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Abstract

We study the large-time and small-time asymptotic behaviors of the spectral heat content
for time-changed stable processes, where the time change belongs to a large class of inverse
subordinators. For the large-time behavior, the spectral heat content decays polynomially with
the decay rate determined by the Laplace exponent of the underlying subordinator, which is
in sharp contrast to the exponential decay observed in the case when the time change is a
subordinator. On the other hand, the small-time behavior exhibits three different decay regimes,
where the decay rate is determined by both the Laplace exponent and the index of the stable
process.

1 Introduction

The spectral heat content measures the total heat that remains on a domain Ω ⊂ R
d whose initial

temperature is one with Dirichlet boundary condition. The spectral heat content for Brownian

motions has been studied intensively in the past few decades. Recently, there have been growing

interests in studying the spectral heat content for jump processes, which is defined by replacing

the Brownian motions with other jump processes and putting the zero exterior condition outside

Ω in order to take into account the fact that jump processes could exit the domain by jumping

into R
d \ Ω. In [1, 2, 4, 6, 8, 9, 10], the spectral heat content for stable processes and other Lévy

processes are studied for both subordinate killed processes and killed subordinate processes. In

particular, in [10], the two-term asymptotic expansion for the spectral heat content for isotropic

stable processes on bounded C1,1 open sets was investigated.

The main purpose of this paper is to study the large-time and small-time asymptotic behaviors of

the spectral heat content for time-changed stable processes of the form Y ◦E = {YEt}t≥0, where the

outer process Y = {Yt}t≥0 is an isotropic stable process and the inner process (or the time change)

E = {Et}t≥0 belongs to a large class of inverse subordinators. In general, the large-time and small-

time asymptotics for the spectral heat content provide both spectral information of the underlying

process and geometric information of the domain. Indeed, for Brownian motions, the large-time

decay rate of the spectral heat content is determined by the principal eigenvalue of the infinitesimal

generator of the Brownian motions. On the other hand, as for the small-time behavior, the spectral

heat content for Brownian motions on a smooth domain admits an asymptotic expansion, with the
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coefficients of the expansion containing geometric characteristics of the domain Ω, such as the area,

perimeter and mean curvature.

The main results of this paper are Theorems 1.1 and 1.2 below, which provide the large-time and

small-time asymptotic behaviors of the spectral heat content QY ◦E
Ω (t) for time-changed isotropic

stable processes of the form Y ◦E. Note that throughout the paper, the symbol f(t) ∼ g(t) means

f(t)/g(t) → 1 as t→ ∞ or t ↓ 0, depending on which asymptotic behavior is being considered.

Theorem 1.1. Let Y be an isotropic stable process and {(λYn , ψ
Y
n )}

∞
n=1 be the eigenpairs of the

infinitesimal generator for the associated killed process. Let E be the inverse of a subordinator

whose Laplace exponent φ is regularly varying at 0+ with index β ∈ [0, 1). Suppose Y and E are

independent. Let Ω ⊂ R
d be a bounded open set. Then

QY ◦E
Ω (t) ∼ φ(1/t)

∞
∑

n=1

(∫

Ω ψ
Y
n (x)dx

)2

λYn Γ(1− β)
as t→ ∞.

Theorem 1.2. Let Y be an isotropic stable process of index α ∈ (0, 2). Let E be the inverse of a

subordinator whose Laplace exponent φ is regularly varying at ∞ with index β ∈ (0, 1). Suppose Y

and E are independent. Let Ω ⊂ R
d be a bounded C1,1 open set if d ≥ 2 or a bounded open interval

if d = 1. Then as t ↓ 0,

|Ω| −QY ◦E
Ω (t) ∼



































|∂Ω|E[Z
(α)
1 ]Γ(1 + 1/α)

Γ(1 + β/α)
[φ(1/t)]−1/α if α ∈ (1, 2),

|∂Ω|

πΓ(1 + β)
[φ(1/t)]−1 lnφ(1/t) if α = 1,

Perα(Ω)

Γ(1 + β)
[φ(1/t)]−1 if α ∈ (0, 1).

Detailed information about the notations used in the theorems, including Z
(α)
1 and Perα(Ω), appear

in the preliminary section, Section 2.

Theorem 1.1 is established in Section 3. To the authors’ knowledge, this is the very first paper in

the literature that establishes the large-time behavior of the spectral heat content for time-changed

processes with the time changes being inverse subordinators. Moreover, the result turns out to

be very different from the case when the time changes are subordinators themselves. Indeed, as

Proposition 3.3 shows, if the time-change is given by a subordinator, then the spectral heat content

exhibits an exponential decay and the decay rate is determined by φ(λY1 ), where φ is the Laplace

exponent of the subordinator and λY1 is the principal eigenvalue of the infinitesimal generator for the

associated killed process. In contrast, in the case of an inverse subordinator, Theorem 1.1 indicates

that the spectral heat content exhibits a polynomial decay and the information about all the

eigenpairs {(λYn , ψ
Y
n )}

∞
n=1 appear in the limit. In fact, the large-time behavior of the spectral heat

content can be derived in a much more general setting; one can replace the isotropic stable process

Y with any Lévy process whose associated killed process has transition density with representation

of the form (2.3) (see Remark 3.4, item 4) for details).
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Section 4 is devoted to the derivation of Theorem 1.2. We assume that the domain Ω is a

bounded C1,1 open set if d ≥ 2 or a bounded open interval if d = 1 so that we can use a recent result

[10, Theorem 1.1] or [1, Theorem 1.1] on the spectral heat content for isotropic stable processes.

The short-time behavior of the spectral heat content for time-changed Brownian motions, where

the time change is given by an inverse subordinator (as opposed to a subordinator), was first studied

in [6]. This current paper can be regarded as a natural continuation of the investigation carried out

in [6] since Brownian motions are stable processes with index α = 2 (and they are the only stable

processes with continuous sample paths). However, let us stress again that Theorem 1.1 on the

large-time behavior is completely new, and our approach for proving the theorem is significantly

different from those in [6]; in particular, we resort to the double Laplace transform of the inverse

subordinator E (see Lemma 3.1). Moreover, even for the small-time behavior, replacing Brownian

motions with stable processes has generated a new difficulty that was not present in [6]. Indeed,

when the stability index is α = 1, even though the exact asymptotic behavior of the function

t 7→ E[Et ln(1/Et)] is needed, a standard argument based on the Tauberian theorem together

with the monotone density theorem is not directly applicable since the function x 7→ x ln(1/x) is

not monotone. We will overcome this difficulty by introducing a monotonized function V (x) of

x ln(1/x) (see (4.1) for the definition) and showing that the error induced by the introduction of

V (x) is negligible in Proposition 4.3.

Before closing this section, let us briefly explain why it is worth investigating processes involving

inverse subordinators. First, time-changed Brownian motions with time changes being inverse

subordinators naturally appear in the context of subdiffusions, where the particles diffuse at a slower

pace than the usual Brownian particles. Moreover, over the past few decades, the time-changed

Brownian motions and their various generalizations, including time-changed Lévy processes, time-

changed fractional Brownian motions, and solutions of stochastic differential equations driven by

such time-changed processes, have been widely studied due to a number of practical applications

arising in physics, biology, hydrology, finance, etc. (see e.g. [7, 12] and references therein). One of the

focuses of these investigations is to identify the governing equations for the time-changed processes.

In particular, it is known that, when the outer process Y is a Lévy process and the independent

time change E is an inverse stable subordinator with index β ∈ (0, 1), then the governing equation

for the time-changed Lévy process Y ◦ E is the partial differential equation ∂βt u(t, x) = Axu(t, x),

with Ax being the infinitesimal generator of Y acting on x and ∂βt denoting the Caputo fractional

derivative of order β acting on t. Theorems 1.1 and 1.2 to be established in this paper are valuable

since they provide more information about the nature of such time-changed Lévy processes.

2 Preliminaries

Let Y = {Yt}t≥0 be an isotropic stable process of stability index α ∈ (0, 2] with càdlàg paths, the

characteristic function of which is given by E[eiξYt ] = e−t|ξ|
α
, ξ ∈ R

d. When α = 2, Y is a Brownian
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motion whose sample paths are continuous, whereas for α ∈ (0, 2), Y is a pure-jump process.

Let Ω be a bounded open set in R
d. The spectral heat content QYΩ(t) for the stable process Y

on Ω at time t is defined by

QYΩ(t) =

∫

Ω
Px(τ

Y
Ω > t)dx, (2.1)

where τYΩ = inf{t > 0 : Yt /∈ Ω} is the first exit time of Y from Ω. Let pY (t, x, y) be the transition

density for Y . By Fourier inversion, pY (t, x, y) = pY (t, y−x) = (2π)−d
∫

Rd e
−i〈ξ,y−x〉e−t|ξ|

α
dξ. In par-

ticular, pY (t, x, y) ≤ (2π)−d
∫

Rd e
−t|ξ|αdξ = ωd

α Γ(d/α)t−d/α, where ωd =
2πd/2

Γ(d/2) . Let Y Ω = {Y Ω
t }t≥0

be the killed process defined by Y Ω
t = Yt if t < τYΩ and Y Ω

t = ∂ if t ≥ τYΩ , where ∂ is a cemetery state.

The transition density pY,Ω(t, x, y) for Y Ω is given by pY,Ω(t, x, y) = pY (t, x, y)− rYΩ (t, x, y), where

rYΩ (t, x, y) = E[pY (t−τYΩ , YτY
Ω
, y); τYΩ ≤ t]. In particular, pY,Ω(t, x, y) ≤ pY (t, x, y) ≤ ωd

α Γ(d/α)t−d/α.

Hence, the semigroup defined by T Y,Ωt f(x) := Ex[f(Y
Ω
t )] for f ∈ L2(Ω) is a Hilbert–Schmidt oper-

ator, and there exist pairs {(λYn , ψ
Y
n )}

∞
n=1 of eigenvalues and eigenfunctions (or eigenpairs in short)

such that

0 < λY1 < λY2 ≤ · · · ≤ λYn → ∞ (2.2)

and

pY,Ω(t, x, y) =

∞
∑

n=1

e−λ
Y
n tψYn (x)ψ

Y
n (y). (2.3)

Due to the identity Px(τ
Y
Ω > t) =

∫

Ω p
Y,Ω(t, x, y)dy, the spectral heat content for Y has the

alternative representation

QYΩ(t) =

∞
∑

n=1

e−λ
Y
n t

(
∫

Ω
ψYn (x)dx

)2

. (2.4)

Now we state a recent result from [1, 10] about the two-term small-time asymptotic behavior

of QYΩ(t), where the open set Ω ⊂ R
d when d ≥ 2 is assumed to be C1,1; i.e., its boundary can be

locally represented as the graph of a C1 function whose gradient is Lipschitz. Define

fα(t) =











t1/α if α ∈ (1, 2),

t ln(1/t) if α = 1,

t if α ∈ (0, 1),

and cα =















E[Z
(α)
1 ]|∂Ω| if α ∈ (1, 2),

|∂Ω|

π
if α = 1,

Perα(Ω) if α ∈ (0, 1).

(2.5)

Here, |∂Ω| is the perimeter of Ω if d ≥ 2 or |∂Ω|=2 if d = 1 (in which case, Ω is a bounded open

interval), Z
(α)
t = sups≤t Z

(α)
s stands for the running supremum of a one-dimensional symmetric

α-stable process {Z
(α)
t }t≥0, and Perα(Ω) =

∫

Ω

∫

Ωc
c(d,α)

|x−y|d+αdydx is the α-fractional perimeter of Ω.

Theorem 2.1 ([1, Theorem 1.1] and [10, Theorem 1.1]). Let Ω ⊂ R
d be a bounded C1,1 open set if

d ≥ 2 or a bounded open interval if d = 1. Let Y be an isotropic stable process of index α ∈ (0, 2).

Let fα(t) and cα be defined as in (2.5). Then

|Ω| −QYΩ(t) ∼ cαfα(t) as t ↓ 0.
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The main object of study in this paper is the spectral heat content for time-changed isotropic

stable processes. More precisely, let Y be the isotropic stable process discussed above, and let

D = {Dt}t≥0 be an independent subordinator (one-dimensional Lévy process with nondecreasing

càdlàg paths starting from 0). Let φ denote the Laplace exponent of D, so that

E[e−λDt ] = e−tφ(λ) = exp

(

−t

∫ ∞

0
(1− e−λx)ν(dx)

)

, λ, t > 0, (2.6)

with the Lévy measure ν satisfying
∫∞
0 (1∧x)ν(dx) <∞. Throughout the paper, we assume that the

Lévy measure is infinite; i.e., ν(0,∞) = ∞, which is equivalent to saying that φ(λ) → ∞ as λ→ ∞.

The Laplace exponent φ is strictly increasing since φ(λ2) − φ(λ1) =
∫∞
0 (e−λ1x − e−λ2x)ν(dx) > 0

whenever 0 < λ1 < λ2. Moreover, φ(0+) = 0, and φ is a Bernstein function; i.e., (−1)nφ(n) ≤ 0 for

all integers n ≥ 1. Now, let E = {Et}t≥0 be the inverse of D defined by

Et = inf{u > 0 : Du > t}, t > 0.

The condition that the Lévy measure ν is infinite implies that D has strictly increasing paths

with jump times being dense in (0,∞) (see [11, Theorem 21.3]). This in turn implies that the

sample paths of the inverse E are continuous, nondecreasing, and starting from 0. The spectral

heat content QY ◦E
Ω (t) for the time-changed isotropic stable process Y ◦ E is defined by

QY ◦E
Ω (t) = E[QYΩ(Et)] =

∫

Ω
Px(τ

Y
Ω > Et)dx. (2.7)

We assume that the Laplace exponent φ of the subordinator D is regularly varying with index β

at ∞ or at 0; i.e., for each a > 0, φ(aλ)φ(λ) → aβ as λ→ ∞ or as λ ↓ 0. Let Rβ(∞) and Rβ(0
+) denote

the classes of regularly varying functions with index β at ∞ and at 0, respectively. Any function

f ∈ Rβ(∞) or f ∈ Rβ(0
+) can be rewritten as f(λ) = λβℓ(λ) with some slowly varying function

ℓ ∈ R0(∞) or ℓ ∈ R0(0
+) (see [3, Theorem 1.4.1]). By the Tauberian theorem, the condition that

φ ∈ Rβ(∞) or φ ∈ Rβ(0
+) determines the behavior of the subordinator D at 0 or ∞. Examples

of Laplace exponents include φ(λ) = λβ with β ∈ (0, 1), which belongs to Rβ(∞) ∩ Rβ(0
+) and

corresponds to a β-stable subordinator, and φ(λ) = (λ+ κ)β −κβ with β ∈ (0, 1) and κ > 0, which

belongs to Rβ(∞) ∩R1(0
+) and corresponds to a tempered stable subordinator.

3 The Large-Time Behavior

This section studies the large-time asymptotic behavior of the spectral heat content for time-

changed stable processes when the time change is given by either a subordinator D with infinite

Lévy measure or its inverse E. In either case, φ denotes the Laplace exponent of the underlying

subordinator D. The main assumption of this section is:

φ ∈ Rβ(0
+) with β ∈ [0, 1) and Ω is a bounded open set.
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We first discuss the case of an inverse subordinator E. Our argument relies on two lemmas. The

first lemma concerns the exact expression of the double Laplace transform of E, while the second

concerns the spectral heat content QYΩ(t) for the stable process Y at t = 0. For the remainder of

the paper, let the expression Lt[f(t)](s) denote the Laplace transform of a function f whenever it

exists; i.e., Lt[f(t)](s) =
∫∞
0 f(t)e−stdt.

Lemma 3.1 ([5, Lemma 2]). Let E be the inverse of a subordinator D with Laplace exponent φ.

Then for any fixed a > 0, the Laplace transform of the function t 7→ E[e−aEt ] exists and is given by

Lt
[

E[e−aEt ]
]

(s) =
φ(s)

s

1

φ(s) + a
, s > 0.

Lemma 3.2. Let Ω be a bounded open set. Let Y be an isotropic stable process and {(λYn , ψ
Y
n )}

∞
n=1

be the eigenpairs of the infinitesimal generator for the associated killed process. Then the map

t 7→ QYΩ(t) is right-continuous at 0. Furthermore,

QYΩ(0
+) = |Ω| =

∞
∑

n=1

(
∫

Ω
ψYn (x)dx

)2

.

Proof. By the right-continuity of the sample paths of Y , limt↓0 Px(τ
Y
Ω > t) = Px(τ

Y
Ω > 0) = 1 for all

x ∈ Ω. Since |Ω| <∞, it follows from representation (2.1) and the dominated convergence theorem

that limt↓0Q
Y
Ω(t) = |Ω|. On the other hand, since the function t 7→ e−λ

Y
n t increases as t decreases

for any fixed n, the monotone convergence theorem applied to the alternative representation of

QYΩ(t) in (2.4) yields limt↓0Q
Y
Ω(t) =

∑∞
n=1

(∫

Ω ψ
Y
n (x)dx

)2
. This completes the proof. ✷

Proof of Theorem 1.1. By (2.4) and (2.7),

QY ◦E
Ω (t) = E[QYΩ(Et)] =

∞
∑

n=1

E[e−λ
Y
n Et ]

(
∫

Ω
ψYn (x)dx

)2

, (3.1)

where the expectation and summation signs are interchangeable since the integrand is nonnegative.

Express φ ∈ Rβ(0
+) as φ(s) = sβℓ(s) using some ℓ ∈ R0(0

+). By Lemma 3.1 and the fact that

φ(0+) = 0,

Lt
[

E[e−λ
Y
nEt ]

]

(s) =
φ(s)

s

1

φ(s) + λYn
∼

ℓ(s)

s1−β
1

λYn
as s ↓ 0. (3.2)

It follows from Karamata’s Tauberian Theorem [3, Theorem 1.7.1] that
∫ t
0 E[e

−λYn Eu ]du ∼ t1−βℓ(1/t)
λYn Γ(2−β)

as t→ ∞, and hence, by the monotone density theorem ([3, Theorem 1.7.2]),

E[e−λ
Y
n Et ] ∼

t−βℓ(1/t)

λYn Γ(1− β)
=

φ(1/t)

λYn Γ(1− β)
as t→ ∞. (3.3)

In particular, for n = 1, there exists M > 0 such that
∣

∣[φ(1/t)]−1
E[e−λ

Y
1
Et ]− 1

λY
1
Γ(1−β)

∣

∣ < 1 for all

t > M . Then it follows from (2.2) that for all t > M and n ≥ 1,

[φ(1/t)]−1
E[e−λ

Y
n Et]

(
∫

Ω
ψYn (x)dx

)2

<

(

1 +
1

λY1 Γ(1− β)

)(
∫

Ω
ψYn (x)dx

)2

.
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The latter is summable due to the assumption that |Ω| < ∞ and Lemma 3.2; therefore, the

dominated convergence theorem together with (3.1) and (3.3) yields limt→∞[φ(1/t)]−1QY ◦E
Ω (t) =

∑∞
n=1

(
∫
Ω
ψY
n (x)dx)2

λYn Γ(1−β)
, as desired. ✷

We now turn our attention to the case when the time-change is a subordinator D independent

of the isotropic stable process Y . The spectral heat content for the time-changed stable process

Y ◦D on a bounded domain Ω is defined by

QY ◦D
Ω (t) = E[QYΩ(Dt)].

Note that QY ◦D
Ω (t) corresponds to the spectral heat content for subordinate killed stable processes.

The large-time behavior of this quantity is given by the following proposition.

Proposition 3.3. Let Y be an isotropic stable process and {(λYn , ψ
Y
n )}

∞
n=1 be the eigenpairs of

the infinitesimal generator for the associated killed process. Let D be a subordinator with Laplace

exponent φ. Suppose Y and D are independent. Let Ω ⊂ R
d be a bounded open set in R

d. Then

lnQY ◦D
Ω (t) ∼ −tφ(λY1 ) as t→ ∞.

Proof. By representations (2.4) and (2.6), the spectral heat content QY ◦D
Ω (t) can be re-expressed

as

QY ◦D
Ω (t) =

∞
∑

n=1

E[e−λ
Y
nDt ]

(
∫

Ω
ψYn (x)dx

)2

=

∞
∑

n=1

e−tφ(λ
Y
n )

(
∫

Ω
ψYn (x)dx

)2

,

where the expectation and summation signs are interchangeable since the integrand is nonnegative.

Since the Laplace exponent φ is strictly increasing and the eigenvalues {λYn } satisfy (2.2), it follows

that 0 < φ(λY1 ) < φ(λY2 ) ≤ · · · . This together with the above representation of QY ◦D
Ω (t) yields the

desired conclusion. ✷

Remark 3.4. 1) Theorem 1.1 shows that QY ◦E
Ω (t) exhibits a polynomial decay as t→ ∞, which is

in sharp contrast to an exponential decay for QY ◦D
Ω (t) indicated by Proposition 3.3. Moreover, the

information about all the eigenpairs {(λYn , ψ
Y
n )}

∞
n=1 appears in the limiting expression for QY ◦E

Ω (t),

whereas only λY1 plays a major role in the large-time behavior of QY ◦D
Ω (t). The difference between

the decay rates of QY ◦E
Ω (t) and QY ◦D

Ω (t) can be ascribed to the fact the introduction of the inverse

subordinator E as a time change makes the heat particles diffuse at a slower pace than those with

the subordinator D incorporated as a time change.

2) The decay rate of QY ◦E
Ω (t) is determined by the Laplace exponent φ of D through the

condition φ ∈ Rβ(0
+), β ∈ [0, 1). For example, if φ(λ) is given by φ(λ) = λa+λb with 0 ≤ a < b ≤ 1,

which implies that the time change E is given by the inverse of the sum of independent stable

subordinators with different indices a and b, then since φ(λ) ∼ λa as λ ↓ 0, the large-time asymptotic

behavior of QW◦E
Ω (t) is given by a constant multiple of t−a.
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3) Theorem 1.1 does not include the case when β = 1 since the argument given in (3.1)–(3.2)

would fail if β = 1. We believe that the case when β = 1 gives an exponential decay rather than the

polynomial decay. In fact, if the time change is given by Et = t, in which case φ(λ) = λ ∈ R1(0
+),

then Proposition 3.3 implies that lnQYΩ(t) ∼ −tλY1 as t→ ∞.

4) Theorem 1.1 and Proposition 3.3 are stated with the outer process Y taken to be an isotropic

stable process; however, similar statements actually hold for much more general outer processes.

In fact, as long as the killed process associated with Y has transition density with representation

of the form (2.3), the proofs given to Theorem 1.1 and Proposition 3.3 continue to work.

4 The Small-Time Behavior

This section is devoted to the analysis of the spectral heat content for time-changed stable processes

Y ◦ E as t ↓ 0. The main assumption of this section is:

φ ∈ Rβ(∞) with β ∈ (0, 1) and

Ω is a bounded C1,1 open set if d ≥ 2 or a bounded open interval if d = 1.

Our argument builds upon [6, Propositions 2.2 and 4.2] and the ideas presented in their proofs.

However, they do not immediately yield Theorem 1.2 when the stability index of Y is α = 1. More

precisely, the threshold case α = 1 requires the analysis of the small-time behavior of E[Et ln(1/Et)],

but as the map x 7→ x ln(1/x) is not monotone, the method of finding the asymptotic behavior based

on Karamata’s Tauberian theorem and the monotone density theorem is not directly applicable.

To overcome this difficulty, let us introduce the following monotonized function V (x) of x ln(1/x):

V (x) = x ln(1/x)1{0<x≤e−1} + e−11{x>e−1}, x > 0. (4.1)

Clearly, V (x) is nondecreasing on (0,∞) and it agrees with x ln(1/x) when 0 < x ≤ e−1.

To establish the small-time behavior of E[Et ln(1/Et)], we need two lemmas below. Note that

throughout this section, the notation E[X;A] is often used to represent the expectation E[X1A].

Lemma 4.1 ([6, Equations (4.11) and (4.6)]). Let E be the inverse of a subordinator D with

Laplace exponent φ ∈ Rβ(∞) with β ∈ (0, 1). Then for any p > 0 and δ > 0, there exist constants

c1, c2 > 0 and functions ℓ1, ℓ2 ∈ R0(0
+) such that

− lnP(Et > δ) = − lnP(Dδ < t) ∼ c1t
− β

1−β ℓ1(t) as t ↓ 0; (4.2)

− lnE[Ept ;Et > δ] ∼ c2t
− β

1−β ℓ2(t) as t ↓ 0. (4.3)

Lemma 4.2. Let E be the inverse of a subordinator D with Laplace exponent φ ∈ Rβ(∞) with

β ∈ (0, 1). Let the function V (x) be defined as in (4.1). Then

E[V (Et)] ∼
1

Γ(1 + β)
[φ(1/t)]−1 lnφ(1/t) as t ↓ 0.
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Proof. By [6, Equation (4.5)], for any fixed u > 0, the Laplace transform of t 7→ P(Et > u) is given

by

Lt[P(Et > u)](s) =

∫ ∞

0
e−stP(Du < t)dt =

e−uφ(s)

s
. (4.4)

Define

g(t) = E[Et ln(Et);Et ≤ e−1].

Then since d
du(u ln u) = 1 + lnu,

g(t) =

∫ e−1

0
(x lnx)P(Et ∈ dx) =

∫ e−1

0

(
∫ x

0
(1 + lnu)du

)

P(Et ∈ dx)

=

∫ e−1

0

(

(1 + lnu)

∫ e−1

u
P(Et ∈ dx)

)

du =

∫ e−1

0
(1 + lnu)P(u < Et ≤ e−1)du,

where the Fubini Theorem is applicable since lnx + 1 < 0 for all x ∈ (0, e−1]. By the identity

P(u < Et ≤ e−1) = P(Et > u) − P(Et > e−1) and formula (4.4), the Laplace transform of g(t)

is calculated as Lt[g(t)](s) =
1
s

∫ e−1

0 (1 + lnu)
(

e−uφ(s) − e−e
−1φ(s)

)

du. By integration by parts and

change of variables via v = uφ(s),

Lt[g(t)](s) =
1

s

([

u lnu
(

e−uφ(s) − e−e
−1φ(s)

)

]e−1

0

+ φ(s)

∫ e−1

0
(u lnu)e−uφ(s) du

)

=
1

s

∫ e−1φ(s)

0

v

φ(s)
ln

(

v

φ(s)

)

e−v dv

=
1

sφ(s)

∫ e−1φ(s)

0
(v ln v)e−v dv −

lnφ(s)

sφ(s)

∫ e−1φ(s)

0
ve−v dv

=: I1(s)− I2(s).

Since φ(s) ∈ Rβ(∞) with β > 0, it follows from [3, Proposition 1.3.6 (v)] that lims→∞ φ(s) = ∞,

and hence, lims→∞
sφ(s)
lnφ(s)I2(s) =

∫∞
0 ve−v dv = 1. On the other hand, since

∫∞
0 v| ln v|e−v dv < ∞,

it follows that lim sups→∞

∣

∣

sφ(s)
lnφ(s)I1(s)

∣

∣ ≤ lim sups→∞
1

lnφ(s)

∫ e−1φ(s)
0 v| ln v|e−v dv = 0. Therefore,

Lt[g(t)](s) ∼ −
lnφ(s)

sφ(s)
as s→ ∞. (4.5)

Now, note that E[V (Et)] = −g(t) + e−1
P(Et > e−1). Then by (4.4) and (4.5),

Lt[E[V (Et)]](s) ∼
lnφ(s)

sφ(s)
=

lnφ(s)

ℓ(s)
s−(1+β) as s→ ∞,

where we expressed φ(s) as φ(s) = sβℓ(s) for some ℓ ∈ R0(∞). By Karamata’s Tauberian Theorem

[3, Theorem 1.7.1], the latter yields
∫ t
0 E[V (Eu)]du ∼ lnφ(t−1)

ℓ(t−1)
t1+β

Γ(2+β) as t ↓ 0. Since V is nondecreas-

ing, so is the function t 7→ E[V (Et)], and the desired conclusion now follows from the monotone

density theorem [3, Theorem 1.7.2]. ✷
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The above two lemmas allow us to establish the small-time asymptotic behavior of the function

E[Et ln(1/Et)], which is needed to deal with the threshold case α = 1.

Proposition 4.3. Let E be the inverse of a subordinator D with Laplace exponent φ ∈ Rβ(∞)

with β ∈ (0, 1). Then

E[Et ln(1/Et)] ∼
1

Γ(1 + β)
[φ(1/t)]−1 lnφ(1/t) as t ↓ 0.

Proof. The definition of V (x) in (4.1) yields

E[Et ln(1/Et)] = E[V (Et)]− e−1
P(Et ≥ e−1) + E[Et ln(1/Et);Et ≥ e−1].

This together with Lemma 4.2 implies that the desired result follows upon showing that both

P(Et ≥ e−1) and E[Et ln(1/Et);Et ≥ e−1] decay at a rate faster than [φ(1/t)]−1 lnφ(1/t) decays.

However, since φ(1/t)−1 lnφ(1/t) has a polynomial decay due to the condition φ(s) ∈ Rβ(∞), it

suffices to prove that both P(Et ≥ e−1) and E[Et ln(1/Et);Et ≥ e−1] decay at least exponentially

as t ↓ 0. Now, (4.2) immediately yields an exponential decay of P(Et ≥ e−1). On the other hand, in

terms of E[Et ln(1/Et);Et ≥ e−1], choose a constant c3 > 0 such that | ln x| ≤ c3x for all x > e−1,

so that
∣

∣E[Et ln(Et);Et > e−1]
∣

∣ ≤ c3E[E
2
t ;Et > e−1]. Since the right-hand side decays exponentially

due to (4.3), the left-hand side decays at least exponentially. This completes the proof. ✷

Proof of Theorem 1.2. By [6, Proposition 4.2], for any fixed p > 0 and δ > 0,

E[Ept ] ∼ E[Ept ;Et ≤ δ] ∼
Γ(p+ 1)

Γ(pβ + 1)
[φ(1/t)]−p as t ↓ 0.

This yields the following statement in the case when α ∈ (0, 1) ∪ (1, 2):

E[fα(Et);Et ≤ δ] ∼ E[fα(Et)] ∼

{

Γ(1+1/α)
Γ(1+β/α) [φ(1/t)]

−1/α if α ∈ (1, 2),
1

Γ(1+β) [φ(1/t)]
−1 if α ∈ (0, 1),

(4.6)

where fα(t) is defined in (2.5). On the other hand, application of (4.3) and Proposition 4.3 yields

E[fα(Et);Et ≤ δ] ∼ E[fα(Et)] ∼
1

Γ(1 + β)
[φ(1/t)]−1 lnφ(1/t) if α = 1. (4.7)

In particular, expressions (4.6) and (4.7) show that regardless of the value of α ∈ (0, 2),

E[fα(Et);Et ≤ δ1] ∼ E[fα(Et);Et ≤ δ2] for any δ1, δ2 > 0. (4.8)

Moreover, expressions (4.2), (4.6) and (4.7) together imply that

P(Et > δ) = o(E[fα(Et);Et ≤ δ]) for any δ > 0. (4.9)
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Applying the argument given in the proof of [6, Proposition 2.2], one can verify that Theorem 2.1

and the two statements (4.8) and (4.9) together imply

|Ω| −QY ◦E
Ω (t) ∼ cαE[fα(Et);Et ≤ δ]

for any δ > 0, where cα is defined in (2.5). This is equivalent to the conclusion of Theorem 1.2. ✷

Remark 4.4. Suppose for simplicity that the time change E in Theorem 1.2 is given by the inverse

of a stable subordinator with index β ∈ (0, 1). Then, the rate function for the decay of |Ω|−QY ◦E
Ω (t)

as t ↓ 0 is given by










tβ/α if α ∈ (1, 2),

tβ ln(1/t) if α = 1,

tβ if α ∈ (0, 1).

Comparing this with the statement of Theorem 2.1, one can observe that the short-time decay

rate for |Ω| − QY ◦E
Ω (t) is faster than that for |Ω| − QYΩ(t), regardless of the values of the indices

α ∈ (0, 2) and β ∈ (0, 1). This makes sense since, even though the introduction of the inverse stable

subordinator E makes the heat particles diffuse at a slower rate in large time, they actually diffuse

at a faster rate near t = 0, and thus, more heat particles exit the domain Ω in short time.
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