the effective signature sequence for
user at the receiver. In this case, the problem is essentially
reduced to a single-path fading problem. The key point though
is that knowledge of the effective signature sequences requires
knowledge of the channel.

In the single-path fading model, the direction in-dimen-
sional space of each user at the receiver (the effective signature
sequence) does not depend on the channel. The channel gain af-
fects only the energy in the direction of a user through scalar
multiplication. This means that it is possible to design receivers
which null out the interfering users without knowledge of the
channel and this is precisely what the decorrelating multiuser
detector does. There is clearly a complication in the multipath
fading case because the signature sequence of a user at the re-
ceiver has both a direction and an energy which depend on the
channel. If the channel is unknown then all we can say is that
a particular user lies somewhere in an-dimensional subspace.
Suppose that estimates of each channel gain are available along
with a measure of the confidence in these estimates. How should
we design a multiuser receiver for such a system?

One approach suggested in the literature is the decorrelating,
multipath-combining detector [15], [16], [18]. The received
signal is initially processed by a decorrelator which treats
all sequences as if they corresponded to interfering
users. The correlator outputs corresponding to each user are
then combined using techniques well known for single-user
multipath channels. The problem with this approach is that
it is very wasteful of degrees of freedom. Whereas in the
perfect knowledge case we know that each user takes up one
degree of freedom, each user now occupiesdirections.
The decorrelating operation will thus become increasingly
ill-conditioned as approaches . This receiver is analyzed
in Section III-B.

An alternative approach is the multipath-combining, decorre-
lating detector which forms estimates of the received signature
sequence of each user and then performs a
decorrelation operation. While such an approach makes much
more efficient use of the available degrees of freedom, it is not
clear how channel uncertainty would impact the performance.
This receiver does not make use of the confidence measures sup-
plied with the estimates and, in this sense, cannot be considered
robust to channel estimation errors.

In the sequel we present and analyze an LMMSE receiver
which combines the robustness properties of the decorrelating,
multipath-combining detector (when channel uncertainty is
high) with the superior performance of the multipath-com-
bining, decorrelating detector (when the channel uncertainty

is low). We do not assume that the are known perfectly
at the receiver, but instead assume that the channel estimator
provides the data estimator with channel estimates along with
the mean-squared error (MSE) in these estimates. The data
estimator is thus conditioned on the belief that is a random
variable with mean and variance . Note that in the
standard situation when the channel is assumed to be known
perfectly, and . All results we derive reduce
to the perfectly known (slow-fading) case upon making these
substitutions.

All expectations in this section should be seen as conditional
on the information that is assumed known at the data estimator,
that is on the signature sequences, and the mean and variance
supplied by the channel estimator. We use the notationto
denote expectation conditioned on this information.

Let and de-
note the sequences and channel gains corresponding to user

. Let , , and
. The signal model over the symbol of

interest is then expressed compactly as

We now look in turn at the LMMSE receiver, a decorrelating
receiver, and a single-user matched filter.

A. LMMSE Receiver

First we must calculate . Using the fact that
and are independent

Letting

we can write

We also have

so that the LMMSE receiver for user 1 is

Remark 1: An interesting special case arises when we as-
sume nothing is known about the channels of the interfering
users other than thea priori statistical characterization and that
user 1’s channel is known perfectly. In this case, the LMMSE re-
ceiver developed above is in fact the optimal multiuser receiver
in the sense that the output is a sufficient statistic for. This is
the Bayesian analog of a result for the decorrelator which says
that the decorrelator results from the joint maximum-likelihood
estimation of the data and the channel gains [7].

If we write
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(so that ) we can alternatively
express as

constant

where and

The SIR for the estimate of is then

SIR (2)

Let and apply the matrix in-
version lemma to give

SIR

From this point on we will assume that which means
that the error variances of all paths are equal and that the path
estimates are uncorrelated. This assumption will be supported
by the channel estimation results of the following section (see
also Lemma 2).

To say more about the SIR expression requires an analysis of
the matrix . Clearly, this term depends on the particular
realization of the sequences and this makes it difficult to give
any general measures of performance. The situation changes,
however, if we consider a limiting regime where with

(with fixed). If almost surely the empirical distri-
bution of the eigenvalues of converges to a fixed nonrandom
distribution , then we have the following result. (See Ap-
pendix I for the formal definition of almost sure convergence of
empirical distributions.)

Theorem 1 (LMMSE Receiver: Data Estimation):SIR con-
verges to

SIR

almost surely as where is the unique solution to the
equation

(3)

Proof: We have immediately from Theorem 7 in Ap-
pendix I that converges almost surely elementwise to .
The convergence of SIRto SIR follows since SIR is a
continuous function of the elements of the matrix

.

Remark 2: It should be clear from Theorem 7 that this re-
sult holds regardless of the shape of the distribution of the ele-
ments of . Convergence in probability of the SIR in the per-
fectly known nonfading channel was proved for general signa-
ture sequences in [30, Theorem 3.1].

Remark 3: Equation (3) and all other fixed-point equations
in this paper are easy to solve numerically by simple iteration.
Convergence to the solution is guaranteed from any initial pos-
itive value, and usually happens very rapidly.

We have assumed that is invertible , however,
if the channel of user 1 is known perfectly then this will not

be case and instead we obtain directly from (2) that the SIR is
which converges in probability to . We

see that has an interpretation as the SIR for user 1 when its
own channel is known perfectly and the total energy in all its
paths is . We call the normalized SIR of user 1 although the
user index is unnecessary here because the normalized SIR will
be equal for all users in the system. Observe thatcontains all
the information related to the interference suppression capabil-
ities of the receiver and that we have a separation of the effects
of the estimate of, and uncertainty in, the channel of user 1 and
the corresponding quantities for interfering users. The normal-
ized SIR, , thus provides a measure which isolates the effect
of other user channel uncertainty, and which fully captures the
multiuser properties of various receivers.

To say more requires us to obtain information about the eigen-
values of . In this direction assume that

where is the estimate of the channel gains for the paths of
user and is a scalar representing the common variance in
these estimates. We have assumed that the errors for
fixed are uncorrelated and have equal variance and note briefly
that this assumption will be supported by the channel estimation
analysis of the following section. With this assumption we see
that has one eigenvalue at and eigenvalues
at for so that in a large system we will have
the approximate relation

where

The overall effect of interferer is given by the term

which is the same as the interference that would result in the
single-path fading case from users with power

and one user with power . Two special cases
emerge

• when the channel is known perfectly then
an interferer looks like a single interferer with power

;

• when nothing is known of the channel and is simply
thea priori average power in each resolvable path then an
interferer looks like interferers with power .

Due to the convexity of the effective interference as a function
of power, one high-power interferer is more benign thaninter-
ferers with the same total power especially when the background
noise power is low and this is why there is so much potential
gain from obtaining accurate channel estimates. The extent to
which the uncertainty in the estimates causes a single interferer
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to spill into dimensions is captured very neatly in our frame-
work. We note that similar conclusions have been obtained by
more heuristic dimensionality arguments in [26] and [36].

To say more we will need statistical descriptions of the mean
and variance information that is used by the data estimator so
that we can specify , the limiting empirical distribution
function of the eigenvalues of . We leave this until Section V
after we have looked at the channel estimation problem in Sec-
tion IV.

B. Decorrelating, Multipath-Combining Receiver

In this section we consider a decorrelating receiver which
is variously known as the post-combining decorrelator [16],
the multipath decorrelating detector [15], and the decorre-
lating multipath-combining detector [18]. (We also note [37]
which looks at an LMMSE equivalent of these receivers.)
All reference to the decorrelator in this section refers to the
decorrelating, multipath-combining receiver.

The first stage of the receiver corresponds to a decorrelator
which treats every path of every user as a unique interferer.
The second stage is to combine theoutputs corresponding to
the paths of a particular user either coherently, if channel infor-
mation is available at the combiner, or noncoherently. Whether
coherent or noncoherent combining is used it is clear that the
receiver for user 1 does not require any information about the
channels of the other users (apart from the timing of the various
resolvable multipath components).

The first stage of the decorrelator is based on processing the
received vector by the Moore–Penrose generalized inverse
of the signature matrix . In the case, when has full column
rank, and the output is given by

where has covariance matrix .
The second stage (for user 1) takes the firstcomponents of

and combines them taking into account the covariance structure
of the noise and of the channel estimate. Letrepresent the
vector consisting of the decorrelator outputs of user 1. Then

where has covariance equal to the first sub-block
of . Consider an LMMSE combiner for estimating

from . Note that such a combiner is optimal in the sense of
producing a scalar sufficient statistic for if is a cir-
cularly symmetric complex Gaussian vector. Then the combiner
forms the decision statistic

with resultant SIR .
If then we have the following result as

.

Proposition 1: (Decorrelating, Multipath-Combining Re-
ceiver: Data Estimation):The SIR for the decorrelator con-
verges almost surely to the value

SIR (4)

where the normalized SIR is given by

(5)

Proof: With the assumption that the signature sequences
of the different multipath components are independent, this re-
sult is fairly straightforward. The new aspect of the problem is
the combining operation after decorrelation which means we
have to worry about the off-diagonal elements of .
However, it can be shown (although it is not obvious) that the
off-diagonal elements almost surely converge to zero so that
converges almost surely (elementwise) to . The con-

vergence of to follows since the
elements of the inverse matrix are continuous functions of the
elements of the original matrix.

In this case, the SIR is independent of the powers of the inter-
ferers, since each interferer is nulled out. The effective interfer-
ence is for each interferer, and does not depend on its power.

We note that the SIR for the decorrelator approachesas
approaches. The decorrelator takes an alternative form when

(the pseudo-inverse is still well-defined) and leads to
a nonzero SIR. While the decorrelator still does not depend on
the powers of the interfering users, the SIR does depend on the
interference distribution when . Asymptotic results can
be derived but in this paper we will give results for the decorre-
lator only when .

C. Single-User Matched Filter

We now consider a receiver which is based only on informa-
tion about the desired user and which we call a matched filter.
The matched filter we consider is simply and
leads to the following result for large systems (the proof is rel-
atively straightforward and is omitted):

Proposition 2: (Single-User Matched Filter: Data Estima-
tion): The SIR for the matched filter converges almost surely
to the value

SIR

where the normalized SIR is given by

(6)

where again is the almost sure limiting empirical distribution
function of the eigenvalues of (assuming such a limiting
distribution exists).

In a large system we will have the approximate relation

where is the effective interference of user. Note
that for the matched filter, the effective interference is linear in
the interferer power which should be contrasted to the LMMSE
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receiver, for which at normalized SIR . The
performance of the matched filter will become arbitrarily bad
as the power of an interferer is increased, while for fixed,
the LMMSE effective interference for a high-power user ap-
proaches . For the matched filter, low-power interferers
have exactly the same impact as one interferer with the same
total power.

IV. CHANNEL ESTIMATION

We now turn to the problem of estimating the channel fading
process of each user in the system. Our eventual aim is to use
these estimates and their corresponding MSEs as inputs to
the LMMSE data estimator designed for the partially known
channel. Note that our model assumes that the time delays of
the resolvable multipath components of all users are known
and that we consider estimation of the path gains only. We
will perform the channel estimation conditional on the data,
an assumption that is valid during a training period and that
leads to performance bounds for the situation when the channel
estimator is operating in a decision directed mode (since we
assume that the data are perfectly known and do not allow for
errors).

All expectations in this section should be seen as conditional
on the information that is assumed known at the channel esti-
mator, that is, on the signature sequences, the data and the av-
erage powers of the users. We use the notationto denote
expectation conditioned on this information.

To begin we recall the signal model under consideration

Let

and

where

Then the observation vector can be expressed as

Note that conditional on the data and the signature sequences
(i.e., conditional on ), the problem of channel estimation is
one of Gaussian estimation for which LMMSE estimation and
MMSE coincide (since and are jointly circularly
symmetric). If is a Markov process then the MMSE estimate
of based on along with the error
covariance can be recursively computed via the Kalman filter
equations.

We will consider jointly estimating the channel parameters of
all users over anestimation windowof symbols and restrict
attention to the situation where the channel coherence time,
over which the channel is essentially constant, is greater than

symbol intervals. In a system based on periodically sending

training data (and estimating the channel over the training pe-
riod), would typically be chosen to be a small fraction of the
channel coherence time so that the training overhead is not too
large.

Over the estimation window, we can thus drop the time de-
pendence of the channel gains leading to the model

with Letting

and

we have

where

We wish to estimate based on observation ofwhich we ob-
serve to be a standard problem in Gaussian estimation. The re-
sulting MMSE estimate (the conditional mean estimate) is given
by

(7)

and the error covariance is

(8)

Now let

and

The expression for the MSE of (which is the element
of the covariance matrix ) can be written as

where

We now consider the asymptotic regime where with
fixed.

Theorem 2: (MMSE Channel Estimation):The MSE for any
path of any user converges almost surely as to the
nonrandom

where satisfies the equation

(9)
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from which can be solved explicitly

Proof: The result follows immediately from Theorem 7 in
Appendix I upon observing that the elements ofremain i.i.d.
in the presence of the data modulation.

We see immediately from (9) that along with the reduction of
background noise power by a factor of, the number of degrees
of freedom (the processing gain) is increased by a factor of
( is reduced by a factor of). As increases, the contribution
of the interference to becomes negligible very quickly and
the limiting MSE is well approximated by , the value that
would result for a single user in the absence of other users.

The multiple paths of each interferer look like separate inter-
ferers to the LMMSE channel estimator. Asis increased, with

and the total power of each user constant, the system is equiv-
alent to a single-path system with a large number of low-power
interferers, and the performance of the LMMSE receiver would
approach that of a matched-filter channel estimator. In this situ-
ation, we have that is small compared to so that the ratio
the estimation error to the energy per path is close toand we
essentially know very little other than thea priori statistics of
the channel. As an example, a system with , ,

, and 20 dB will have an MSE to power per path
ratio of and channel estimation would buy only minimal per-
formance gain. (We also draw the readers attention to [38] which
treats some similar issues in the context of single-user fading
channels from an information-theoretic point of view.)

The condition for other user interference to be negligible is
that is small. If we consider increasing but now with

held fixed at a value significantly smaller than, then the
ratio of MSE to power per path is roughly . If and

20 dB then this ratio is .

A. Extension of Results to Repeated Sequences

While the effective increase in degrees of freedom from
to is intuitively what one would expect when the signature
sequences are independently chosen from symbol to symbol, it
is not immediately obvious that the effect would carry over to the
case when the signature sequences are repeated. In some sense
one would think that the sequence repetition would entail some
loss in degrees of freedom. However, it turns out that sufficient
randomness in the data is adequate to render the performance
asymptotically equal in both cases.

Theorem 3: (MMSE Channel Estimation-Repeated Sequen-
ces): Under the additional assumption that the data symbols are
zero-mean , the conclusions of Theorem 2 also
hold in a system using repeated sequences, i.e.,
for all .

Proof: See Appendix III.

In Appendix III, we will give an explanation of this phenom-
enon using the concept offreely independentrandom matrices.
Indeed, in the case of repeated sequences, the key random ma-
trix has dependent entries and this brings us beyond existing
random matrix results. Techniques from free probability theory
are appropriate for tackling this problem.

B. Extension of Results to Shifted Sequences

The fact that the multiple paths of each interferer look like
separate interferers in Theorem 2 is a direct consequence of
the assumption that the signature sequences along the different
paths are independent. What happens if they are shifted replicas
of the same transmitted sequence?

Theorem 4: (MMSE Channel Estimation-Shifted Sequen-
ces): Theorem 2 holds even if for eachand , the signature
sequence is a cyclic shifted replica of the random
sequence by chips.

Proof: See Appendix III.

The proof of the result in Appendix III gives an explanation
of this curious phenomenon, again using the notion of freely
independent random matrices. Basically, the shifting provides
enough randomness even though there is sequence replication.

V. ESTIMATOR COUPLING

In Sections III and IV, we looked at the performance of data
and channel estimation, respectively. In this section, we couple
these results together based on the receiver structure of Fig. 1.
The theoretical result on which the coupling hinges, is the fol-
lowing result.

Theorem 5: When the channel estimates and error covari-
ance are calculated using (7) and (8), respectively, then the em-
pirical distribution of the eigenvalues of converges in prob-
ability to the fixed distribution

(10)

where is the distribution function of the random variable
, where each is a circularly symmetric, zero-

mean, complex Gaussian random variable with variance
and are independent. In the above,is as given in
Theorem 2.

Proof: See Appendix II, where the definition of conver-
gence in probability of (random) empirical distributions is also
given.

To get some feel for this result we note that the
eigenvalues of are made up of the eigenvalues of

for each . We also know (see Lemma 2) that
converges to for each so that we would expect the

eigenvalues of to be close to those of , the
latter matrix having eigenvalues at and one eigenvalue
at . Now it is not difficult to show that the limiting
(marginal) distribution of is for every user. Theorem
5 goes further stating that the empirical distribution across users
converges to , a result which is not immediately obvious
due to the dependence between users.

We now want to combine this with Theorem 1 to yield the lim-
iting SIR for user 1. One technical point is that Theorem 5 only
yields convergencein probabilityof the eigenvalue distribution
of whereas Theorem 1 requires almost sure convergence of
the eigenvalue distribution of to ensure almost sure conver-
gence of the SIR for user 1. Corollary 2 in Appendix I shows that
we can prove an analogous result to Theorem 1 where conver-
gence in probability of the eigenvalue distribution of implies
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(a) (b)

(C) (d)

Fig. 2. Histograms of normalized SIR(� � ) for variousN . In each caseK = N=2, � = 2, L = 2, andp=� = 20 dB. (a)N = 32. (b)N = 64. (c)
N = 128. (d)N = 256.

convergence in probability of the SIR. Hence we can conclude
that the limiting SIR (in probability) of user 1 is given by

SIR (11)

and is a constant satisfying the fixed-point equation

(12)

where

(13)

and the ’s are i.i.d. circularly symmetric, zero-mean complex
Gaussian random variables with variance (with given
in Theorem 2). Thus the SIR is asymptotically chi-square-dis-
tributed with degrees of freedom.

We also have a coupling result for the matched filter which
follows directly from Theorem 5 and Proposition 2. The SIR for
the matched filter converges in probability to the value

SIR (14)

where the normalized SIR is given by

(15)

Note that there is no need for a coupling result for the decor-
relator as the SIR (as given in Proposition 1) is independent of
the channels of the interfering users.

VI. NUMERICAL EXAMPLES

In this section, we present some numerical examples to sup-
port the intuition gained from the preceding analysis. The main
conclusion will be that in frequency-selective fading, there is
much to be gained from knowledge of the channels of interfering
users. Similar conclusions were also reached in [26], [36].

We first focus on the interference suppression capabilities of
the linear receivers and assume the channel of the user of in-
terest (user 1) is known perfectly ( and ). We
will compare receivers by the ratio of SIR/SNR where SNR
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. This measure is related to the previously de-
fined normalized SIR , through

SIR
SNR

and differs from in that it depends on and only through
their ratio. In this section, we reserve the termnormalizedSIR
for the quantity .

To begin, we present some simulation results to give some
idea of the rate of convergence of the SIR values to their asymp-
totic limit. The results are presented in Fig. 2. The plots show
histograms of 500 realizations of normalized SIR as the pro-
cessing gain is increased. The normalized SIR values are ob-
tained from (2) with channel gain means and covariances calcu-
lated from (7) and (8). All plots use 20 dB, ,

and . The frequency axis has
been normalized by dividing by the number of realizations. Note
that the results were generated using repeated sequences with
multipath components modeled as cyclic-shifted versions of a
common sequence. The asymptotic limit can be calculated from
(12) with calculated using Theorem 2 and is .

From this point on all results will be based on our asymptotic
SIR expressions. All results for LMMSE receivers are obtained
from (11)–(13), while results for the decorrelator use (4) and (5)
and results for the matched filter use (14) and (15).

A. Frequency-Flat Fading (Fig. 3)

Let us start by considering the special case of frequency-flat
fading .

Fig. 3 shows plots of SIR/SNR versusat various levels of
average SNR . Plots are shown for LMMSE receivers
with perfect channel estimation and with no channel
estimation , the decorrelator (for which SIR/SNR =

) and the matched filter (for which SIR/SNR ).
The key observation is that the ideal LMMSE and the worst

case LMMSE show very little performance difference (1 dB)
over the range of and covered with the performance
gap increasing with both and . One should be aware
that this observation is somewhat sensitive to the fading distri-
bution (Rayleigh in this case). The gap between the ideal and
worst case LMMSE receivers could be made very significant by
careful choice of the fading distribution. In particular, suppose
that the channel gain of each user took two values, one with
large magnitude which occurs with small probability and one
that is zero occurring with high probability. The ideal LMMSE
is based on the small number of high-power interferers which it
would simply null out, while the worst case LMMSE is based
on a large number of interferers at the average power. Because
of the convexity of the effective interference as a function of the
power of the interferer, the ideal LMMSE would thus have sig-
nificantly better performance.

B. Frequency-Selective Fading (Fig. 4)

In the frequency-flat fading channel we observed that, at least
in terms of interference suppression, the price of knowing only
the average power of other users or even knowing nothing at all
about other users’ powers, did not result in a very dramatic loss
in performance relative to the ideal LMMSE receiver. The real

(a)

(b)

Fig. 3. Plots of normalized SIR(� � ) versus the number of users per degree
of freedom(�) for the ideal LMMSE(�), the worst case LMMSE(+), the
decorrelator(�), and the matched filter(�). (a) = 10 dB. (b) = 20 dB.

interest in the multipath fading channel results because this ob-
servation no longer holds: to throw away channel information is
very wasteful of degrees of freedom.

Fig. 4 shows plots of normalized SIR versus number
of paths for the LMMSE receiver, the decorrelator, and the
matched filter. For the LMMSE receiver, results are shown for
various length estimation windows which translate to various
values of the path estimation error.

The LMMSE receiver with worst performance corresponds to
the receiver which knows nothing of the channels other than the
average power. In this case, each user with total powerlooks
like users with power . Note that even for high, as
is increased the power of each effective user decreases which
leads the LMMSE performance to approach that of the matched
filter. Note that unless the system is very lightly loaded (small

), so that is not too close to, the decorrelating, multipath-
combining receiver is virtually useless.

We also observe that there is a significant difference between
the ideal and worst case LMMSE receivers, even when there
are only a few multipath components (10 dB for and

). The question is, how good do our channel estimates
need to be to achieve a significant improvement? For the pa-
rameter values considered here, provided the channel estimation
window (in symbols) is at least as large as the number of mul-
tipath components, then the loss from ideal is less than 2 dB.
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(a)

(b)

Fig. 4. Normalized SIR (� � ) for various�. In each casep=� = 20 dB.
Results are shown for the matched filter(�), the decorrelator(�), and the
LMMSE receiver(�). In the latter case, curves are shown for estimation window
lengths of (from the top)� = 1 (perfectly known channel),� = 10, 2, and
finally for the case when nothing is known about the channels other than thea
priori average power. (a)� = 0:2. (b)� = 0:5.

This does not seem to be an unreasonable assumption, the re-
sult providing great motivation for acquiring and making use of
the signature sequences of all users.

These results assume that the channel of the user of interest
is perfectly known. It is also of interest to examine the impact
of including the uncertainty in the estimate of the path gains
for user 1. To do this we compare the value of SIR obtained
in the cases where the channel is perfectly known and when
the channel estimates have some associated uncertainty. The re-
sults are shown in Fig. 5 (frequency-flat fading) and Fig. 6 (fre-
quency-selective fading). The vertical axis represents

SIR SIR

where

SIR

with given by (12). The average SIR values are obtained by
averaging the SIR over the channel estimates for user 1. We
have written for the MSE in the channel estimate resulting
when the estimator window length (over which we assume the
channel is constant) is as given in Theorem 2.

(a)

(b)

Fig. 5. Plots of performance loss for the LMMSE receiver versus the number
of users per degree of freedom (�). In each caseL = 1. Results are shown for
channel estimator window lengths of (from the top)� = 1, 2, and5. (a) =

10 dB and (b) = 20 dB.

C. Frequency-Flat Fading (Fig. 5)

For medium-to-high values of we see that the perfor-
mance loss is around 0.5 dB for , a value which does
not seem unreasonable even in fast-fading environments (say,
a Doppler frequency times symbol rate of ). We could, of
course, use a differentially coherent scheme to remove the need
for obtaining a channel estimate for user 1 but it should be re-
membered that the cost is on the order of 3 dB. We also remark
that most of the performance loss is due to the uncertainty asso-
ciated with the estimate of the channel of user 1, not the uncer-
tainty about the channels of the other interferers, as should be
evident upon referring back to Fig. 3.

It may at first seem strange that the performance gap de-
creases in some cases asincreases. Surely should increase
with and result in performance degradation relative to the
ideal case? The key to understanding this behavior is that we
really have different effective values offor channel and data
estimation, namely, and , respectively. For , for ex-
ample, as is increased from to , the effective number of
users per degree of freedom for channel estimation increases
from to only. The value of increases only very slightly
over this range and the overall performance gap is dominated
by the impact of increasing on the data estimation which in
contrast to channel estimation is very significant.



2070 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 6, SEPTEMBER 2000

(a)

(b)

Fig. 6. Performance loss of LMMSE receiver relative to perfect knowledge
case. In each casep=� = 20 dB. Results are shown for channel estimator
window lengths of (from the top)� = 1,2,5, and10. (a)� = 0:2. (b)� = 0:5.

D. Frequency-Selective Fading (Fig. 6)

Perhaps the main observation that should be made is that
again provided is at least as large as, the loss from ideal
performance is at most 3 to 4 dB for the range of parameters
covered.

VII. CONCLUSIONS

We have attempted in this paper to elucidate fundamental
properties and limitations of linear multiuser receivers operating
in fading channels.

Through a combination of theoretical results and numerical
examples, the main engineering insights to come to the surface
were as follows.

• In single path fading, the penalty for not knowing the chan-
nels of interferers is not significant and the impact of a user
not knowing his own channel tends to be the dominant ef-
fect.

• In multipath fading, the situation is very different, as we
might have guessed from the discussion on effective in-
terference. Receivers making use of accurate estimates of
the channels of interferers will significantly outperform
receivers designed to operate without channel knowledge
or receivers that track only average power.

• But under what conditions could we expect to obtain es-
timates of sufficient accuracy to allow the potential re-
wards to be reaped? For the numerical examples consid-
ered, we have seen that provided the channel estimator
window length (in symbol intervals) is at least as large as
the number of resolvable multipath components, estimates
of sufficient accuracy for near-optimal performance of the
data estimator could potentially be obtained from a linear
(optimal) channel estimator.

An important observation is that these insights are totally scal-
able with system size, in the sense that they are obtained in the
limit as the spreading gain and the number of users grow large,
as long as the number of users per degree of freedom is fixed.

On the theoretical side, addressing the questions in this paper
prompts us to prove new results in the spectral analysis of
random matrices, using techniques from free probability theory.
These new results manifested in the interesting phenomenon
that although there is repetition of random spreading sequences
due to multipaths and the use of repeated sequences, in cases
considered the asymptotic performance is exactly the same
as though all sequences were independently chosen. This
provides further evidence for the robustness and versatility of
the random spreading sequence model for the performance
analysis of multiuser receivers. While we have given rigorous
proofs only for LMMSE channel estimation (Theorems 3 and
4), we conjecture that all of our results hold when the repeated
and cyclic-shifted signature sequence model is used.

APPENDIX I
SOME KEY RESULTS FORLMMSE ESTIMATION

Lemma 1: Let be a deterministic complex ma-
trix with uniformly bounded spectral radius for all .1 Let

where the ’s are i.i.d. complex random
variables with zero mean, unit variance, and finite eighth mo-
ment. Let be a similar vector independent of. Then

and

where the constants and do not depend on or .
Proof: The first result follows directly from [39,

Lemma 2.7] while the second result can be proved in a similar
manner.

An immediate consequence of this lemma is that

Corollary 1:

and

almost surely as .
Proof: We prove the second limiting result and note that

the first follows along similar lines. We have

1 That is, there exists a real number, independent ofN , which bounds the
magnitudes of the eigenvalues ofA for all N .
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from Markov’s inequality and our lemma. Thus

and the result follows from the first Borel–Cantelli lemma [40].
(Note the implicit dependence of the summands on.)

In the sequel, we will be dealing with the convergence of
empirical distribution functions, so let us define things clearly.

Definition 1: We say that a sequence of (deterministic) cu-
mulative distribution functions (cdfs) converges to if for
every point of continuity of , . If we
identify a cdf with a measure, this is equivalent toweak conver-
genceon the space of measures.

Empirical distribution functions arerandom cdfs, for which
two notions of convergence can be defined.

Definition 2: A sequence of random cdfs convergesal-
most surelyto if almost all realizations converge to .

Definition 3: A sequence of random cdfs convergesin
probability to a limit if for every

Here is any metric which generates the weak topology on the
space of measures to which and belongs.

We need the following theorem which is proved in [41]. For
any square matrix with only real eigenvalues let denote the
empirical distribution function of the eigenvalues of. Note
that the Stieltjes transform of a distributionis defined as the
analytic function

Theorem 6: Let be a matrix of i.i.d. complex
random variables with zero mean and variance and assume
that . Let be a random Hermi-
tian nonnegative-definite matrix independent ofsuch that al-
most surely converges to a fixed distribution functionas

. Then almost surely, converges, as ,
to a (nonrandom) distribution function whose Stieltjes trans-
form satisfies

(16)

in the sense that for every , is the unique
solution in to (16).

Most of our results on LMMSE estimation follow directly
from the following key theorem.

Theorem 7: Let and be as defined in Theorem 6 and let
and be random vectors of length , independent of and
and as specified in Lemma 1. Then as , almost surely

and

where is the unique positive solution to the fixed point equa-
tion

Proof: To begin we use Corollary 1 to note

and

converge almost surely to zero. To apply Corollary 1 we condi-
tion on and and rely on the fact thatand are independent
of and . Note that the spectral radius of
is uniformly bounded by . The first part of the theorem is
already proved.

Next observe that

and that the right-hand side converges almost surely to

since the integrand is bounded and continuous and according
to Theorem 6, almost surely converges to. We have
thus established that, almost surely

Since the support of is on the nonnegative real axis, the
Stieltjes transform of is continuous in the neighborhood of

and it follows that

and by the continuity of the right-hand side of (16) as a function
of , it follows that

Now suppose that converges to a fixed distribution in
probability, rather than almost surely. Then we have the fol-
lowing corollary.

Corollary 2: converges in proba-
bility to

Proof: Since converges to in probability, for every
subsequence there exists a further subsequence on which
converges to almost surely. On this subsequence we have from
the previous theorem that converges al-
most surely to and since the initial subsequence was arbi-
trary, our result is established.

APPENDIX II
PROOF OFTHEOREM 5

Recall that the channel estimate is given by (7)

(17)
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with associated error covariance (8)

(18)

Conditional on , is a circularly symmetric, complex
Gaussian random vector with covariance .

We have the following result on the elements ofas .

Lemma 2:

and

where is given in Theorem 1, and convergence is almost sure.
Proof: The result for diagonal elements is just Theorem 1.

For off-diagonal elements we note the equations at the bottom
of this page. Now the denominator converges almost surely to

following Theorem 1 and the numerator converges
almost surely to from Corollary 1 so that converges to

almost surely as required.

The following lemma will also be required.

Lemma 3: Suppose is the empirical distribution func-
tion for random variables. If converges in proba-
bility to for all , where is a fixed distribution function,
then the empirical distribution converges to in proba-
bility.

Proof: Let

We will show that in probability from which the con-
vergence of the empirical distributions to in probability
follows immediately.

First define

and let

Let

It follows (see, for example, [40, Theorem 20.6 (Glivenko–Can-
telli)]) that

Now we know that in probability for all
Then for each subsequence there exists a fur-
ther subsequence such that

almost surely. Using the diagonal method starting from any
initial subsequence we can extract a further subsequence such
that almost surely for ,

. But this implies that almost surely
and thus that almost surely. Since this is true for
each initial choice of subsequence, we have that in
probability as required.

Now is a block-diagonal matrix with the th di-
agonal block equal to the matrix . We need
to look at the empirical eigenvalue distribution of which is
the empirical distribution function of the eigenvalues of the ma-
trices .

Let denote the vector of eigen-
values (counting multiplicities) of , ordered from
largest to smallest.

We know that converges almost surely elementwise to
and we would thus expect that for large, the eigenvalues of

would be close to the eigenvalues of
and we know what the eigenvalues of the latter matrix look like:
it has one eigenvalue at and eigenvalues at

. To be precise, we have

Lemma 4:

almost surely as , where

Proof: The proof is a straightforward consequence of the
perturbation theory of eigenvalues as given in [42, Ch. 2] (see,
for example, the Wielandt–Hoffman Theorem), along with the
fact that converges almost surely elementwise to the

zero matrix (Lemma 2).

Let us select a fixed number of eigenvalues of ,

Lemma 5:

where is the unit step function and is as in Theorem 5.
Proof: Let

Lemma 4 tells us that converges almost surely to

But this implies [40, Theorem 25.4] that and have the
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same limit in distribution (if such a limit exists). The Cramér–
Wold device [40, Theorem 29.4] can then be used to show that
the vectors and have
the same limit in distribution in . We can thus focus on

which immediately factors as

Recall that when conditioned on is a circular-symmetric
complex Gaussian random vector with covariance

. It is relatively straightforward to show using Lemma 2
that in the limit, the become independent circular- sym-
metric complex Gaussian random vectors with identical covari-
ance , the result following immediately.

Let

be the empirical distribution function of the eigenvalues of.

Theorem 8: converges in probability to for all
where is defined in Theorem 5.

Proof: We will show that the variance of
goes to zero as which implies convergence in proba-
bility.

The sum is then broken up into

and

Observing that the summands are exchangeable in the user in-
dices, the first sum is

which converges to zero, and the second sum is

which also converges to zero due to Lemma 5.

The preceding theorem tells us that for any, the random
variable converges in probability to the real constant

. The statement that the random distribution function
converges to the fixed distribution functionin probability fol-
lows directly from Lemma 3.

APPENDIX III
PROOFS OFTHEOREMS3 AND 4

The proofs of these two theorems require results fromfree
probability theory. Our treatment here is very brief; for more
details please consult [43] or [44].

Definition 4: A noncommutative probability space is
an algebra over with a unit element and endowed with a
linear functional , . Elements of are called
(noncommutative) random variables. We shall also assume that

has thetraceproperty: for all .

An important example is the following. Let be the
algebra of complex by random matrices whose entries are
scalar random variables defined on some underlying common
probability space. For each random matrix , define

Note that for , is simply the algebra of (standard)
complex random variables, which are commutative. is
simply the expectation operator. For , the elements of

are noncommutative.

Definition 5: Thedistributionof is specified by the
moments , for . The joint distributionof a collec-
tion of random variables is specified by all
the joint moments , .

For any by random Hermitian matrix with
random eigenvalues , the th moment of in the
noncommutative probability space is given by

If we let be the expected empirical distribution of the
eigenvalues of
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then the moments of the distribution are precisely the mo-
ments of as a noncommutative random variable.

Definition 6: A family of subalgebras containing ,
in the noncommutative probability space is

free if whenever for all
and where consecutive indices
are distinct. A family of subsets in is

free if the subalgebras each one of them generates withare
free. Random variables are free if the family of
subsets is free.

One should think of the notion of freeness as the noncummu-
tative analog of the notion of independence of (commutative)
random variables. For independent random variables, the joint
distribution can be specified completely by the marginal distri-
butions. For free random variables, we have the analogous re-
sult, which can be proved directly from definition.

Proposition 3: The joint distribution (i.e., moments) of free
random variables can be completely specified by
the moments of the individual ’s.

In particular, if and are free, then the moments
of can be completely specified by the moments of

and the moments of .

The notion of freeness is important for us because in a lot of
cases of interest, large random matrices becomeasymptotically
free.

Definition 7: A sequence of random matrices
is said to be asymptotically free if there exists

a noncommutative probability space and free random
variables such that all the joint moments of

converge to the corresponding joint moments
of as . Analogous definition holds for a
family of subsets of random matrices.

The following is the first important result establishing the
connection between the asymptotic properties of large random
matrices and free probability theory.

Theorem 9 ([45], [46]): Let be a random
matrix whose entries are complex circular symmetric Gaussian
random variables with variance for the off-diagonal terms
and for the diagonal terms. The matrix is Hermi-
tian but otherwise the entries are independent. Consider now
an independent family of such random matrices ,

. Let be a subset of
constant Hermitian matrices in such that for each , the
expected empirical eigenvalue distribution of converges
as . Then the family of subsets ,

are asymptotically free.
This result was first proved for diagonal matrices in

[45] and then extended to general constant Hermitian matrices
in [46]. The following is a corollary which does not follow di-
rectly but can be proved from Theorem 9.

Corollary 3: Let , where is an
by random matrix whose entries are i.i.d. complex

circular symmetric Gaussian random variables with variance

. Consider now an independent family of such random
matrices , . If
for each , then the family of subsets ,

are asymptotically free. (The matrices
are as specified in Theorem 9.)

We now have the machinery to prove Theorems 3 and 4. First
we need the following simple lemma.

Lemma 6: Let and be free
subsets of random variables in . If

for all and , then the random variables
are free.

Proof: Consider any , and suppose for ,
is in the algebra generated by and and sat-

isfies . The indices satisfy for all .
Since , it holds that for some

in the algebra generated by and and . Now

(19)

where . This last step follows from the fact that
. Now by assumption

for and for . If ,
then and by the freeness of and

, it follows that (19) equals . If, on
the other hand, , then and the same
conclusion follows from freeness. Hence, we conclude that

are free.

Repeated Sequences

We now analyze the spectrum of the matrix where is
defined in Section IV. To simplify things we assume that .

Lemma 7: Assume that the entries of signature sequences are
complex circular symmetric Gaussian random variables. Then
irrespective of whether long or repeated random sequences are
used, the expected empirical eigenvalue distribution of
converges to the same limit as and .

Proof: For the case of long sequences, it follows from the
independence and circular symmetry of the signature sequence
entries that the entries ofare i.i.d. random variables with vari-
ance . By existing random matrix results [47]–[49], it is
known that the all the moments of , i.e., ,
converge as . Moreover, it is known that the lim-
iting moments are those of a distribution with bounded support.
Therefore, the convergence of the moments implies the conver-
gence of the expected empirical eigenvalue distribution
to a limit .

Let us now consider the case when repeated sequences are
used, i.e., for all , . In this case,
there are dependencies in the entries ofand existing random
matrix results cannot be used.
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For all

where and

Thus the problem is equivalent to computing the limiting eigen-
value distribution of

By Corollary 3, the two subsets and
are asymptotically free, i.e., there exists

and random variables such that
and are free subsets and the

joint distribution of , , ,
converges to that of as .
Now since for all , it follows that

, and also

Hence, from Lemma 6, the random variables
are free. We can now conclude that

are asymptotically
free. But if are i.i.d. copies of (corresponding
to the long sequence case), then

are asymptotically free as well, and moreover each
has the same distribution as

. Hence, by Proposition 3, the matrix

has the same limiting distribution as

It follows then that the limiting expected empirical eigenvalue
distribution of is the same regardless of whether long or
repeated random sequences are used.

Lemma 7 is a crucial step in explaining why repeated and
long sequences make little difference asymptotically. Basically,
although there is statistical dependency in the repeated sequence
case, the randomness in the information symbols makes the rel-
evant component matrices asymptotically free.

We can now give a Proof of Theorem 3, which concerns the
performance of the channel estimator when repeated sequences
are used.

Proof of Theorem 3:To simplify notation, we take
and let . The general result follows from a simple
rescaling.

Define

and

(20)

which can be interpreted as the SIR achieved by userunder
the MMSE receiver, when the spreading sequences are’s. In
[50, Eq. (12)], a key equation relating the ’s and the trace of

was derived

Rearranging terms and then taking expectation with respect to
the random sequences and information symbols, and observing
that the ’s are identically distributed, we get

(21)

where are the eigenvalues of . Let us inves-
tigate what happens as . Applying Lemma 7, we have

(22)

as , where is the limiting expected empirical
eigenvalue distribution of . This convergence holds since

is a bounded continuous function and
converges to (in the weak topology). Since is also the
limiting distribution for the case with long sequences, it can be
given as the solution to the fixed point equation [47]–[49]

or, equivalently,

(23)

We observe that this is exactly the same as the in The-
orem 2 (with ) for the long sequence case.

From the facts that is independent of and that the entries
of are uncorrelated, zero-mean, variance, we get

(24)

as . Our goal now is to show from (21) that in fact
converges to in probability as . To this end, let

Then, expanding about
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for some in between and . Substituting into (21) and
taking limit as , and using (22) and (24), we get

Comparing this to (23), we see that

Now

so falls in that bounded range as well. We thus conclude that

as . Hence converges to in probability,
same as in the long sequence case.

Shifted Sequences

We now turn to the Proof of Theorem 4 for the multipath case,
focusing on the model defined in Section IV. We first analyze the
spectrum of .

Lemma 8: Assume that the entries of the signature sequences
are i.i.d. complex circular symmetric Gaussian random vari-
ables with variance and the sequences are independent
across symbols and across users. Then the expected empirical
eigenvalue distribution of converge to the same limit as

irrespective of whether sequences along different mul-
tipaths of the same user are independent or cyclic shift of each
other.

Proof:

where . For the model when the spreading
sequences are independent along different paths, the matrices

are independent, and by Corollary 3, the random matrices
are asymptotically free. For the model when

the sequence is a cyclic shifted version of by chips,
we can write

where is the permutation matrix corresponding to a cyclic
shift by chips. Observe that and that for

, , so for sufficiently large

It then follows from the asymptotic freeness of and
and Lemma 6 that

are asymptotic free. This together with the fact that each
has the same distribution as that of the corre-

sponding matrix in the fully random model implies that the
expected empirical eigenvalue distributions are asymptotically
the same in both models.

We can now give a Proof of Theorem 4.

Proof of Theorem 4:To simplify notation, we take
and let . The general result follows from a simple

rescaling.
Define as the by matrix obtained from by

removing the column and let

(25)

Consider again the identity

Rearranging terms and then taking expectation with respect to
the random spreading sequences and information symbols, and
observing that for each, have the same distribu-
tion, we have

(26)

Applying Lemma 8, we have

(27)

as , where is the limiting expected empirical eigen-
value distribution of . This limit is given as the solution
to the fixed-point equation [47]–[49]

or, equivalently,

(28)

Expanding about

for some a function of and in between and . Sub-
stituting into (21) and taking limit as , and using (27),
we get

Comparing this to (28), we see that

(29)
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By matrix inversion lemma, for , we have

where is the matrix obtained by removing the column
from . We can then conclude that for all realization of

Repeating this times, we get

where is the matrix obtained by removing all the columns
from . We observe that is independent from

and hence, as in (24)

(30)
as . Hence

and combining this with (29), we can conclude that for every

and

Now

so falls in that bounded range as well. We thus conclude
that as . Hence converges to

in probability, same as for the fully random sequence
model.
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